Typos that occur in our encyclopedic monograph and additional material

EXTENSION PROBLEMS AND STABLE RANKS—A Space Odyssey Birkhäuser 2021, 2198 p.

page	line			
3	-8	It said	to be replaced by	It is said
7	3	$\phi(t) \neq 0$	to be replaced by	arphi(t) eq 0
7	5	x, y, X	to be replaced by	$s,t,[0,\infty]$
13	2	just proved	to be deleted	
14	-7		to be added	If A and B are two subsets of X, then A is dense with respect to B if $\overline{A} \supseteq B$.
19	1	T_1 axiom	to be replaced by	T_1 -axiom
29	10, 11, 14, 15, 16	n	to be replaced 6 times by	m
33	-17	F_{σ} subset	to be replaced by	F_{σ} -subset
34	10	Since, X	to be replaced by	Since X
34	14	T_1 space	to be replaced by	T_1 -space
34	-3	if $X = \mathbb{K}$, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$	to be deleted	
38	-1		to be deleted	
39	7	$j=1,\ldots,N$	to be replaced by	$j=1,\ldots,n$
41	8	an homeomorphism	to be replaced by	a homeomorphism
42	12	$\tilde{x} := \{y : x \sim y\}$	to be enlarged by	$\tilde{x} := \{y: x \sim y\} = [x]$
43	5	$\tilde{f}(\tilde{x}) = \tilde{f}(\tilde{y})$	to be replaced by	$\widetilde{f}([x]) = \widetilde{f}([y])$
51	-1	S^1	to be replaced by	S_1
52	4, 5, 7, 10	S^1	to be replaced by	S_1
61	16	x_0 ; which	to be replaced by	x_0 , which
61	19	subset set	to be replaced by	subset
61	-1	to x_2	to be replaced by	to x_1
66	20	1/N' - 1	to be replaced by	1/(N'-1)
96	5	hypotheses	to be replaced by	hypothesis

4.9.2023

page	line			
104	-6	immmediately	to be replaced by	immediately
105	6	injective.	to be replaced by	injective:
109	13	of	to be replaced by	or
111	13	$(M \times S) \cup (S \times M) \cup (S \times S)$	to be replaced by	$(M \times M) \cup (M \times S) \cup (S \times M) \cup (S \times S)$
129	-10	$\mathcal{R} \setminus \mathcal{F}$ The	period missing	$\mathcal{R} \setminus \mathcal{F}$. The
150	11	Theorem 1.310	to be replaced by	Proposition 1.310
161	7	Theorem 1.316	to be replaced by	Corollary 1.316
197	-5	square in \mathbb{C}	to be replaced by	square in \mathbb{R}^2
200	-1	$[a, b]^n, a < b,$	to be replaced by	$\prod_{j=1}^{n} [c_j, c_j + r], \ c_j \in \mathbb{R}, \ r > 0,$
207	3	Lemma 3.42	to be replaced by	Corollary 3.42
210	18	Lemma 3.48	to be replaced by	Proposition 3.48
217	-8	$\Phi(1), \Phi'(1)$	to be replaced by	$\Phi(2\pi), \Phi'(2\pi)$
217	-7	$\phi(e^{it})$	to be replaced by	$\phi(e^{it}) := \Phi(t)$
229	-3	Г	to be replaced by	γ
236	-7	$G\in C^k(\mathbb{C})$	to be replaced by	$G\in C^n(\mathbb{C})$
243	-8	$\leq 1/e$	to be replaced by	< 1
243	-5, -6	1/e	to be replaced by	1
243	-5	K°	to be replaced by	D
246	8	Lebesgue's majoration theorem	to be replaced by	Lebesgue's dominated convergence theorem
248	-1			period . is missing
254	-7	$\gamma^* =$	to be replaced by	$\gamma^* :=$
259	-5	$U\subseteq \mathbb{C}$	to be replaced by	$U\subseteq \mathbb{R}^2$
269	-3,-4,-5	$d\zeta$	to be replaced three times by	$d\sigma_2(\zeta)$
276	3	\mathbb{C}	to be replaced by	Ĉ
276	8	Lebesgue measure	to be replaced by	planar Lebesgue measure
282	3	$-\int_{ \xi =1}rac{\overline{q(\xi)}}{a\xi}$	to be replaced by	$-\int_{ \xi =1} \frac{\overline{q(\xi)}}{a\xi} d\xi$

page	line			
310	-7	$p_{n+1}(t) =$	to be replaced by	$p_{n+1}(t) :=$
312	12	is dense	to be replaced by	is uniformly dense
313	7	dense.	to be replaced by	dense in $C(X, \mathbb{R})$.
315	3	K	to be replaced by	K
316	-10	$+\ell_n$	to be replaced by	$-\ell_n$
354	15	$\operatorname{Res}\left(f,w\right)$	to be replaced by	$\operatorname{Res}\left(rac{f'}{f},w ight)$
363	-2	(3)	to be replaced by	(4)
381	-3	K	to be replaced by	K
392	2	Riesz	to be replaced by	F. Riesz
396	2	\mathbb{R}^+	to be replaced by	$[0,\infty[$
415	-4		to be added at the beginning of the line	$(x,y)\mapsto xy$
420	-6	Corollary	to be replaced by	Proposition
422	5	Cauchy-Schwarz	to be replaced by	the Cauchy-Schwarz inequality
422	-4	(f_n)	to be replaced by	(f_k)
422	-1	n	to be replaced tree times by	k

page	line			
423	4	n	to be replaced tree times by	k
431	-14	$\frac{1}{1- 1-f }$	to be replaced by	$\frac{ 1 }{1- 1-f }$
432	2		to be added	and we may assume that $ 1 \ge 1$.
433	5	<i>resolvent</i> set	to be replaced by	resolvent set
434	-1	$ a^n ^{1/n}$	to be replaced by	$ a_{n} ^{1/n}$
445	4 - 8	1	to be replaced 6 times by	1
459	-2	no	to be replaced by	not a
462	2	Proposition	to be replaced by	Example
464	7	Theorem	to be replaced by	Corollary
467	4	z	to be replaced by	Z
474	-7	Theorem	to be replaced by	Corollary
474	-10	in in Theorem	to be replaced by	in Corollary
480	3	(3)	to be replaced by	(iii)
480	12	Theorem,	to be replaced by	Theorem
486	-1	f_j	to be replaced by	$\widehat{f_j}$
497	11	z	to be replaced by	(z_1,\ldots,z_n)

page	line			
500	-5	K_n	to be replaced by	K_N
503	18		to be added	For the sake of simplicity, we identify $\alpha \cdot 1 \in A$ with the scalar α
504	9		delete	(see also Theorem 33.17)
520	7	Proposition	to be replaced by	Corollary
522	-6	$g - \widehat{g}(x)$	to be replaced by	$g - \widehat{g}(x) \cdot 1$
534	7	as soon as	to be replaced by	provided
536	-3	$\kappa([q)]$	to be replaced by	$\kappa([q])$
537	-2	Theorem	to be replaced by	Proposition
537	-1	invariance	to be deleted	
550	2	Then	to be replaced by	Moreover,
557	18	$ 1 - f^{-1}g $	to be replaced by	$ 1 - f^{-1}g $
561	-7	Lemma	to be replaced by	Proposition
564	7	M_n	to be replaced by	M_j
565	-13	Proposition	to be replaced by	Appendix
565	-13	in the appendix	to be deleted	
566	6	$\operatorname{curve}\Phi: \exp A \to$	to be replaced by	path $\Phi:[0,1] \rightarrow$

page	line			
566	9	$e^{\operatorname{trace} X}$	to be replaced by	$e^{\operatorname{tr} X}$
567	5	Theorem	to be replaced by	Appendix
565	-13	in the appendix	to be deleted	
568	-2	and	to be replaced by	and so
574	5	Proposition	to be replaced by	Theorem
575	10	Proposition	to be replaced by	Theorem
575	-7	X(A)	to be replaced by	M(A)
576	-1	X(A)	to be replaced by	M(A)
576	5	Proposition	to be replaced by	Theorem
583	-11	$2\ell\pi i$	to be replaced twice by	$2\ell\pi i\cdot1$
584	11	$2\ell\pi i$	to be replaced twice by	$2\ell\pi i\cdot1$
588	9	$e^{-g/2+(j-m)\pi i}$	to be replaced by	$e^{-g/2+(j-m)\pi i\cdot1}$
589	4	$2j\pi i$	to be replaced twice by	$2j\pi i\cdot 1$
589	-3	$2j\pi i$	to be replaced by	$2j\pi i\cdot 1$
589	footnote	$2k\pi i$	to be replaced by	$2k\pi i\cdot 1$
597	-1	and note that $\Phi(1_A) = 1_B$	to be added	

page	line			
600	8	is matrix	to be replaced by	is a matrix
625	-10	$w := r + sZ \in \mathcal{R}$ and that	to be replaced by	the function w given by $w(z) = r + sz$ belongs to \mathcal{R} and satisfies
629	-4	yy'	to be replaced by	y'y
630	16	$ \lambda ^2$	to be replaced by	$ \lambda ^2\cdot {f 1}$
630	16, 17, -8	β^2	to be replaced by	$eta^2\cdot {f 1}$
633	10	σ	to be replaced by	$\sigma eq 0$
633	-5	every	to be replaced by	this
635	11	$\sigma^*_{\mathcal{R}}(f\langle a angle)$	to be replaced by	$\sigma^*_{\mathcal{R}}(f[a])$
653	2	in	to be deleted	
655	9	1	to be replaced twice by	1
655	13	R	to be replaced by	${\cal R}$
655	-14	1	to be replaced by	1
656	-16	the the	to be replaced by	the
656	-10	Corollary	to be replaced by	Theorem
668	3	:	to be replaced by	, where $\mathcal{R} \in \mathscr{R}$:
691	1	(SC2)	to be replaced by	(SC2))

page	line			
691	2	$\sqrt[n]{ 1-z }$	to be replaced by	$\left \left(\sqrt[n]{\left 1-z\right }\right.\right $
721	4	$\left\ \frac{z-1}{z-r_n} p\right\ $	to be replaced by	$\left\ \frac{z-1}{z-r_n} p\right\ _{W^+}$
725	7	have approximate	to be replaced by	have bounded approximate
738	12	Max	to be replaced by	Max
742	-6	$M + \mathbb{K} a + A a$	to be replaced by	$M + \mathbb{C} a + A a$
744	7	/commutative	to be deleted	
744	8		add as a foonote	Of course this operation can also be defined on unital Banach algebras
744	-1	$ (1-a)^{-1}x $	to be replaced by	$ (1-a)^{-1}x _u$
750	5	necessary	to be replaced by	necessarily
751	-15	M(B)	to be replaced by	$M_{\mathbb{K}}(B)$
751	-4	linear	to be replaced by	$\mathbb{K} ext{-linear}$
752	4	$\mathbb C$	to be replaced by	K
757	17	over K	to be replaced by	over $\mathbb C$
760	-16	Theorem	to be replaced by	Proposition
760	-2	C	to be replaced by	K
761	4	Proposition	to be replaced by	Lemma
761	12, -3	\mathbb{C}	to be replaced by	K

page	line			
761	16		line to be replaced by	Also equivalent are:
762	5	C	to be replaced by	K
762	-5	Proposition	to be replaced by	Propositions
763	3,7	C	to be replaced twice by	K
763	-9	field	to be replaced by	division algebra
763	-4, -7	1	to be replaced twice by	1
763	-3	C	to be replaced twice by	K
763	footnote 239	coincides with	to be replaced by	is similar to
764	5, 10	1	to be replaced twice by	1
768	12	*1	to be replaced by	*E
768	-12	ε.	to be replaced by	ε
769	-3, -5	1*	to be replaced three times by	E *
784	-1	(and are true in view of Theorem 10.2):	to be deleted	actually wrong for dim $E = \infty$
785	-3	Theorem 10.12	add	combined with Theorem 10.2
796	-10, -11	$ f_j^* $	to be replaced by	$ f_j^* ^2$
803	18	zero-free	to be replaced by	zero-free function
803	22	$e^{tL(z)}$	to be replaced by	$e^{(1-t)L(z)}$

page	line			
804	-15	can be taken to be	to be replaced by	is
804	-10	$e^{\psi} = \phi$	to be replaced by	$e^{\psi}=arphi$
804	-1	$e^{\psi_n} = \varphi _{[n,n+1]}$	to be replaced by	$e^{\psi_n} = \phi _{[n,n+1]}$
805	5	$\exp\left(\frac{1}{2}L_n(\tau(t))\right)$	to be replaced by	$\exp\left(\frac{1}{2}L_n(t)\right)$
805	6	•	to be replaced by	(note that $\operatorname{Re} L_n(t) = \log \tau(t) \to -\infty$ as $t \to a, b$).
806	-5	a 2π	to be replaced by	a continuous 2π
806	-4	$[2k\pi, 2(k+1)\pi]$	to be replaced by	$]2k\pi, 2(k+1)\pi[$
808	-8	connected.	to be replaced by	connected (may be empty).
808	-7		to be added	In particular, if K_1 and K_2 are polynomially convex and disjoint, then $K_1 \cup K_2$ is polynomially convex.
816	-6	$G_{1,,N}$	to be replaced by	$G_{\{1,,N\}}$
819	5	a contradiction to	to be replaced by	contradicts
820	-5	γ_j	to be replaced by	γ_j in Ω
821	-1	homologuous	to be replaced by	homologous
844	footnote 270		misplaced to page 846	
850	-7	$0 < \eta $	to be replaced by	$ ext{inf}_{\mathbb{D}}\left f ight <\eta$
851	-13	N(f)	to be replaced by	Z(f)
857	7	Remark	to be replaced by	Proposition
867	-3	open	to be replaced by	open
873	-2		delete the spurious ! symbol	
887	-14		to be replaced by	(note that x_0 is not an isolated point).
901	-15	[188]	to be replaced by	[p. 113, Chapter VI, Theorem 4.4] Whyburn
910	-16	endpoints	to be replaced by	endpoint
933	3	is path	to be replaced by	is a path
946	-7	$w_0 \in \Omega_1$	to be replaced by	$w_0 \in \partial \Omega_1$
955	-5	homeomorphims	to be replaced by	homeomorphisms
955	-1		to be replaced by	extending h .
956	2	\mathbb{C} the target	to be replaced by	\mathbb{C} is the target
956	17		add footnote	One may also directly consider the function $f - f(0)$.
965	5	$= = 0 = v(x_0)$	delete the second $=$	
967	4	Theorem	to be replaced by	Lemma

page	line			
967	9	$\prod_{k=1}^{n}$	to be replaced by	$\prod_{k=0}^{n}$
968	5	Theorem	to be replaced by	Lemma
981	-15	converge locally	to be replaced by	converge (with respect to the Euclidean norm on S_2) locally
981	-12	•	to be replaced by	$ \cdot _2$
981	-12	•	to be replaced by	(see Appendix 36).
982	9	$f(\iota_2(\iota_1(n)))$	to be replaced by	$(f_{\iota_2(\iota_1(n))})$
984	-3	no	to be replaced by	not a
991	3,4		put into displaystyle	$\lambda(z) \leq \lambda_{\mathbb{D}}(z)$
991	-3	dz	to be replaced by	dz
992	9	map $f_r(z)$	to be replaced by	maps $f(z)$
1001	-9	Exemple	to be replaced by	Example
1001	-6	U	to be replaced by	$U \subseteq \mathbb{R}^n$
1003	-10	= b	to be replaced by	= b + 1
1005	10	iii)	to be replaced by	(3)
1016	-7	by	to be replaced by	by Lemma 2.1 (for $j = n + 2$) and
1016	-7	, there	to be replaced by	(Definition 17.4), there
1020	-2, -5, -7	K	to be replaced three times by	R
1028	3	Step, 1,	to be replaced by	Step 1,
1038	-2	the metric	to be replaced by	the standard metric
1040	19	Lemma	to be replaced by	Example
1042	-9			The proof environment was inadvertently shifted by Latex to the next page
1045	3			The proof symbol has been misplaced by Latex
1049	12	[102, 300]	to be replaced by	[102, p. 300]
1050	4	1	to be replaced by	$\frac{1}{2}$
1061	-5	$\bigcup_{k=1}^{n}$	to be replaced by	$\bigcup_{k=1}^{n-1}$
1079	5	(5)	to be replaced by	(1)

page	line			
1085	3	done.	to be replaced by	done, since each prime number p (equivalently positive irreducible number) is a prime element: in fact, suppose that p divides ab , say $pc = ab$, but not a . Then a and p have no proper com- mon divisor, and so by the Euclidean algorithm, $1 = na + mp$ for some $n, m \in \mathbb{Z}$. Hence $b =$ n(ab) + (mb)p = n(cp) + (mb)p = (nc + mb)p. Thus p divides b .
1085	9	irreducible factors	to be replaced by	prime elements
1085	14	Since	to be replaced by	Since by Observation 19.24
1086	9 + 10	between line 9 and 10	to be added	If R is an UFD, then (2) and (3) are equivalent.
1086	-13	(2) and (3) are still equivalent, but	to be deleted	
1088	11	$I_R(a,b)$	to be replaced by	$I := I_R(a, b)$
1095	3,4	delete the sentence "Since22.7)."		
1095	9	4.15	to be replaced by	4.14
1098	17	$\mathbf{u} \in C^{\infty}(U)$	to be replaced by	$\mathbf{u} \in C^{\infty}(U)^n$
1100	2	$\mathbf{u} \in C^{\infty}(U)$	to be replaced by	$\mathbf{u} \in C^{\infty}(U)^n$
1101	-15	Theorem 24.5	to be replaced by	Proposition 20.8
1106	12	Then	to be replaced by	If \overline{A} is the uniform closure of A , then
1106	15	1	to be replaced by	1
1107	-1	1	to be replaced by	1
1108	12	1	to be replaced twice by	1
1108	-6	Poposition	to be replaced by	Proposition
1113	-11, f.n. 379,380	strictly	to be replaced three times by	strongly
1125	8	1	to be replaced twice by	1
1130	8	space X ,	to be replaced twice by	space,
1131	11	m(1)	to be replaced by	<i>m</i> (1)
1133	-13	m(1)	to be replaced by	<i>m</i> (1)
1142	-4	1	to be replaced twice by	1

page	line			
1148	9,10	Corollary	to be replaced twice by	Theorem
1148	-1	Proposition	to be replaced by	Remark
1154	8	and that $a_n \neq 0$	to be deleted	
1182	8	no	to be replaced by	not a
1190	-2	dos	to be replaced by	does
1191	-10	$\left(\bigcap_{k=1}^{\infty} M^{\odot k}\right) =$	to be replaced by	$\left(\bigcap_{k=1}^{\infty} M^{\odot k}\right) \subseteq$
1196	-16	notationm	to be replaced by	notation
1196	-5	$\mathbf{c}(\mathbf{f} + \mathbf{a}g)$	to be replaced by	$\mathbf{c}\cdot(\mathbf{f}+\mathbf{a}g)$
1202	7	$\mathbf{r} \cdot \mathbf{x} = 1$	add footnote at 1	where 1 is the unit element in \mathcal{R}
1202	7, 9, 10, 11	\mathbf{x}, x_j	to be replaced by	$ ilde{\mathbf{x}}, ilde{x}_j$
1209	5	fu + t	to be replaced by	$fu + t \cdot 1$
1213	4	··· ,	to be replaced by	,,
1216	-10	reached	to be replaced by	achieved
1217	19	reducible	to be replaced by	reducible
1218	1 - 6	Proof of Corollary 23.43	to be replaced by	The case $n = 1$ has been done in Proposition 9.46. So it suffices to show that sufficient small perturbations of each $(a, \mathbf{b}) \in QI_{n+1}(A)$ belong again to $QI_{n+1}(A)$. This is ob- vious though in view of Proposition 23.24 and the fact that $U_n(A_u)$ is open by Proposition 7.322.
1221	9	bsr I =	to be replaced twice by	$\operatorname{bsr} I \leq$
1221	-16	with 23.13	to be replaced by	with Definition 23.13
1236	8	poof	to be replaced by	proof
1250	13/14	to be added	at the end of the proof	As each z_k is a removable singularity of the k-th summand S_k , we deduce that the series converges locally uniformly in \mathbb{C} . Moreover, for each z_j , $f(z) = w_j \frac{W(z)}{(z-z_j)W'(z_j)} \left(\frac{z}{z_j}\right)^{n_j} + W(z)R_j(z)$, for some function R_j meromorphic in \mathbb{C} with poles exactly at every $z_k, k \neq j$. Since $W(z_j) = 0$ and $\lim_{z \to z_j} \frac{W(z)}{(z-z_j)W'(z_j)} = 1$, we conclude that $f(z_j) = w_j$ for every $j \in \mathbb{N}$.
1251	9	Theorem	to be replaced by	Proposition
1253	6	Theorem	to be replaced by	Proposition

page	line			
1254	-15	Theorem	to be replaced by	Proposition
1258	15	Proposition	to be replaced by	Theorem
1261	-13	$\mathbb{C}[x_1,\ldots,x_n]$	to be replaced by	$\mathbb{C}[z_1,\ldots,z_n]$
1268	2	$\dim_c X$	to be replaced twice by	$\dim X$
1271	16	$ au_b$	to be replaced by	$ au_d$
1271	-10	$= t_n < s_n$	to be replaced by	$\leq t_n < s_n$
1275	-15	g	to be replaced by	ğ
1281	14, 16	K	to be replaced twice by	\mathbb{C}
1285	-8	Lemma	to be replaced by	Corollary
1289	6	identify	to be replaced by	identify the <i>n</i> -tuple
1292	-4	\mathbb{K}^n	to be replaced by	K
1293	5	$j \ge n+1$	to be replaced by	$j \ge n+2$
1299	9	sse	to be replaced by	see
1304	9	e_1	to be replaced by	\mathbf{e}_1
1307	-2, -1		delete the last sentence	thusdisconnected
1313	-9	$L^1[0,1]$	to be replaced by	$L^{1}([0,1])$
1320	-13	Theorem	to be replaced by	Lemma
1327	-4	, proof	to be replaced by	proof
1331	12	$\frac{c_3(\xi)}{(z-\xi)^3} + \frac{c_4(\xi)}{(z-\xi)^4} + \cdots$	to be replaced by	$\frac{c_3(\xi)}{(z-\xi)^3} + \frac{c_4(\xi)}{(z-\xi)^4} + \cdots $
1345	-1	14.11	to be replaced by	Theorem 14.11
1356	8	26.19	to be enlarged by	applied to the set $\{z \in \mathbb{C} : z+1 \le 1\} \cup \{z \in \mathbb{C} : z-2 \le 2\}$
1362	-15	7.129	to be replaced by	Example 7.129
1363	-14	z	to be replaced three times by	Z
1373	12	Lemma 26.55	to be replaced by	Proposition 26.55
1373	13	$f/(\prod_{j=1}^p$	to be replaced by	$f/\prod_{j=1}^p$
1373	-12		to be added	Moreover, $\partial x_j \in C^1(K^\circ)$.
1385	15	Theorem 17.17	to be replaced by	Proposition 17.17

page	line			
1389	7	Theorem	to be replaced by	Proposition
1395	1	Rubel de Boer	to be replaced by	Friedland-den Boer-Rubel
1405	17	due to compactness	to be replaced by	by definition of $\mathscr{H}(K)$
1407	-1	$e^{(2\pi i \arg a)(k/m)}$	to be replaced by	$e^{i(rg a+2k\pi)/m}$
1423	-1	$ c + d \neq 0$	to be replaced by	$ad - bc \neq 0$
1424	-6	If we denote by ψ the	to be replaced by	Let ψ be the
1424	-5	, then	to be replaced by	, and which is given by
1443	-6	$x \mapsto$	to be replaced by	for $0 \le a < 1, x \mapsto$
1444	11	, we	to be replaced by	whenever $0 \le a < 1$, we
1453	9	Proposition	to be replaced by	Lemma
1463	-19	$\alpha \notin E \cap \mathbb{T}$	to be replaced by	$\alpha \in \mathbf{D} \setminus E$
1480	-9	e^b	to be replaced by	e^{a}
1486	-7	Remark	to be replaced by	Proposition
1507	14	defined	to be replaced by	given
1519	6	Since	to be replaced by	Since by Lemma 6.50
1536	8	Proposition	to be replaced by	Lemma
1536	-6	Proposition	to be replaced by	Theorem
1540	-8	3	to be replaced by	3n
1540	-1	Λ	to be replaced by	$\frac{\Lambda}{2}$
1540	-1	$C_0(\delta,n)$	to be replaced by	$rac{1}{2} C_0(\delta, n)$
1546	-1	Hence	to be replaced by	Hence, by Schark's Theorem 27.15,
1553	-5	h	to be replaced twice by	f
1573	4	be	to be replaced by	be a
1580	-10	$ \widehat{b}_j $	to be replaced by	$ \widehat{b} $
1581	-8	Theorem	to be replaced by	Proposition

page	line			
1583	-8	But	to be replaced by	Note that
1583	-7	So	to be replaced by	Thus $ g _{\infty}$ cannot be 1, since the only point $w \in \mathbb{T}$ where $ 1 + \overline{\alpha}w /2 = 1$ equals $w = \alpha \neq 1$, but $p \neq \alpha$. Hence $ g _{\infty} < 1$. But
1583	-6	$= \left \frac{1 + \overline{\alpha} p(x_0)}{2} \right = \left \frac{1 + \overline{\alpha}}{2} \right < 1$	to be deleted	
1609	-4	$1 - r^2 - 2r\cos s$	to be replaced by	$1 + r^2 - 2r\cos s$
1631	-7	$h \in A$	to be replaced by	$\mathbf{h}\in A^n$
1661	-5	$A_2,$	to be replaced by	$A_2 = C(\mathbf{D}, \mathbb{C}),$
1662	-3	semigroup	to be replaced by	sub-semigroup
1665	-9	$g(0) \neq 0$; hence,	to be deleted	
1665	-8		to be replaced by	, because $U_n(A)$ is an open set (Proposition 7.322).
1671	-14	basis	to be replaced by	disk
1682	-5	Hadamard multiplication	to be replaced by	Hadamard multiplication
1694	-9	$C(X, A^n)$	to be replaced by	$C(X,A)^n$
1700	5	is totally	to be replaced by	is compact and totally
1705	12	1	to be replaced by	1
1706	8	. Denote	to be preceded by	If $\sigma_A(a_n) = \{0\}$ then, for all $\varepsilon > 0$, $a_n - \varepsilon \cdot 1_A \in A^{-1}$, and so $(a_1, \ldots, a_n - \varepsilon \cdot 1_A) \in U_n(A)$ is an invertible approximant of a . If $\sigma_A(a_n) \neq \{0\}$, then we proceed as follows. Denote
1706	9	, and	to be replaced by	, $\lambda \neq 0$, and
1707	-12	Theorem	to be replaced by	Corollary
1711	-16	by the proof of Lemma	to be replaced by	by Lemma
1729	-13	U(B)	to be replaced by	$U_1(B)$
1734	10	Theorem 7.17	to be replaced by	Lemma 7.120
1741	-17, -15	Theorem	to be replaced twice by	Lemma
1754	14	1	to be replaced by	1
1756	-12, -2	Proposition	to be replaced twice by	Corollary
1790	7	Example 34.43	to be replaced by	Proposition 34.43
1832	9	square	to be replaced by	rectangle

page	line			
1843	-10	from	to be replaced by	using
1848	-12		to be added by	Since $(F,G) = (f_2,g_2) \begin{pmatrix} a & g_1 \\ b & -f_1 \end{pmatrix}$ for an invertible matrix whose determinant is -1 , we deduce from the invertibility of the pair (f_2,g_2) that $(F,G) \in U_2(A(\mathbb{D})_{sym})$ (Observation 7.321).
1864	-1	Theorem	to be replaced by	Proposition
1868	13	but not	to be replaced by	or
1868	14	bsr $C(K, \mathbb{C})_{sym} = 1$ (Corollary 34.20). Hence, by	to be replaced by	by Corollary 34.54
1868	-1	hat	to be replaced by	that
1871	3	$g_j :=$	to be deleted	
1878	11	\mathcal{T}_A	to be replaced by	\mathcal{T}_{AP}
1879	8	Let θ be	to be replaced by	Let $\theta > 0$ be
1879	20	$k_j \in \mathbb{N}$	to be replaced by	$k_j \in \mathbb{Z}$
1893	4/1	by Lemma 35.23	to be moved to line 1	then,
1893	7		to be replaced by	. Recall that $x_1 = u_1$.
1896	6	minumum	to be replaced by	minimum
1896	6		to be replaced by	. Due to the boundedness of $f,$ the limit ℓ is finite.
1897	-10	the	to be replaced by	an
1897	-9		to be replaced by	, where $\inf_{x \in \mathbb{R}} f(x+t_n) - f(x) \le \varepsilon$.
1898	2	I_n .	to be replaced by	$t_n.$
1900	3		to be replaced by	In fact, let $E_n = \{\lambda \in \mathbb{R} : \hat{q}_n(\lambda) \neq 0\}$. Then $E := \bigcup_{n=1}^{\infty} E_n$ is countable and $\hat{f}(\lambda) = 0$ out- side E .
1914	13	Theorem	to be replaced by	Proposition
1914	-7	yields	to be replaced by	yields item (1) of
1914	-6	:	to be replaced by	, whereas (2) is an immediate consequence of (1) .
1915	1 - 3		replace the sentence "By" with	For the rest of this chapter we identify the sub- set $\tau(\mathbb{R})$ of $M(AP)$ with \mathbb{R} .
1919	7–11	We claimon E^+ .	to be replaced by	As $\mathbb{R}^+ \subseteq E^+$, we obviously have that $f \equiv 0$ on \mathbb{R}^+ .
1919	-12/-11			Interchange x_n with y_n and vice-versa
1925	2/3	$\lim_{T \to \infty}$	to be replaced twice by	$\limsup_{T \to \infty}$

page	line			
1929		Lemma	to be replaced by	Corollary
1932	-12	positive	to be replaced by	non-negative
1939	-3	35.72(2)	to be replaced by	35.72(1)
1942	-10	Theorem $25.6(6)$	to be replaced by	Corollary 25.6 (7)
1947	-4	1.99	to be preceded by	Example 1.99
1950	12	Theorem	to be replaced by	Observation
1966	16	matrix	to be replaced by	matrix (with determinant 1)
1968	-15	q_j,q_j	to be replaced by	p_j, q_j
1973	17	ϕ	to be replaced by	Φ
2006	-6	uniquness	to be replaced by	uniqueness
2007	3	Weierstrass factors	to be replaced by	Weierstrass factors
2007	11	$\log(1-z) = \sum_{n=1}^{\infty}$	to be replaced by	$\log(1-z) = -\sum_{n=1}^{\infty}$
2007	4, 13	root	to be replaced twice by	zero
2018	1	$\mathbb{C}\setminus\mathbb{K}$	to be replaced by	$\mathbb{C}\setminus K$
2018	15		to be replaced by	and \overline{U} is homeomorphic to $\mathbf{B}_n = \overline{B}_n$.
2019	7	Corollary	to be replaced by	Lemma
2078	12	$\lambda(u+v)$	to be replaced by	$\lambda \cdot (u+v)$
2031	-3/-2	and(1,0).	to be replaced by	Since $f_y(1,0) = 0$, we cannot use the implicit function the- orem. But by substituting $u = y^2$, we obtain $F(x,u) = (x-1)^2 + u - \kappa^2(1 - \sqrt{x^2 + u})^2 = 0$, and $F_u(1,0) = 1 \neq 0$. So there is $u \in C^1(U)$ for a neighborhood U of 1 with $F(x,u(x)) = 0$. Now $u(x) \ge 0$ for $x \in U, x \le 1$ (note that $u(1) = u'(1) = 0$ and $u''(1) = 2(\kappa^2 - 1) > 0$). Hence $y(x) := \sqrt{u(x)}$ is a solution.
2032	2	y'(t)	to be replaced by	y'(x(t))
2032	-10	y'(0)	to be replaced by	y'(1)
2055	-7	$ (f\circ\gamma)'(t)$	to be replaced by	$ (f\circ\gamma)'(t) $
2062	-9	$\max_{\xi\in\gamma}\{ u(\xi)-u(\xi_0) $	to be replaced by	$\max_{\xi\in\gamma} u(\xi)-u(\xi_0) $

page	line			
2071	-13	in	to be replaced by	of
2071	-5	the fact	to be replaced by	Observation
2122	-1	$\frac{1}{2\pi i}$	to be replaced by	$\frac{m!}{2\pi i}$
2123	10	homologuous	to be replaced by	homologous
2126	cell -7	$A(S,K) \ S \subseteq K \subseteq \mathbb{C}$	to be replaced by	$A(S,K), \ S \subseteq K \subseteq \mathbb{C}$
2127	cell -1	to dis.	to be replaced by	to. dis.
2128	cell 3	$\mathbb{Z}/m\mathbb{Z}=1$	to be replaced by	$\mathbb{Z}/m\mathbb{Z}$
2128	cell 12	comp,	to be replaced by	comp.,
2129	-2	Letexist	to be replaced by	For which free ultrafilters \mathcal{F} on $\mathbb{N} = \{0, 1, 2,\}$ does there exist
2129	-1	$f \in \mathcal{F}$	to be replaced by	$F \in \mathcal{F}$
2129			to be added after last line	Concerning this question, we were informed by Gerd Herzog that some, but not all ultrafilters on \mathbb{N} have this property This is on page 76 and 343-344 in [?].
2131	1/2	Corollary 4.60	to be replaced by	Theorem 4.60
2134	-5	in 27.192	to be replaced by	in Proposition 27.192
2137	-8	Propositions 1.171	to be replaced by	Proposition 1.171
2146	-17	topolgy	to be replaced by	topology
2173	8	$L^{1}[01,]$	to be replaced by	$L^{1}[0,1]$

Additional material

to be added on page 12

Proposition 0.1. Let X be a topological space and suppose that $A \subseteq X$ is closed. Then

- (1) $(\overline{A^{\circ}})^{\circ} = A^{\circ}.$ (2) $\partial A^{\circ} = \partial \overline{A^{\circ}}.$

Although (1) and (2) are equivalent for open sets G, neither of them may hold in that case.

Proof. (1) Just use that

$$A^{\circ} \subseteq A \Longrightarrow \overline{A^{\circ}} \subseteq \overline{A} = A \Longrightarrow \left(\overline{A^{\circ}}\right)^{\circ} \subseteq A^{\circ} \subseteq \left(\overline{A^{\circ}}\right)^{\circ}.$$

(2) By (1),

 $\partial \overline{A^{\circ}} = \overline{A^{\circ}} \setminus \left(\overline{A^{\circ}}\right)^{\circ} = \overline{A^{\circ}} \setminus A^{\circ} = \partial A^{\circ}.$

(2) is equivalent to (1) by the preceding Proposition ??. If $G = \mathbb{C} \setminus \{0\}$, then $\partial G = \{0\}$, but $\partial \overline{G} = \emptyset$.

T be adde on page 73.

In view of Lemma ?? one may ask whether under the assumptions of Theorem ?? one actually has $\emptyset \neq \partial C \subseteq \partial A$?

Proposition 0.2. Let X be a compact connected Hausdorff space, A a proper closed nonvoid subset and C a connected component of A. Then the following statements are true:

- (1) There exists such a triple (X, A, C) such that one does not have $\partial C \subseteq \partial A$.
- (2) If, additionnally, X admits a topological basis of connected sets, then we have

$$\emptyset \neq \partial C \subseteq \partial A.$$

Proof. (1) See figure 1, where A is the union of the red rectangles and the dotted red line C, and where X is the union of A with the black line L. Here $\partial A = \partial_{\mathbb{C}} A \cap L$ and $\partial C = C$. Note that $C \cap \partial A = \{0\}$.

FIGURE 1. bumping theorem

(2) This is similar to the proof of Lemma ??. By Proposition ??, C is closed. Moreover, $\partial C \neq \emptyset$, since in connected spaces $\partial M = \overline{M} \setminus M^{\circ} \neq \emptyset$ for any proper non-void set M. Let $x_0 \in \partial C$ and let W be any connected open set containing x_0 . Then $W \cap A^c \neq \emptyset$, since otherwise $W \subseteq A$ and so $W \cup C$ would be a connected set strictly bigger than C (as W intersects C^c) and contained in A, a contradiction to the maximality of C. Since $x_0 \in \partial C \subseteq C \subseteq A$, we conclude that $x_0 \in \partial A$.

Example 1.176. Each convex open set in \mathbb{C} is a simply connected domain. Proof. Let $G \neq \mathbb{C}$ be open and convex. Obviously G is (path)-connected. Suppose that $\mathbb{C} \setminus G$ admits a bounded component K. Let $a \in K$. Using if necessary a translation, we may assume that $a \in \mathbb{R}$, As K is bounded, there is a point $b \in K$ with minimal real part (and $b \leq a$). Then $] -\infty, b[$ cannot be entirely contained in $\mathbb{C} \setminus G$, destroying the maximality of K. Hence, there is a point $x_0 \in G \cap \mathbb{R}$ at the left of $b \leq a$. Similarly, there is a point $x_1 \in G \cap \mathbb{R}$ at the right of a. Thus G cannot be convex, as $[x_0, x_1]$ is not contained in G. We conclude that G is a simply connected domain.

on page 77, proof of Example 1.176 to be replaced by:

Let $G \neq \mathbb{C}$ be open and convex. Obviously G is (path)-connected. Suppose that $\mathbb{C} \setminus G$ admits a bounded component K. Since K is compact, there is a point $b \in K$ with minimal real part. Using, if necessary a translation, we may assume that $b \in \mathbb{R}$. Then $] - \infty, b[$ cannot be entirely contained in $\mathbb{C} \setminus G$, since otherwise $] - \infty, b[\cup K =] - \infty, b] \cup K$ would be a connected subset of $\mathbb{C} \setminus G$, destroying the maximality of K. Hence there is a point $x_0 \in G \cap \mathbb{R}$ at the left of b. Similarly, there is a point $x_1 \in G \cap \mathbb{R}$ at the right to b. Thus G cannot be convex as $[x_0, x_1]$ is not contained in G. We conclude that G is a simply connected domain. on page 268 add the following section:

THE BERGMAN REPRESENTATION

One easily deduces from Cauchy's integral formula in Theorem?? 4.15 that for $f \in A(\mathbf{D})$

$$f(z) = \frac{1}{2\pi i} \int_{|\xi|=1} \frac{f(\xi)}{\xi - z} \, d\xi.$$

In this section we present its counterpart for planar integrals.

Lemma 0.3. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have absolutely convergent power series; that is $\sum_{n=0}^{\infty} |a_n| < \infty$. Then

(0.1)
$$f(z) = \frac{1}{\pi} \iint_{\mathbb{D}} \frac{f(\zeta)}{(1 - \overline{\zeta} z)^2} \, d\sigma_2(\zeta).$$

and

(0.2)
$$\overline{f(0)} = \frac{1}{\pi} \iint_{\mathbb{D}} \frac{f(\zeta)}{(1 - \overline{\zeta}z)^2} \, d\sigma_2(\zeta).$$

Proof. Using that

$$\frac{1}{(1-\overline{\zeta}z)^2} = \sum_{n=0}^{\infty} (n+1)\overline{\zeta}^n z^n,$$

we obtain (due to the absolute convergence)

$$\frac{f(\zeta)}{(1-\overline{\zeta}z)^2} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_n \zeta^n (k+1) \overline{\zeta}^k z^k.$$

Since this double series converges for each fixed $z \in \mathbb{D}$ (absolutely) and uniformly in ζ , we have $\iint \sum \sum z = \sum \sum \iint$. Now

$$\iint_{\mathbb{D}} \zeta^n \overline{\zeta}^k d\sigma_2(\zeta) = \int_{r=0}^1 \int_{\theta=0}^{2\pi} r^{n+k} e^{i(n-k)\theta} r d\theta dr = \begin{cases} \int_0^1 r^{2n} 2\pi r dr = \frac{\pi}{n+1} & \text{if } k = n \\ 0 & \text{if } k \neq n. \end{cases}$$

Hence, as f is integrable on \mathbb{D} , we may apply Fubini's theorem (Appendix ?? (4)) on iterated integrals, to conclude that

$$\frac{1}{\pi} \iint_{\mathbb{D}} \frac{f(\zeta)}{(1-\overline{\zeta}z)^2} \, d\sigma_2(\zeta) = \sum_{n=0}^{\infty} a_n z^n = f(z),$$

hence (1) holds. To prove (2), it suffices to use that

$$\iint_{\mathbb{D}} \overline{\zeta}^n \overline{\zeta}^k d\sigma_2(\zeta) = \int_{r=0}^1 \int_{\theta=0}^{2\pi} r^{n+k} e^{-i(n+k)\theta} r d\theta dr = \begin{cases} \int_0^1 2\pi r dr = \pi & \text{if } k = n = 0\\ 0 & \text{if } k + n > 0. \end{cases}$$

As a corollary, we obtain the following nice formula.

Corollary 0.4. Let $a \in \mathbb{D}$. Then

$$\frac{1}{\pi} \iint_{\mathbb{D}} \frac{(1-|a|^2)^2}{|1-\overline{a}z|^4} \, d\sigma_2(z) = 1.$$

Proof. Just apply Lemma 0.3 to

$$f(z) = (1 - \overline{a}z)^{-2} = \sum_{n=0}^{\infty} (n+1)\overline{a}^n \ z^n$$

which has absolutely convergent power series.

As we are going to show, the formula in Lemma 0.3 is valid for all holomorphic functions f for which $\sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1} < \infty$ (or equivalently for $\iint_{\mathbb{D}} |f|^2 d\sigma_2 < \infty$), or more generally for those f for which $\iint_{\mathbb{D}} |f| d\sigma_2 < \infty$. These are the so-called Bergman functions.

Theorem 0.5 (Bergman representation). Let $f \in H(\mathbb{D})$ satisfy $||f||_1 := \iint_{\mathbb{D}} |f| d\sigma_2 < \infty$. Then

(0.3)
$$f(z) = \frac{1}{\pi} \iint_{\mathbb{D}} \frac{f(\zeta)}{(1 - \overline{\zeta} z)^2} \, d\sigma_2(\zeta).$$

and

(0.4)
$$\overline{f(0)} = \frac{1}{\pi} \iint_{\mathbb{D}} \frac{f(\zeta)}{(1 - \overline{\zeta}z)^2} \, d\sigma_2(\zeta)$$

Proof. Let f_r be defined by $f_r(z) = f(rz), z \in \mathbb{D}$. Then f_r has absolute convergent power series and so, by Lemma 0.3,

$$f_r(z) = \frac{1}{\pi} \iint_{\mathbb{D}} \frac{f_r(\zeta)}{(1 - \overline{\zeta} z)^2} \, d\sigma_2(\zeta).$$

Now $||f_r - f||_1 \to 0$ (see below). So, as the numerator is bounded away from zero by $(1 - |z|)^2$ for fixed z,

$$\iint_{\mathbb{D}} \frac{f_r(\zeta)}{(1-\overline{\zeta}z)^2} \, d\sigma_2(\zeta) \to \iint_{\mathbb{D}} \frac{f(\zeta)}{(1-\overline{\zeta}z)^2} \, d\sigma_2(\zeta).$$

Identity (0.3) now follows. This norm approximation is straightforward though ¹. In fact,

$$\begin{aligned} ||f_{r} - f||_{1} &= \iint_{|z| \leq \eta} |f_{r}(z) - f(z)| d\sigma_{2}(z) + \iint_{\eta \leq |z| < 1} |f_{r}(z) - f(z)| d\sigma_{2}(z) \\ &\leq \iint_{|z| \leq \eta} |f_{r}(z) - f(z)| d\sigma_{2}(z) + \iint_{\eta < |z| \leq 1} (|f_{r}(z)| + |f(z)|) d\sigma_{2}(z) \\ &=: I_{1}(\eta) + I_{2}(\eta) \end{aligned}$$

Since $||f||_1 < \infty$, and $\lim_{\eta \to 1} \iint_{|z| \le \eta} |f| d\sigma_2 = ||f||_1$, we conclude that the integral $\int_{\eta_1 \le |z| < 1} |f| d\sigma_2$ is less that $\varepsilon/4$ whenever η_1 is close to 1. Now let r_0 and η_0 be so close to 1 that $r_0\eta_0 \ge \eta_1$. Then for all $r \in [r_0, 1[, I_2(\eta_0) \le \varepsilon/2]$. For this η_0 the first integral $I_1(\eta_0)$ is less than $\varepsilon/2$ whenever $r \ge r_1 \ge r_0$ is close to 1 (due to uniform convergence of the integrand on $|z| \le \eta_0$).

¹ We follow here [?].

An entirely different proof, based on Hilbert space methods, is for instance in [?] or [?].

On page 365, add the following, as Lemma 6.50:

Lemma 0.6. For $a, b \in \mathbb{D}$, let $L_a(z) := \frac{a-z}{1-\overline{a}z}$ and similarly for L_b . Then $|L_a(z) - L_b(z)| \le \frac{4 |a-b|}{(1-|a|)(1-|b|)}.$

Proof. Just estimate:

$$\begin{aligned} |L_{a}(z) - L_{b}(z)| &= \left| \frac{a - z}{1 - \overline{a}z} - \frac{b - z}{1 - \overline{b}z} \right| &\leq \frac{|(a - z)(1 - bz) - (b - z)(1 - \overline{a}z)|}{(1 - |a|)(1 - |b|)} \\ &= \frac{|(a - b) + z^{2}(\overline{b} - \overline{a}) + z(b\overline{a} - \overline{b}a)|}{(1 - |a|)(1 - |b|)} \\ &\leq \frac{2|a - b| + |b\overline{a} - \overline{b}a|}{(1 - |a|)(1 - |b|)} \\ &= \frac{2|a - b| + |b(\overline{a} - \overline{b}) - (a - b)\overline{b}|}{(1 - |a|)(1 - |b|)} \\ &\leq \frac{4|a - b|}{(1 - |a|)(1 - |b|)} \end{aligned}$$

On page 435, the three lines above are to be replaced by:

Proof. The proof for (1) is exactly the same as that for the complex-valued functions (see Theorem ??). For (3), we refer to Appendix ?? and to Appendix ?? for (4). For (2), it suffices (by definition) to prove that the series $\sum_{n=0}^{\infty} a_n z^n$ converges uniformly and absolutely (that is $\sum_{n=0}^{\infty} ||a_n|| |z|^n < \infty$) on each closed disk $\overline{D}(0, \rho')$ with $0 < \rho' < \rho$ and diverges for every $z \in \mathbb{C}$ with $|z| > \rho$ in the sense that $(a_n z^n)$ is not a zero-sequence in A. The latter case is obvious, since $1/|z| < 1/\rho = \limsup_n \sqrt[n]{||a_n||}$ implies for every $N \in \mathbb{N}$ the existence of $n \ge N$ such that $\frac{1}{|z|} < \sqrt[n]{||a_n||}$. Hence $1 < ||a_n z^n||$. In the first case, let ρ^* satisfy $\rho' < \rho^* < \rho$, and choose $N \in \mathbb{N}$ so that

$$\sup\left\{\sqrt[n]{||a_n||}: n \ge N\right\} < \frac{1}{\rho^*}.$$

Hence, for every $z \in D(0, \rho')$ and $n \ge N$,

$$||a_n z^n|| \le ||a_n|| (\rho')^n = ||a_n|| (\rho^*)^n \left(\frac{\rho'}{\rho^*}\right)^n \le \left(\frac{\rho'}{\rho^*}\right)^n =: \delta^n.$$

This implies the absolute and uniform convergence of the A-valued series on $D(0,\rho')$ since $0<\delta<1$ and

$$\left\|\sum_{n=L}^{M} a_n z^n\right\| \le \sum_{n=L}^{M} ||a_n z^n|| \le \sum_{n=L}^{M} \delta^n.$$

on page 785, add:

Remark 0.7. (1) Whereas all three properties in Theorem ?? 10.11 hold for \mathbb{R}^n endowed with the Euclidean norm, (due to Brouwer's fixed point theorem, Theorem ??), none of them holds in infinite dimensional normed spaces (see [?]). A simple example ² of a fixed point-free map on the ball can be given in

$$\ell^1(\mathbb{N}) = \{ x = (x_0, x_1, \dots) \in \mathbb{R}^{\mathbb{N}} : ||x|| = \sum_{j=0}^{\infty} |x_j| < \infty \}.$$

Let $f((x_n)_{n \in \mathbb{N}}) := (1 - ||x||, x_0, x_1, \cdots)$. Then

 $||f(x) - f(y)|| = |||y|| - ||x||| + ||x - y|| \le 2||x - y||.$

Hence f is continuous, and for $||x|| \leq 1$,

$$||f(x)|| = 1 - ||x|| + ||x|| = 1.$$

So f has no fixed point in the open unit ball, and neither on the unit sphere S because f(x) = x implies that $0 = 1 - ||x|| = x_0$ and $x_j = x_{j+1}$ for all $j \in \mathbb{N}$. Hence all the coordinates coincide with 0, but $\mathbf{0} \notin S$.

(2) On the other hand, all properties in Theorem ?? hold for arbitrary real normed spaces E of finite dimension n. To see this, first note that $(E, || \cdot ||)$ is topologically isomorphic via a linear map ϕ to $(\mathbb{R}^n, || \cdot ||_2)$, (Corollary 7.25 ??). Let B be the closed unit ball in E. Then $U := \phi(B^\circ) = \phi(B)^\circ$ obviously is a bounded open convex set in \mathbb{R}^n . Note that $\phi(B) = \overline{U}$. Hence, by Appendix 19 ??, $\phi(B)$ is homeomorphic via a map ϕ_n to the closed Euclidean ball \mathbf{B}_n . Thus, B is homeomorphic to \mathbf{B}_n . Since the fixed-point property is invariant under homeomorphisms, we conclude from Theorem ?? that every continuous self-map of B has a fixed point.

Another way to see this, is to use Proposition ?? 16.2, telling us that $\phi(B)$ is a retract, and to conclude from Theorem ?? 16.17, that $\phi(B)$ has the fixed-point property.

 $^{^{2}}$ This has been communicated to us by Gerd Herzog

on page 1287 add the following Example:

Example 0.8. The function $f: \frac{1}{2}\mathbb{T} \cup \mathbb{T} \to \mathbb{C}$ given by f(z) = z if |z| = 1/2and f(z) = 1 if |z| = 1 does not have a zero-free continuous extension to the associated annulus $\{1/2 \le |z| \le 1\}$.

Proof. We first write f in the form given by Eilenberg's Theorem [?, Theorem 12.20]. Let $a_1 = 0$ and $a_2 = 2/3$. Then a_1 and a_2 belong to two different holes of $K := \frac{1}{2}\mathbb{T} \cup \mathbb{T}$. Since a_2 belongs to the unbounded component of |z| = 1/2, by [?, Proposition 12.19], $z - a_2 = e^h$ for some $h \in C(\frac{1}{2}\mathbb{T})$. Since a_1 and a_2 belong to the same component of $\mathbb{C} \setminus \mathbb{T}$, we have that $z/(z - a_2) = e^k$ for some $k \in C(\mathbb{T})$ ([?, Lemma 12.14]). Thus, by putting g = -k on \mathbb{T} and g = h on $\frac{1}{2}\mathbb{T}$, f writes as

$$f(z) = \frac{z}{z - 2/3} e^{g(z)}.$$

By [?, Definition 25.33], 1/2 < |z| < 1 is an essential hole for f. Hence, by [?, Proposition 25.34], f does not admit a continuous zero-free extension to the annulus.

A different proof (solely based on Corollary ?? to Brouwer's theorem) is given in [?].

p. 1553, lines 3-12 to be replaced by:

function $q(z) := \arg z = t$, where $z = e^{it}$, $-\pi < t \leq \pi$, does not belong to $H^{\infty}(\mathbb{T}) + \mathbb{C}(\mathbb{T})$. Note that q is continuous excepted at the point z = -1, where it has a jump. Suppose to the contrary that q = u + v for $u \in H^{\infty}(\mathbb{T})$ and $v \in C(\mathbb{T})$. Then

$$z = e^{iq} = e^{iu} \ e^{-iv} := e^h e^k$$

where $h \in H^{\infty}(\mathbb{T})$ and $k \in C(\mathbb{T})$. Hence $ze^{-h} = e^k$. Now the identity $P[e^k] = e^{P[k]}$

is a consequence of the uniqueness of the Dirichlet problem, because both functions are hormonic in
$$\overline{\mathbb{D}}$$
 continuous in $\overline{\mathbb{D}}$ and have the same hormodom

functions are harmonic in \mathbb{D} , continuous in $\overline{\mathbb{D}}$, and have the same boundary values e^k . Since the Poisson operator is multiplicative on $H^{\infty}(\mathbb{T})$ (Corollary ??),

$$e^{P[k]} = P[e^k] = P[ze^{-h}] = zP[e^{-h}] = ze^{-P[h]} \in H^{\infty}(\mathbb{D})$$

(Proposition ??), we see that $e^{P[k]}$ is holomorphic, too. Hence P[k] is holomorphic (Proposition ??). Consequently z would equal an exponential in \mathbb{D} ; a contradiction.

On page 1644 one adds the following:

As a consequence we obtain the following two results.

Corollary 0.9. Let $A \subseteq C(X, \mathbb{C})$ be a Banach function algebra over \mathbb{C} on a compact Hausdorff space X. If every closed subset of X is a peak set (respectively weak peak set) for A, then $A = C(X, \mathbb{C})$.

Proof. It obviously suffices to show this for weak-peak sets (since each peak set is a special weak peak set). In the Bade-Curtis theorem ?? we take C = 1 and $\alpha = 1/4$ and $||f|| := ||f||_{\infty}$. Let E, F be closed subsets of X with $E \cap F = \emptyset$. Since F is a weak peak set, there is $p \in A$ with $||p||_{\infty} = 1$, p = 1 on F and $\sup |p|_E < 1$ (Lemma ??). By taking a sufficient high power $f := p^s$ of p, we conclude that $|f| < \alpha$ on E and $|f - 1| = 0 < \alpha$ on F. Thus, by Theorem ??, $A = C(X, \mathbb{C})$.

Theorem 0.10 (Izzo). Let $A \subseteq C(X, \mathbb{C})$ be a uniform algebra on a compact Hausdorff space X. Let μ be a positive Borel measure on X. Suppose that every closed subset E of μ -measure zero is a peak (respectively weak peak) set for A. Then E is an interpolation set.

Proof. Consider the restriction algebra $A|_E$. By Corollary ?? (1), $A|_E$ is uniformly closed in $C(E, \mathbb{C})$, and so it is a uniform algebra, too. Now if $F \subseteq E$ is a closed subset of E, then $\mu(E) = 0$ implies $\mu(F) = 0$. By hypothesis, F is a peak (respectively weak peak) set for A. This obviously implies that F is a peak (respectively weak peak) set for $A|_E$. By Corollary ??, $A|_E = C(E, \mathbb{C})$. In other words, E is an interpolation set. \Box 4) As $h^{-1}(y) = y/(1 + f(y))$, we deduce from the continuity of f (Lemma 7.14 (5)) that h and h^{-1} are continuous.

On page 2019, one adds the following additional item:

5) We claim that the map $F: \overline{U} \to \mathbf{B}_n$ given by

$$F(x) = \frac{x}{1 - f(x) + ||x||}$$

is a homeomorphism with inverse

$$F^{-1}(y) = \frac{y}{1 - ||y||_2 + f(y)}$$

In fact, by Lemma ??, $0 \le f(x) \le 1$ and f(0) = 0. So F is well-defined and continuous as U is convex. Given $y \in \mathbf{B}_n$, that is $||y||_2 \le 1$, we immediately deduce from Lemma ?? (2), (7) that with

$$x := \frac{y}{1 - ||y||_2 + f(y)},$$

 $0 \le f(x) \le 1$, hence $x \in \overline{U}$, and F(x) = y.

on page 2037 add these few lines:

We also deduce that for every $\kappa > 0$, $D_{\kappa}^* \cap \{z \in \mathbb{C} : \operatorname{Re} z \ge 0\}$ is convex. In particular, we obtain the following analogon to Appendix ??:

Appendix 0.11. Let $z_j = r_j e^{it_j}$ be points in \mathbb{C} with $0 < r_j < 1$ and $|t_j| < \pi/2$. Consider the triangle $\Delta = \langle z_1, z_2, 1 \rangle$; that is the closed convex hull of the three points $z_1, z_2, 1$. Then, for every $z = re^{it} \in \Delta$ with $|t| < \pi/2$,

$$\frac{|t|}{1-r} \le \max\left\{\frac{|t_1|}{1-r_1}, \frac{|t_2|}{1-r_2}\right\}.$$

on page 2046, add this new Appendix:

Appendix 0.12. Given 0 < r < 1, there exists a covering of [0,1[with pseudohyperbolic disks $D(x_n,r)$ such that $x_n < x_{n+1}$ and $r < \rho(x_n,x_{n+1})$ (so that x_{n+1} does not belong to the closure of $D_{\rho}(x_n,r)$ but $D_{\rho}(x_n,r) \cap D_{\rho}(x_{n+1},r) \neq \emptyset$).

Proof. Let $x_0 := 0$. Then $x_n \to 1$ has to be chosen so that

(0.5)
$$P := \frac{x_n + r}{1 + x_n r} \in D_{\rho}(x_{n+1}, r)$$

where P is the right real boundary point of $D_{\rho}(x_n, r)$. We claim that any choice of $(x_n)_{n\geq 1}$ with $x_n < x_{n+1}$ and

$$\frac{x_n + r}{1 + x_n r} \stackrel{(*)}{<} x_{n+1} < \frac{x_n + \frac{2r}{1 + r^2}}{1 + x_n \frac{2r}{1 + r^2}}$$

does the job.

i) To show (0.5), note that (*) implies that $x_n < x_{n+1}$ and

$$\frac{x_{n+1} - \frac{x_n + r}{1 + x_n r}}{1 - x_{n+1} \frac{x_n + r}{1 + x_n r}} \bigg| < r \quad \stackrel{(*)}{\longleftrightarrow} \quad \frac{x_{n+1} + x_{n+1} x_n r - x_n - r}{1 + x_n r - x_{n+1} x_n - x_{n+1} r} < r$$

$$\iff x_{n+1} (1 + 2x_n r + r^2) < x_n + 2r + x_n r^2$$

$$\iff x_{n+1} < \frac{x_n (1 + r^2) + 2r}{1 + r^2 + 2x_n r}$$

$$\iff x_{n+1} < \frac{x_n + \frac{2r}{1 + r^2}}{1 + x_n \frac{2r}{1 + r^2}}.$$

ii) It suffices to prove that $x_n \to 1$. Let $b \in]0,1]$ be the limit. Then, by (*),

$$b \le \frac{b+r}{1+br} \le b.$$

Hence b = 1. iii) Finally, $r < \rho(x_n, x_{n+1})$, since

$$r < \rho(x_n, x_{n+1}) \iff r < \frac{x_{n+1} - x_n}{1 - x_n x_{n+1}}$$
$$\iff r(1 - x_n x_{n+1}) < x_{n+1} - x_n$$
$$\iff \frac{r + x_n}{1 + r x_n} < x_{n+1}.$$