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12470. Proposed by Moubinool Omarjee, Lycée Henri 1V, Paris, France. Evaluate

i 1 In tanh (2") '
— II — | -
2n tanh (27-1)

n=1



12422, Proposed by Mohammed Aassila, Strasbourg, France. Let a, b, ¢ be integers such

, then

is rational.
)* Is the converse of (a) true?




: Elena Cuza College, Craiova, Romania. Suppose that
e continuous. Prove that the following are equivalent:
are sequences of rationals such that (a, + b,
SO con

> such that f




osed by Hervé Grandmontagne, Paris, France. Let o be a real number g
aluate

[* Liz (—x*) + Lip (—x7®)
40

where Li, is the dilogarithm function, defined by Liy(x) = Y5 Jk= when |x| < 1 and
extended by analytic continuation.

.
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omplex n-by-n and
n-by-m matrices, respectively, let 0, , denote the m-by-n zero matrix, let I,, denote the
m-by-m identity matrix, and let exp be the matrix exponential function. Prove

exp [ } _ e.\)p:_;i_} (/o e..\pt_;A_:dr_l} -B
I m,n nm




12436. Proposed by Lorenzo Sauras-Altuz Vienna,
Austria. For a positive integer n, evaluate

n

H (x + sin’ ( r

k=




12433. Proposed by Etan Ossip, student, Queen’s University, Kingsion Canada. For
> 1, prove

where ¢ is the Riemann zeta function.







12415. Proposed by Roberto Tauraso, University of Rome Tor Vergata, Rome, Ifaly. For a
nonnegative integer n, evaluate

&










12406. Proposed by Raymond Mortini, University of Luxembourg, Esch-sur-Alzette, Lux-
embourg, and Rudolf Rupp, Nuremberg Institute of Technol g, Germany. For

fixed p € R, find all functions f:[0,1] — R th'tt are LUI][II]UUI.H at 0 and 1 and satisfy
f(x*) +2pf(x) = (x + p)* forall x € [0, 1].







12407. Proposed by an anonymous contributor, New Delhi, India. Let r be a positive real
number. Evaluate

___r—]

dx.

() (1 +27)




12398. Proposed by Lawrence Glasser, Clarkson University, Potsdam, NY. Evaluate

z)n)
et .
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12389. Proposed by George Stoica, Saint John, NB, Canada. Let f(x) = E | sin(nx)|/ n?.

n=I1
Prove lim f(x)/(xInx) = —1.
x—0F







dx.

/3{' (Inx)? arctan(x)
(] 1

— 2(cosa)x + x2










12380. Proposed by Dorin Mirghidanu, Alexandru loan Cuza National College, Corabia,

Romania. Let m, n, and p be positive integers, and let a, b, and ¢ be nonnegative real
numbers with a 4+ b 4 ¢ = 3. Prove

) )
I - !
m mf i

va+ .;f.""'b + e+ \[b+ e+ Yat e+ Ja+ b <

and determine when equality occurs.







12372. Proposed by Ovidiu Furdui and Alina Sintdmdrian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. For ¢ > 0, evaluate

/' In |x® — (1 — x)“ P
_— dx.
J0 X




97



12375. Proposed by Hongwei Chen, Christopher Newport University, Newport News, VA.
Let

n

OO . . 1\ )"
I, = / ( 1 — x2 sin? (— ) ) dx.
JO WX S

Problem 12288 [2021, 946] in this MoNTHLY asked for a proof that /> = =z /5. Prove that
I, is a rational multiple of m whenever n is a positive integer.







12362. Proposed by Antonio Garcia, Strasbourg, France. Evaluate




15



12347. Proposed by Marian Tetiva, Gheorghe Rogca Codreanu National College, Birlad,

Romania. Let a and b be real numbers with 0 <= a = 1 < b. Find all continuous functions
f: R — R suchthat f(0) =0and f(f(x)) —(a+b)f(x)+abx =0 forall x € K.
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12340. Proposed by Antonio Garcia, Strasbourg, France. Let g : [0, 1] — R be continu-
ous. Prove that
g(x) o
————dx =Cg(1/2)
Jo x4+ (1 —x)"

for some constant C (independent of ¢) and determine the value of C.




12338. Proposed by Istvin M Nanjing, China. Prove







12338. Proposed by Istvin M Nanjing, China. Prove




https://www.youtube.com/watch?v=p8ok5QNNlsc


https://www.youtube.com/watch?v=p8ok5QNNlsc
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12312. Proposed by Martin Tchernookov, University of Wisconsin, Whitewarer, WI. Find
all continuous functions f : [0, c¢) — R such that, for all positive x,

fx) (f(x}—%ﬁ f(r)a’r) > (fx) —1)%

Q@@
Solution to problem 12312, AMM 129 (3) (2022), p. 286 , by
Gerd Herzog, Raymond Mortini

’We show that the constant function 1 is the only solution‘

Let y = y(z) := fgc f(t)dt and suppose that the continuous function f : [0, 00[— R
satisfies on |0, 00|

-
) (s~ [ s0a) = ) - 12

Then

(25) y (2 — %) > 1 for z > 0 and y(0) = 0.

Note that this implies that y'(0) = 1, because, by letting z — 0,
Y(0)2-y(0) 21 < (¥(0)-1)<0
Let the function w : [0, 00[— R be given by

yl=)
w(:v)::{” ifz>0

y'(0) if x=0.
Then w € C([0,00[) N C1(]0, 0[). We claim that
(26) w(z) =1 for every x > 0,

from which we conclude that y(z) = z and so f(z) =¢/'(z) =1 for z > 0.
To see this, note that by (25), w(x) # 2. Since w is continuous on [0, co[, w(0) = 1,
and w does not take the value 2, we have that w(x) < 2 for each x > 0. Hence, for

x>0,
iy o wy(@) —yl@) 1 1
o) = P L (i - vi)
_ 1 (1-w(@)?
(27) oz 2—w(x)

Thus we may deduce from (27) that w’ > 0; that is w is increasing 2.

Now suppose that (26) is not true.

Case 1 There is xp > 0 with w(zg) < 1. This is not possible, though, as w is
increasing, but w(0) = 1.

Case 2 There is xg > 0 with w(zg) > 1. As w is increasing, w > 1 for z > xy. Note

(1-1)2
2—t

that we already know that w < 2. Since the map t — is increasing on [1, 2], we

deduce from (27) that for x > xg
(1 — w(=o))? 1

1
w'(z) > - ———— =1 c—.
x  2—w(xg) x

2 in the weak sense; or funnily called nondecreasing, a very ambiguous word.
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Hence, by integration, for x > xg,
w(z) > w(xg) + clog(x/xg) — oo (x — 00).

An obvious contradiction.
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12308. Proposed by Cezar Lupu, Yangi Lake BIMSA and Tsinghua University, Beijing,
China. What is the minimum value of fol (f’('.:r))2 dx over all continuously differentiable

functions f: [0, 1] — R such that fol f(x)dx = fol xX2f(x)dx =17

Solution to problem 12308, AMM 129 (3) (2022), p. 285 , by
Raymond Mortini

We show that the minimal value is given by 105/2 and is obtained by the polynomial
f(z) = —105/16x* 4+ 105/82% — 33/16

Let p be any polynomial. Then, by Cauchy-Schwarz,

([ ) s ([ ) ([ )

A primitives of f’p is given by fp — [ fp/dz. Now choose p so that p(0) = p(1) =0
and p'(z) = az? + B. To this end, put

p(z) = ax(x® - 1).

Then
1 . 1
I::/ f'pdx = fp}o—/ f(3az? —a)dx = —3a+a=—2a
0 0
Moreover,
/12d 2/1(6+2 221)d 21+1 2
r=a 42" —-2xdr=a"|=+=-—=].
o P 0 73 5
Hence

4a? 105
fde > gy =
/ @?(3+35-3) 2
Equality in the Cauchy-Schwarz inequality is given whenever f’ = p. Thus
f(z) = %x4 — ng +c.

Now a and ¢ have to be chosen so that [ f = [ xz2f = 1. This yields the linear
System
—T7a + 60c = 60
—27a + 140c = 420

whose solution is a = —105/4 and ¢ = —33/16. Consequently
f(z) = —105/162* + 105 /822 — 33/16.

Note that 105
f@) = (= —a@® = 1)
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12326. Proposed by George Stoica, Saint John, NB, Canada. Let f : R — R be a con-
tinuous function such that, for every fixed y € R, f(x + y) — f(x) is a polynomial in x.
Prove that f is a polynomial function.

Solution to problem 12326, AMM 129 (5) (2022), p. 487, by
Raymond Mortini, Peter Pflug, Amol Sasane

By considering the symmetric function p(z,y) := f(x +y) — f(x) — f(y) we get
from the assumption that as well p(-,y) and p(z,-) are polynomials in their variables
separately. Hence, by [1], p(x,y) is a polynomial.

Case 1 f € CY(R). Write p(z,y) = > a; z'y’ with symmetrical coefficients and
ago = —f(0) (the sum being finite of course) If we take y = 0, then for all =

—f(0) = f(z +0) = f(z) = f(0) = apo + ) _ aiox’.
Hence a; o = 0 for all # > 1. Due to symmetry, we also have ap; = 0 for all j > 1. Thus
we have only coefficients a; ; for 7,j > 1. Consequenlty

faty) = J@) = () = FO) _ 5~ o1

y =1

As f is assumed to be differentiable, we may take y — 0 and get

fl@) = £1(0) =) aia’.

i>1
Integration yields

f(x)_f( —$f Zazl

Thus f is a polynomial.

Case 2 f € C(R). Let F(z) := [} f(t)dt be a primitive of f. Then with
ﬂ%w:F@+w—ﬂ@—F@
x+y T Yy
Gy = [ sa— [ rwa— [ o

o - a- o
/fy+5ds+/ (f(y_|_5 d,s—/f
t=yts /Of(t)dt+/0 (f(y+s ds—/f

- /O *p(ys)ds + f(y)z

which is a polynomial in x. Again, by symmetry, and the Carroll argument, G is a
polynomial. Hence, by Case 1, F is a polynomial and so does f = F”.
REFERENCES

[1] F.W. Carroll A polynomial in each variable separately is a polynomial, Amer. Math. Soc. 68
(1961), 42 44
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12288. Proposed by Sedn Stewart, Bomaderry, Australia. Prove

[ () o

Solution to problem 12288 in Amer. Math. Monthly 128 (2021), 946, by
Raymond Mortini and Rudolf Rupp

| &

A change of the variable x — 1/z yields that

00 1 2 © (12 _ in2 )2
J = / (1 — 2% sin? <)> dr = / W dx.
0 T 0 T

2

Note that

(2% —sin® z)? = 2% — 222 sin? © + sin’ .
Now we ”linearize” the trigonometric powers: sin?x = (1/2)(1 — cos 2z) and
sin*x = (3/8) — (1/2) cos 2z + (1/8) cos4z. Thus J = I/2, where

j / % +at— 2?4 (22— %) cos(2x) + %COS(ZLx) i,
R

6
x
Next we consider the meromorphic function
% -|—Z4 o 22 + (22 o %)G%Z 4 %641',2
f(z) = o .
Then we add in the numerator the polynomial

1 4 2
p(z) =1 <22 - gz?’ + 5z5> ,

that is we consider the function

F(z):= f(z) + pz(g).

Note that this polynomial is chosen so that F' has a removable singularity at z = 0
(in other words, —% is the principal part in the Laurent expansion of f around the
origin). Hence [, F(z)dz = 0, where I' is the boundary of the half-disk [z| < R,
Imz > 0, consisting of the half circle I'g and the interval [—R, R]. Hence, by letting
R — oo and taking real parts,

0 = Re lim F(z)dz+ 1.

R—o0 Tr
By Jordan’s Lemma, limsupp_,o0 [, le™?||dz| < oo. Hence,
2
lim F(2)dz=0+0+1¢ lim 5T .
R—o0 Tr R—oo Tr z 5}

We conclude that the value of the original integral J is 7/5.
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12290. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Find all
analytic functions f: C — [ that satisfy

|fx 4+ i) = 1f@F + 1))

for all real numbers x and v.

Solution to problem 12290 in Amer. Math. Monthly 128 (2021), 946, by
Raymond Mortini and Rudolf Rupp

We show that all solutions are given by az, bsin(kz) and csinh(kz) where a,b,c € C
and k € R.
First we note that any solution f necessarily satisfies f(0) = 0. Now let h(z) :=

|f(z) ? = (f?)(zl Sincifx = f/ and fy =ify = if’, we see that fzy = (f/)y = Z(f/):v =
if”. Moreover (f), = f.. Hence
h’my = (fZ? + f?z)y = fmy?"’ fwfy + fy?x + f?zy
= 2Re(fuyf) +0=2Re(if"f) = —2Im(f"f).
Now |f(2)|? = |f(z)]? + |f(iy)|? implies that the mixed derivative of the right hand

side is 0. We conclude that Im(f”f) =0 in C. Let U = C\ Z(f), where Z(f) = {z €
C: f(z) = 0}. Then on U, this is equivalent to

1 9 f//
O=Im | —|f ) :Im<>.

(i 7
Thus, a necessary condition for f # 0 being a solution is that f”/f is a real constant
A. The differential equation f” = Af in C has the solutions az + d if A\ = 0, or
aeV ﬁe‘ﬁz if A >0, and ae'VINZ 4 ge= VN2 if X\ < 0. Since f(0) = 0, we have

d =0 and = —a. So, with k := /||,
f(2) = az, csinhkz if A > 0 and csinkz if A <0.

It is now easy to check that these are solutions indeed (wlog for k = 1):

sin(x +1iy) = cos(iy)sinz + cos z sin(iy)
= —p - sinz—icosz

= coshysinx 4+ ¢coszsinhy

|sinz|? = sin®x cosh?y + cos® zsinh?y

sin?  cosh? y + (1 — sin® z) sinh?
2

sin? z(cosh? y — sinh? ) + sinh? g

sin? z 4 sinh? y

= sin®z + | sin®(iy)).

as sin(iy) = isinhy
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12256. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Prove

I _
j‘ log(l + x) log(l — x) dx
0

3
- = -2:0),

where {(3) is Apéry’s constant } - 1/n°.

Solution to problem 12256 in Amer. Math. Monthly 128 (2021), 478, by
Raymond Mortini and Rudolf Rupp

Using that 4ab = (a + b)? — (a — b)?, we obtain

1 1 2 2 1 2 14+x

log(1 + z) log(1 — log?(1 — lo

4/ og(1 + ) log( x>dm:/ Og<w>dx_/ I e M Y
0 0 0

T T

For I, we make the substitution 1 — 2? = t?. Hence, due to —xdx = tdt,

1 242
log=t

Using that [ Y =" [ (Lebesgue), and twice intregation by parts,

o] 1 [ee) 1
I, =4 2 o2t dt =8Y ————— = £(3).

For the second one, I, we make the substitution ¢ = 2. Then z = =+ and dz =

-z t+1
ﬁdt. Hence

< log?t . t=1/s U log? s =t 9 9 > 1 7
= = ds =2 "1 ds =4 — =4- .
I 2/1 1—t2dt 2/0 T2 08 Z/Os og” s ds Z(2n+1)3 85(3)
n=0 n=0
Consequently, 41 = (1 — 1)£(3) = —3¢(3) and so
/1 log(1 + z)log(1 — z)
0

X

dr = —g{(?)).
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11684. Proposed by Raymond Mortini, Université Paul Verlaine, Metz, France, and
Rudolf Rupp, Georg-Simon-Ohm Hochschule Niirnberg, Nuremberg, Germany. For
complex a and z, let ¢,(z) = (@ — z)/(1 — az) and p(a, z) = |a — z|/|1 —az|.

(a) Show that whenever —1 < a,b < 1,

max |¢q(2) — ¢5(2)| = 2p(a, b), and

max |4, (2) + ¢y (2) = 2.

(b) For complex «, 8 with |¢| = || = 1, let
m(z) = Mg pap(2) = lag.(2) — B (2)|.

Determine the maximum and minimum, taken over z with |z] = 1, of m(z).

original statement

Given a,b, o, f € Cwith |a| < 1, |b| < L and |a| = |B] = 1, let 9, (2) = (a—2)/(1—az)
and p(a,b) = |a — b|/|1 — ab| the pseudohyperbolic distance between a and b.
i) Show that whenever a,b € | — 1,1],

M := max |pa(2) — @u(2)] = 20(a,0)

and

MY := max |p4(2) + @p(2)| = 2.
l2|<1

ii) Determine
M = e lowpa (2) — Bopu(2)|
and

m = |Izn\£ lowpa(2) — Bop(2)|.

Solution to problem 11684 AMM 120 (2013), 76 by
Raymond Mortini, Rudolf Rupp

i) That M* = 2 is easy: just take z = 1 and evaluate:
[pa(l) + ()] = [ -1 -1] =2.
Since M+ < 2, we are done.
ii) We first observe that ¢ is its own inverse. Let ¢ = (b —a)/(1 — ab) and \ =
—(1 —ab)/(1 —ab). Since ¢y is a bijection of the unit circle onto itself,

st i) = ip@)] = e |eBallnlll = o = e e@iae) = 2|

The same identities hold when replacing the maximum with the minimum.
Put v := afA and let —7 < argy < 7. For |z| = 1 we obtain
z(cz — 1)

v 1—=¢z

H(z) := |y¢e(z) — 2| =

1—cz
1—¢cz

)

w
Z"Y +1‘:"Y+1
w
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where 1
w=1—-cz=1—c—.
Z .
If z moves on the unit circle, then w moves on the circle |w — 1| = |c|. Let w = |w|e®.

Then (see figure 3) the domain of variation of 4 is the interval [—0,,, 0,,] with |0,,| < /2
and sin 0,, = |c| = p(a,b). Now

H(z) = |ye?® + 1| = 2| cos(=52 +6)|.

Hence,
M = ‘m|axH(z) = 2max{| cos(*5L +0)| : |0| < arcsin(p(a, b))}
z|=1
and
m = |1r|1in H(z) = 2min{| cos(*52 + 0)| : |0| < arcsin(p(a, b))}
z|=1
In particular, if a,b € | —1,1[ and o = = 1, then v = —1, and so (using the maximum

principle at x)
M~ = lm\aacH(z) = 2max{|sinf| : || < arcsin(p(a, b))} = 2p(a,b).
Ifa,be]—1,1and o« =1, = —1, then v = 1, and so
Mt 1|m‘a}1<H(z) = 2max{|cosd| : || < arcsin(p(a, b))} = 2.

We note that m = 0, that is H(zp) = 0 for some zy with |z9| = 1, if and only if y¢.
has a fixed point on the unit circle (namely zg). This is equivalent to the condition
| cos(*52)| < |c|. Moreover, M = 2 if and only if |sin(*§2)| < |c].

FicURE 3. The domain of variation of argw



50

Solution by the proposers.

(b) Observe that ¢, is its own inverse. Let ¢ = (b — a) /(1 — ab) and let
1—ab
1—-ab’

A=

Since ¢, is a bijection of the unit circle onto itself,

max |a, (2) — Béy(2)| = max laBo.(¢s(2)) — z| = max laBrd.(2) — z|.

lzl=

The same identities hold when the maximum is replaced by the minimum. Put
y =afi andlet —m < argy < w.For|z| =1, let H(z) = |yd.(z) — z|. We have

z{ez — 1) I | 1—¢cz
HD) =y —— —z|= |y —— —
1—cz 1—cz

1| = i}f

| w
where w = 1 — ¢z = 1 — ¢/z. As z moves around the unit circle, w moves around the
circle |w — 1| = |c|. Write w = |w|e’”. Note that § varies on the interval [—6,,, 8],
where |8, < w/2 and sin8,, = |¢| = p(a, b). Now

H(x) = |y +1| = 2‘:;05(“2” +0)].

Hence

agy
2

max H(z) = 2max { ‘cos (

lzl=1 ""5')‘ 218l = aﬂi-‘iinﬂ(ﬂ,b)} (%)

and

min H(z) = 2min ”cus (ﬂ + G)| : |@| < arcsin p(a, b)] .
lzl= 2
(a) Specialize (%) by taking a,b € (—1,1) and @ = 8 = 1, so that y = —1. By the
maximum principle, the maximum on the disk is achieved on the boundary, so

H_llagliltiia(Z) — ¢,(2)| = 2max {|sin 8| : || < arcsin p(a, b)} = 2p(a, b).

For the other part of (a), instead specialize (x) by taking a, b € (—1,1) and @ = 1,
B = —1, sothat ¥ = 1. This gives

max ¢, (2) + 6,(2)| = 2max {| cos 6] : 6] < arcsin p(a, b)} = 2.

Also solved by P. P. Dilyay (Hungary) and R. Stong. Part (a) only by A. Alt, D. Beckwith, D. Fleischman,
0. P. Lossers (Netherlands), and T. Smotzer.

Solution to problem 11584 AMM 118 (2011), 558 by
Raymond Mortini, Jérome Noél

By the Schwarz-Pick inequality, % < 1 for any holomorphic self-map of

the unit disk. Then, if we let B be the Blaschke product

associated with the zeros (a,), we get:
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11584. Proposed by Raymond Mortini and Jéréme Noél, Université Paul Verlaine,
Metz, France. Let (a;) be a sequence of nonzero complex numbers inside the unit
circle such that [ [;Z, |ax| converges. Prove that

0 oo 2
ZLW < LTyl
— oo .
aj [T, lajl

j=1

/
BO|
1—|B(0)]* ~
But
Z Z ]. — |a]|2
(2) = (1-a;z)(a; — z)’
Hence

2
S L-laf| _BOI 1= 1BOP 1Tl
< = .
= 9% | B(0)] | B(0)] I1;2, laj]
Motivation for posing this as a problem to AMM: We are interested in a direct
elementary proof.
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11578. Proposed by Roger Cuculiére, Clichy la Garenne, France. Let E be a real
normed vector space of dimension at least 2. Let f be a mapping from E to E, bounded
on the unit sphere {x € E: |[x|| = 1}, such that whenever x and y are in E, f(x +
f(y)) = f(x) + y. Prove that f is a continuous, linear involution on E.

Solution to problem 11578 in Amer. Math. Monthly 118 (2011), 46/

Lemma 1. Let 0 < ||z|]| < 1 and s € S. Let s be the (second) uniquely determined
intersection point of the half-line starting at s and passing through x with S. Then the
map Q : S — (0,00, s+ ||z —s||/||x — || is a nonconstant continuous map.

Proof. @Q obviously is continuous. If we suppose that @) is constant x, then this constant
is necessarily 1 (just interchange s with s’). Now x = (1—¢)s+ts’. Thus x—s = t(s'—s)
and z—s = (1—t)(s—s') and so Q(s) =t/(1—t). Hence 1 = k = t&5. So ¢t = 1/2. Now
x/||z|| and —x/||z|| belong to S and with t = (1—||z||)/2 we have x=(1-t)% Ml T
So t = 1/2 implies that z = 0.

Hxll

Lemma 2. The unit sphere S is connected whenever dim E > 2.
Proof. Let z,y € S, x # y. If  is linear independent of y, then the segment {tx + (1 —
t)y : 0 <t <1} does not pass through the origin; hence
tr+ (1 —t)y
It + (1 = t)yl|

is a path joining y with x on S.

If y = Az for some A € R, then we use the hypothesis that dim £ > 2 to guarantee
the existence of a vector u linear independent of z. Thus v := u/||u|| € S. By the first
case, we may join  with v and then v with y by a path in S. O

Solution to Problem 11578

The first step is to show that f(0) =
(1) Let &= By ~F{0). Then J(~£(O)) = £(0) — F(0) = 0
(2) Let 2 = y = 0. Then £(f(0)) = /(0):

(3) Let © = —f(y). Then f(0) = f(—

f(=1£(0)).
(4) Applying f yields f(f(0)) = f(f(=/(0))) & 0. Thus, by (2), f(0) = 0.

4)
(5) Let « = 0. Then f(f(y)) = f(0) +y =y. Hence f is an involution.
(6) f is additive since

f(y)) +y. With y = 0 this gives f(0) =

flz+y) 5 flx+f(f(y)) = f(z)+ f(y).

(7) Next we show that f is Q-homogeneous by induction. Indeed, by (5),
f((n+Dz) = f(nz +z) = f(nz +(f(2)) = f(nz) + f(2).
x

Thus f(mz) = mf(z) for every m € N.
Now

0=f(0)Zf(—fCJrﬂf)(;f(—ﬂ?Jrf(f(ﬂf)))=f(—96)+f(l’)-
Thus f(—z) = —f(z). Hence, for p € Z, we have f(px) = pf(z).
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Next, if n € N, then

nf(ﬁ):f( n n
=f< = +f(f(n;1$))> (z)f(fﬁ”; x) = f()

—~— ~——
X Y

Hence f (%) = L f(xz). Therefore f (Z) = L f(z) for p € Z and n € N.

(8) By hypothesis, ||f(s)|| < C for every s € S. Let 0 < ||z|| < 1. Consider, as in
Lemma 1, the map H : S — [0,00[, s — ||z — s||/||z — §'||. H is continuous and non-
constant. Since dim E > 2, S is connected by Lemma 2. Hence H(S) is an interval.
In particular, there is s € S such that r := ||z — s||/||z — || is rational. Thus, with
t=r/(1+7),

r=(1-t)s+ts
is a rational convex-combination of two elements in the sphere.
Since f is Q-linear, we conclude that

If @) < @ =D +HIf() < (1-)C+1C=C.

Now let x € E be arbitrary. Choose a null-sequence ¢, of positive numbers so that
qn = ||z|| + € is rational. Then, ||x/gy|| < 1. Since f is Q-linear, we obtain

@) = anllf(x/qn)|] < gnC.
Letting n tend to infinity, we get

1f(@)I| < Cllz]|-

Thus f is continuous at the origin. Since f is additive, we deduce that f is continuous
everywhere; just use f(zo + x) = f(zo) + f(z) — f(xo) if x — 0.

(9) It easily follows now that f is homogeneous: if @ € R, choose a sequence (r,) of
rational numbers converging to a. Then, due to continuity,

flazx) = liqunrnf(as) = af(z).
To sum up, we have shown that f is a continuous linear involution.

Remarks

If n = 1, then the unit sphere S is just a two point set, and so every function is
automatically bounded on S. There exist, though, non-continuous linear involutions
in R. To this end, let B be a Hamel basis of the Q-vector space R, endowed with the
usual Euclidean norm. We may assume that B is dense in R. Fix two elements by and
by € B. Let f be defined by f(by) = b1, f(b1) = bp and f(b) = b if b € B\ {bo,b1}.
Linearly extend f (in a unique way). Then, obviously, f is a linear involution. But f
is not continuous at by. In fact, let (bg)n>2 € BY converge to by. Then f(by) = by —

bo = f(b1) # f(bo).
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11548. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Roma-
nia, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f be a twice-
differentiable real-valued function with continuous second derivative, and suppose that

f(0) = 0. Show that
1 1 2
f (f"(x))*dx = 10 (f f(x)dx) )
-1 1

Solution to problem 11548 in Amer. Math. Monthly 118 (2011), 85, by
Raymond Mortini and Jérome Noél

Let f € C?([-1,1]), f(0) = 0. Then

)
</11 f(l')dgj)z < Tl() /ll(f//(az))2d$-

Moreover, the constant 1/10 is best possible.

Solution We consider the auxiliary integral

g % [/Ol(t S () dE+ /01(1 4 t)Zf”(t)} .

We first show that I = fil f(t)dt. In fact, twice integration by parts yields:

1 1 1
|1 = -2 [ ¢~ 0rwa= -0+ [ o
0 0 0
as well as

/ e+ 12 (0t = (0) — 2 /

-1 -1

0

0
-+ 0f 0= F©)+2 [

This proves the first claim. Now we use the Cauchy-Schwarz inequality to estimate I:
1

(/Ol(t — 1)2f"(t)dt> < /Ol(t — 1)4dt /Ol(f”(t))th _ 5/01(f”(t))2dt,

and similarily for the second integral. Hence, by using that (A + B)? < 2(A? + B?), we
obtain

2

reol (Ll [ grapa) = 5 [ orora
— 4\5 ) 5/_1 10 J_4 ’
The constant 1/10 is obtained for the function
St I+ 57 if-1<t<0
f(t) = 144 1,3, 1,2 -

Indeed, this follows from the fact that in the Cauchy-Schwarz inequality we actually
have equality if the functions are colinear: p”(t) = (1 +¢)? if =1 < ¢ < 0 and p"(t) =
(1—1)2if 0 <t < 1. A computation then shows that

([ s =& [ wpae= L
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Remark If f € C?([—1,1]) satisfies f(1) = f(—1) = f/(1) = f'(=1) = 0, then the

inequality above holds, too. In fact.
1

/11 fz)de = /11 1 f(z)de = af(x)|Ly — /1 (@) =

1 1
— 5l g [ s =g [ @@

Thus, by Cauchy-Schwarz,

(/11 f(a?)da:)z < 411/11 ztdx /11(f”(a;))2dm = i ) % /11(f//(96))2da;.
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11456. Proposed by Raymond Mortini, Université Paul Verlaine, Metz, France. Find

i 2 | 5
nlingcnl—[(l—m+4mz).

g k2L 2
am =1 m  4m? m?
n m—11\2
ﬁa _Hm:l (1+(221) ) 12, m?
me1 " [[ney m? [Tz (2@m — 1) [, _ (2m)?
Mt (@ +3) @02 Iy (e +1) @0)2
4n(pl)4 B 167 (n!)4 ’

Now, by Stirlings formula,

(2n)! (2n)*re=2"/4mn 1

Anp)2 (nne—"/27mn)222n ™

Since cos(mz) = [[2, <1 — (27‘11%21)2» we have

n 5
, cos(mi)  coshm
lim n H Am = = .
n

T T
m=1

‘We note that

n

[ on

m=1

_ 1T 2 |f(0)|
_n!wl:[1 V5 (n+1)

where f(z) = (1 — z)”%, an interesting function in the Wiener algebra (its Taylor
coefficients behave like n~3/2 by the above calculations).

7 —

2m—1’

3 =(n+1
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11402. Proposed by Catalin Barboianu, Infarom Publishing, Craiova, Romania. Let
/[0, 1] — [0, co) be a continuous function such that f(0) = f(1) =0and f(x) >
0for 0 < x < 1. Show that there exists a square with two vertices in the interval (0,1)
on the x-axis and the other two vertices on the graph of f.

Solution to problem 11402, AMM 115 (10), (2008), p. 949.

The problem obviously is equivalent to show the existence of two points 0 < a < b < 1
with f(a) = f(b) = b — a, or in other words, find 0 < a < b < 1 with b — f(b) = a and
1) = f(a).

To this end, consider the function h(z) := f(x — f(x)) — f(z), where we have con-
tinuously extended f by the value 0 for x < 1 and = > 1. Then h is continuous. We
have to show that h admits a zero b in |0, 1] with f(b) < b. Then a :=b— f(b) €]0,1]
and b —a = f(b) = f(a).

To do this, we prove that h takes positive and negative values on [0, 1]. Since h(0) =
h(1) = 0, the continuity of h implies that h has a zero b in |0, 1[. Our construction will
guarantee that f(b) < b

Let &y be the largest fixed point of f (note hat 0 < &y < 1). For later purposes, we
note that f(x) < x whenever {y < x < 1. If §; = 0, we let g be the be the smallest point
for which f(wg) = M := max,¢[p1) f(x). Note that zo € |0, 1[. Finally, let z1 € [, 1]
be the largest point with f(z1) = M 1= max,cpe,,1) f(z). Then 0 < 79 < 77 < 1.
Since the function z — f(x) is 0 at & and 1 at 1, the intermediate value theorem for
continuous functions implies that there exists y; € |£o, 1] such that y; — f(y1) = 1.
Since f > 0, y; > x1. Thus

hy1) = fyr = f(w)) = F(y) = fl) = f(y) = My = f(y2) > 0.

On the other hand, h(&) = f(% — f(&)) — ( 0) =0— f(%) < 0if & > 0, and
if § = 0, then, h(zg) = f(zo — f(x0)) — f(xo) < 0 (since xg — f(xp) is left from the
smallest maximal point zg of f.)

In both cases, there exists b such that h(b) = 0. Since & < b < y1 if § > 0 and
0<mzo<b<yyif & =0, we see that f(b) < b.
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11333. Proposed by Pabio Ferndndez Refolio, Universidad Auténoma de Madrid,
Madrid, Spain. Show that

ﬁ (IIE e i)l{nz—!ﬁ (” " 1 n B
: n? n—1 =T

n=2

Solution to problem 11333, AMM 114 (10), (2007), p. 926.

Let N n2—1 2(n2-1) n+1\"
I ()T G))

Moo\ (NN
H ~ T NN(V+2) (V7

n=2 n?
b)
N (n41\" (N + DVNNH
nHQ<n—1> T 2Nz
Hence
\/E: (‘NJr 1)N2_1 (N')2 (N+ 1)N/2 NN+1)/2 _
NN({N+2) ’ V2N!
N+1 N2_1 NNz,l N (N+1)N/2N(N+1)/2
I

N+ 1 N2_1 | (N"‘ 1)N/2 N(N+1)/2NN/2
() s e
N4\ DN YUN
N ’ \/5 NN+L®
We are now using Stirling’s formula telling us that n! ~ e™"n"v/27wn. Hence

2-1
— veon v (N+1\V VN

e ()

N+1 N2-1
But ay :=e ¥V <) — 7 as N — oo; in fact, by taking logarithms we
e
obtain
logan, = (N?—1)log(1++%)—N ~ N?log(1+ %) —N = N} ({— 5+ )—N ~ —1.

Hence /Py — /7 and so Py — 7.
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11226. Proposed by Franck Beaucoup, Ottawa, Canada, and Tamds Erdélyi, Texas
A& M University, College Station, TX. Let ay, ... , a, be real numbers, each greater
than 1. If n > 2, show that there is exactly one solution in the interval (0, 1) to

n

[Ta-x)=1-x

j=1

Solution to problem 11226, AMM 113 (5), (2006), p. 460.

a;—1
Let h(z) = [[}-;(1 —2%). Then A'(z)/h(z) = =37, a{i;aj and hence I/(x) =
=i ajzi! [11;(1 — 2%). Clearly #'(0) = h'(1) = 0. Let
n
flx)= (1 —2)7 ] - 2%)

j=1
if 0 < x < 1. Note that f(0) =1 and lim,_,; f(z) = —h’(1) = 0. Thus, if we show that
1/(0) > 0 and that the derivative of f has a unique zero in the open interval |0, 1], we
are done (that is we can then conclude by the intermediate value theorem that there
is a unique zp with 0 < 29 < 1 so that f(xg) = 1, and hence h(zg) =1 — x¢.)

Now, f/(z)/f(z) = &= + W(z)/h(z). In particular, f’(0) = 1. Thus we have to
look for x €]0,1[ so that g(x) := > 1, ajrti—t 1:@ = 1. But ¢g(0) = 0, and, by de
I’'Hopital’s rule, lim,_,1 g(z) = n. The intermediate value theorem yields the existence
of x. The uniqueness of such an z follows from the fact that g is strictly increasing.
This is due to the fact that the function ””a:
a>1.

The latter follows from the fact that

d xz% 1 — g B fca_Q((a —1) 4 2% — ax)
de 1—z% (1 —x2)2
and that k(z) ;== a—14+2% —ax > 0 for 0 < x < 1, because k(0) =a—1 > 0,
k(1) =0 and k' (z) = a(z** —1) <0.

—2* is strictly increasing on ]0, 1] whenever
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11210. Proposed by Michael S. Becker, University of South Carolina at Sumter, Sumter,
SC. Show that

e (2n + 1)* _ 2esec(1)
g @n+D* = @2/m)*  e2+1

Solution to problem 11210, AMM 113 (3), (2006), p. 267.
We note that

a1t -2/t 2 N\
N CTE L ‘(“[WD‘

(1—@) <”<24+1>>

Multiplying in the numerator and denominator (which is 1) with the ”missing” fac-

tors
(1~ ) (e

p. _Hp"_H(l_ 2k2)(1+7r2k2)_

o (1= =) (1+ )
Using the standard mﬁmte product representatlon of the sinus

sin z
= 252 k2

we obtain

we obtain
sin 2 sm(Zz) 2
= e“+1
P=-2_2_ _ coslcoshl = (cosl) .
sinl sinz?

1 )
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11202. Proposed by Grahame Bennett, Indiana University, Bloomington, IN. Prove
that if (a,) is a sequence of positive numbers with Z;’il a, < o0, then for all p in
O, 1

lim nl-VP (af +.-. +af)1”’ =0.

H—>20

Solution to problem 11202, AMM 113 (2), (2006), p. 179.

The assertion is an immediate consequence of Holder’s inequality: Wloglet 0 < a; <
1 and let g €]0, 1[ be such that p + ¢ =1 (note that p €]0, 1].)

n N n
nP~1 E af = np1 E a? + E a? 1] <
J J j
j=1 j=1

j=N+1
Yo S @y o) Lo
nl—p ] nl_p =
oo P [ee] P
N nd N _
. > i pip T D | <e
j=N+1 j=N+1

if N and n > N is sufficiently big.
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11185. Proposed by Rainer Briick, University of Dortmund, Dortmund, Germany, and
Raymond Mortini, University of Metz, Metz, France. Find all natural numbers n and
positive real numbers « such that the integral

I(fx,n):f log (l—f— — x) dx
0 x

CONverges.

Solution to problem 11185 AMM 112 (2005), 840 by
Rainer Briick, Raymond Mortini

We claim that

I(a,p) converges if and only if (o, p) € ]1,00[ x Noor (a,p) € |3,1] x (2N + 1).

First we discuss the behaviour of the integrand at the origin. For o > 0 we have
}log (1 + S”;#)‘ <log (1 + x~%). Substituting % by t, we obtain

1 00
log (1 + t*
b/ k%(l—%xa)dx::j/ log (1 +7) 4y
0 1 t
and this integral is convergent. Hence, our integral I(a,p) converges at 0 for every
a>0and peN.

Now we discuss the behaviour at infinity. Since 1%in% w = 1, we see that at
—
infinity
sin? x sin? x
A(z) = log (1 + g ) ~ e = B(x).

Hence [ A(z)dxz converges absolutely if and only if [° B(z)dz does. Note that by
Riemann’s convergence test [~ |B(z)|dz < floog% < oo whenever o« > 1. Hence,
[ A(xz) dz is absolutely convergent for o > 1.

Now suppose that 0 < o < 1. On the intervals Ji := [% +2km, 5 + 2k7r], k>1, we
have |sinz| > % and z > 1. Hence Sl;# > 22> 27 _ Therefore,

z = 2m(k+1)
1 27p1

B(x)|dx > = - ;
h|(@|m—3 E+1

Since [ |B(x)|dx > 3232, [, |B(2)|dw, wesee that [ |B(z)|dz and hence [ |A(z)| dz
diverges (absolutely) for 0 < a < 1. In particular, floo A(x) dz diverges whenever p is
even, since in that case |A(z)| = A(z).

To continue, we may thus assume that p = 2n + 1 is odd. We use that for every
a > 0 and n € N the integral floo Smi:%lx dx converges. Indeed, let I,,(z) := f Si‘;ZLt dt
and let F,,, be a primitive of sin™ ¢ with F,,,(1) = 0. For m odd, F}, is periodic, hence
bounded. By partial integration we obtain

Foni1(z T Fonaq(t
I2n+1(x) = 2 ;;i( ) —+ a/l 2ta—:_11( ) dta

and we conclude that I5,11(x) converges as x — 0.
Now we use the Taylor development

m—1 (—1)k1

log(1+u)zz ’

k=1

1 m—1
sy ED

u™ (1 +e(u)) ,
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where ¢ is a continuous function of u and £(0) = 0. In particular, |e(u)| < 1 whenever
lu| < with 6 > 0 sufficiently small. Now, we set u = u(z) = Smi:#, where x > 0 is

so large that |u| < §. Then for sufficiently large real numbers M > N, we have

M . on41 m—1 (_1)1@71 M /.: 2n+1 k
S11 X S11 X

N k=1 N

(—=1)m-1 M-/ ginZntl o\ ™ = =
437 —— | (1 +e(u(n))) do=: Iy + Iy, -
Jo (55) e >

m N T

Choosing m € N such that ma > 1 and (m — 1)a < 1, the boundedness of e(u) yields
the absolute convergence of the last integral I,,. If % < a <1, then m = 2 and hence

I=15I+ fg But I; and fg converge, and hence I converges. If 0 < a < %, then m > 3
and at least a third integral Is above appears. That integral is divergent, since the
exponent of the sin is an even one (note that by the choice of m, the exponent of z is
still at most 1). Since all those divergent integrals I, come up with the same sign, we
finally get the divergence of Iy + Iy + - - - + I,;,_1, and thus I diverges.

Finally, we note that the example p = 1 and a = % yields examples of functions f
and g such that at infinity, f ~ g, but for which [* f(z) dz diverges and [;* g(z) dx

converges, namely f(x) = log (1 4 %) and g(z) = %
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11147. Proposed by Pamela Gorkin, Bucknell University, Lewisburg, PA, and Ray-
mond Mortini, Université Paul Verlaine, Metz, France. For each nonzero integer n let
a, = inn/(irn — 1), and a; = 1/a,. Note that a; is the reflection of a, in the unit
circle. Show that the expression

1 1 1
_+ —
N e

n#)

converges uniformly on compact subsets of C\{1} to a zero-free meromorphic func-
tion.

Solution to problem 11147 AMM 112 (2005), 366 by
Pamela Gorkin, Raymond Mortini

Let S(z) = exp (—%) be the atomic inner function. Put

- 1/e— S
1 (1/e)S’
Then f is an inner function (that is it has radial limts of modulus one almost every-

where). Since f does not have radial limit zero, it must be a pure Blaschke product
(see Garnett, p.76), that is

f(z) =¢€"z H e T
neZ\{0}
Its zeros are exactly the numbers a,, for n € Z \ {0}, including the the origin. Since

the derivative of S is S'(z) = —S (z)ﬁ, it follows that the derivative of f does not

?sv/((,:)) —+ X <z_1an‘z—1a*>'

n€Z\{0} n

vanish either. But
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11136. Proposed by Raymond Mortini, Université de Metz, Metz, France. Prove that
there exists a sequence (A, ) of distinct complex numbers in the closed unit disk D and
a summable sequence (a,) in £' such that, for every continuous function # on D that
is harmonic on the interior of D and satisfies u(0) = 0,

Zanu(;‘-n) =0.

Solution to problem 11136 AMM 112 (2005), 181

Let D,, = D(\,,r,) be a sequence of pqgirwisw disjoint, closed disks contained in the
open unit disk I such that the area measure of D\ | J D,, is zero. Noticing that by the
mean-value area theorem for harmonic functions

// u(2)dA(z) = mriu()),
D(\r)
we obtain the assertion

0 = u(0) = / /D u(2)dA(2) :znj / / u(z)dA() :ﬁzn:riu()\).

Remark The problem was motivated by the question, circulating in England, and
communicated to me by Joel F. Feinstein, whether the set of exponentials {¢/** : X\ € C}
is countably linear independent! The method for the proof above presumably appeared
for the first time in a paper of J. Wolff [Comptes Rendus Acad. Sci. Paris 173 (1921),
1056-1058].
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11070. Proposed by Roberto Tauraso, Universiti di Roma “Tor Vergata”, Rome, Italy.
Let f and g be two commuting analytic maps from a nonempty open connected set
D C Cinto D. Suppose that z; € D is a fixed point of both f and g, and that neither
f'(zo) nor g'(zy) is a root of unity. Suppose also that there exists an integer N > 1
such that f®(z9) = g®(z0) =0for1 <k < N — 1, while f™(z0) = g™ (z0) # 0.
Prove that the restrictions of f and g to D are equal.

solution of problem 11070, AMM 111 (2004), p. 258

Let N = {1,2,---} and f,g € C™(2). Then the result follows from the following
formula:

(o0 = 19N ( X g, (o)
7=1 keNJ
|k|=n
where k = (ki,k2,....kj) € N/ is an ordered multi-index with k1 < ky < --- < kj,

; . n 1 n .
k| = S ki, g% = gtgla)  gk) and Cp = W<k> Here Ag(i)

denotes the cardinal of how often 7 appears within the ordered index k and (Z) =
!
il ;T

This formula has many advantages vis-a-vis the Faa di Bruno formula

n mo g\
goa =3 (M) en I (%) -
p o\ !
where p; € {0,1,2,---}, p=p1+p2+--+pp and p; + 2p2 + -+ + np, = n, since
one immediately can write down all the factors that occur without solving the above
equations for p;.

Case 1: Let f(z0) = g(20) = 20, A := f'(20) = ¢'(20) # 0, AP # 1 V¥p € N and
feg=golf.

In order to show that f = g it is enough to prove that f("(z5) = g(™(z) for all n.
The proof is done inductively:

n=2: Since (fog)" = (/" 0 g)g + (f' o g)g” and fog=go f we get: [(z0)A%+
Ag"(z0) = g"(20)A? + Af"(20). Hence f”(20)(A —1) = g"(20)(A — 1). Since A # 1 we
obtain that f”(z0) = ¢"(z0).

n—n-+1:
n
(fog)"™ = (fog)g™™M+> (fPog) > Cpttg® + (£ o g)(g)
o P
=n+1

Evaluating at zp and noticing that, by induction hypotheses, all derivatives appearing
in the middle term coincide at zg with those when f is replaced by g, we get that

Ag(n-‘rl)(ZO) + f(n—‘rl)(ZO)An—i-l _ Af(n-l—l)(ZO) —|—g(n+1)(20)An+1.
Hence (") (z)(A"—1) = g("+1)(2)(A"—1), from which we conclude that £+ () =
F™+1 (%), because A™ # 1.

Case 2: f(z0) = g(20) = 20, f(j)(zo) = g(j)(zo) =0 for 1 <j < ng, but f("o)(zo) =
g™ (z) #0and fog=go f.
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Suppose that f)(z) = g\ (2y) has been shown to be true for j < n, where n =
png + q, with 0 < g < ng and p > 1. We show that this holds then for j = n.

Let N = n3+ (p—1)ng + ¢ and consider (f og)™(z0). All the terms in (Mo)y with
j < ng disappear, since f)(g(20)) = fU)(29) = 0. Moreover, as we are going to show,
all other terms, excepted the term for j = ng and the index k = (ng,--- ,n0,pno +
q) € N™_ coincide for f and g; hence can be thrown off when regarding the equality
(fo g)(N) =(go f)(N). Thus that equality is equivalent to

£ (g(20))(g1")"0 ™ (200970 (20) = ") (£ (20)) (f "))~ (20) f#"F D (20)

But this implies of course that f®m0+d)(z5) = gPm0+d)(z,) which is what we were
after.

That one can restrict to this single index k = (ng,--- ,ng, pno + q) € N™ is seen as
follows: Let k' € N be an ordered index with || = |k| = (ng — 1)no +pno +¢ = N.
Suppose that the last coordinate of k' (which is the maximum) is strictly bigger than
the last coordinate of k. Then at least one of the previous coordinates of & must be
strictly smaller than ng. But the associated derivatives of g (resp f) vanish at zg. Thus
this term does not appear in the formula for (f o ¢)™)(zp). On the other hand, if the
last coordinate of k' is strictly less than png + ¢ (hence all of the coordinates of k'),
then by induction all the associated derivatives of g (in (f o g)(N)) coincide with those
for f (in (go f)™) at zy. Thus these terms can be thrown away.

Now let ¥ € N/ with ng < j < N and || = N. Then the maximum of the
coordinates of k' is strictly less than png+ ¢, since otherwise |k'| > (j —1)ng+pno+q >
ng + png + ¢ > N, a contradiction. Thus, as above, also these terms can be thrown
away.
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10991. Proposed by Raymond Mortini, Départment de Mathematiques, Université
de Metz, Ile du Saucy, France. For complex a,z € D = {s5: |5s| < 1}, let F(a,z) =
(a+2z)/(1 + az) be amap of D onto . Let p(a, b) = |(a — b)/(1 — ab)| be the pseu-
dohyperbolic distance.

(a) Prove that there exists a function C: I — R™ so that p(F(a, z), F(b,z)) <
C(z)p(a, b) forevery a, b,z € D.

(b) Find the minimal value of C(z) for which this bound holds.

No own solution of problem 10991, AMM 110 (2003), p. 155
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10890. Proposed by Raymond Mortini, Université de Metz, Metz, France. Letd, and d,
be two metrics on a nonempty set X with the property that every ball in (X, d,) contains a
ball in (X, d;) and vice versa. Must d, and d, generate the same topology?

solution of problem 10890, AMM 108 (2001), p. 668

Let d denote the Euclidean metric on R and let f be an injective real-valued function
on R. It is easy to see that the function p(z,y) = |f(x) — f(y)| defines a second metric
on R, i.e. satisfies the axioms

(D1) p(z,y) = 0,p(z,y) =0 =z =y,
(D2) p(x,y) = p(y, z)
(D3) p(x,y) < p(x, 2) + p(z,y) for all ,y,z € R.
Let Bg(xo,€) resp. B,(zo,€) denote the open balls of radius € and center zo with
respect to the distances d and p.

Let us now additionally assume that f is increasing, one-sided continuous but not
continuous, and has only a finite number of discontinuities. This guarantees that [ :=
f(R) is a union of non-degenerated intervals, with pairwise disjoint closures. The
inverse function f~!: I — R then is continuous on I. Fix zq. Hence for every ¢ > 0
there exists > 0 such that B,(xo, ) C Bg(xo, €).

Let z¢p be a point at which f is, say, left-continuous. Then for every ¢ > 0 there
exists d > 0 such that for all = < xg, d(x,z9) < 0 implies p(z,zo) = |f(x) — f(xo)| < e.
Let 21 = z9 — 30. Then By(z1,6/2) C By(wo, €).

Thus each ball in the d-metric contains a ball in the p-metric, and vice-versa.

It is clear that the identity map id: (R, p) — (R, d), although being continuous, has
no continuous inverse. Note that id : (R,d) — (R, p) is continuous at z( if and only if
f is continuous at xg. Thus the two topologies are distinct.

Remark If we additionally assume that (X,d;) are topological vector spaces, then
the answer is yes. This is due to the fact that these topologies can be generated
by translation invariant metrics dj and dj. In feat, Ve > 0 36 > 0 : By (20,6) C
By (0,€/2). In particular, zo and —z¢ are in By (0,2/2). Hence

By (0,6) = —z0 + By, (%0,6) € By (0,¢/2) + By, (0,€/2) € By, (0,¢).

The problem was alspo solved by Matthias Bueger and Dietmar Voigt (Germany).
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10857 [2001,172]. Proposed by Harold Diamond, University of Illinois, Urbana IL.
(a) Show that

+ x3 + + x2}r—] + + + ..n+l
X ET) te oY X
3;2 (22%1). < tanhx < 3 22;” .
1+E+"'+m 1+2|+ +m
(b) Show that
J53 x29|—] 2r|+] J53 Jc2r|+]
x+?+"'+(2n 1].’+2(2n+l *+5++ G
1 x2n <tanhx < 1 x2 x2n x2n+2 °
+ 3 21 + -+ 2n)! +3+-t 2n)! + 202n+2)!

whenever n 1s a natural number and 0 < x < 2n.

solution of problem 10857 (a), AMM 108 (2001), p. 172

n_ 25 n 2j+1
T
Let Cy, = g 27! and Sopy1 = E m We show that, for every z > 0, the
=0 =0

sequence (%) is strictly decreasing, whereas (5%21) is stricly increasing. Since both

sequences converge to tanh x we get that SQ” L < tanh < SQ”“.

i) We have the following equivalences:

2n+1 2n
(52n+1) N Sont1 < Con S2n-1 1 Grr1y _ Con—2 + Gy
Con Son—1 Cop—2 Son—1 Con—2
12n+1 ﬂ
= 1+M < 1+ﬂ < 2C9%,—2 < 2n+1)Sy,—1 —
Son—1 Con—2
n-l 2]+1 nolo 2541
X
> (2n+1 Z (1)
J=0 (21 Jj=0 (25 +1)
But (2]) < (2n + 1)(2]+1), <= 2j+1 < 2n+ 1, which is true. Since x > 0 we get

(1).

ii) That (52" L) is stricly increasing, is shown in exactly the same way.

To sum up, we get

Cont2 _ Son+1 Con
< < .
Con  Son-1 Copo
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Continuous Additive Functions.

10854 [2001,171]. Proposed by Wu Wei Chao, Guang Zhou Normal University, Guang
Zhou City, China. Find every function f: R — R that is continuous at zero and sat-
isfies

fE+2fON=FfE)+y+f©)

for all real numbers x and y.

solution of problem 10854 AMM 108 (2001), p. 171

Suppose that f : R — R is a function, continuous at the origin, and satisfying

fle+2f(y) = flz)+ fly) +y (1)

for all x,y € R. First, we shall show that f is continuous everywhere. In fact,

flz+2f(x+2f(y) = flx+2[f(x)+ fy) +y]) = f([z+ 2y + 2f ()] + 2f (2)) =

=f(@+2y)+2f (W) + f(@) + 2= fle+2y) + fy) +y+ (@) + 2 (2)
On the other hand:

Fla+2f(z+2f(W) = f@) + @ +2f(y) + o+ 2/ (y) =
= f(@)+[f(@)+ f(y) +yl +x+2f(y) =2f(x) +3f(y) +y + = (3)
By (2) and (3) we get that f(z + 2y) = f(z) + 2f(y) V(z,y) € R

In particular, by setting z = y = 0, we see that f(0) = 0.
It easily follows that f is continuous at every point x € R.

So, in order to continue, we may assume that f is a continuous solution of (1).
Let z = y. Then

fly+2f(y) =y +2f(y). (4)

First we shall determine all continuous solutions of (4). Let g(y) = v + 2f(y).
Since ¢ is continuous, g(R) is either a singleton or a nondegenerate interval I. If g
is constant, say g = ¢, then f(y) = <% and so ¢ = f(y + 2f(y)) = f(c), from which
we conclude that ¢ = 0. Hence f(y) = —4. If g is not constant, take z € I; that is
y+ 2f(y) = g(y) = z for some y. Then f(z) = z. Hence f is the identity on . It
follows that 3z = z+2f(z) = f(z+2f(2)) = g(z). Therefore 3z € I and so I = (m, oo
for some m € RU {—o0}. Thus f(z) = z for every z > m. Since g > m, we have that

f>"*%on] —oo,m].

To prove the converse, choose m € R. Let f* be any continuous function on | — oo, m]
such that f*(y) > 5% for y < m and so that f*(m) = m. Then

)y ify<m
f(y)—{y ity >m (5)

is a continuous solution of (4).

We deduce that any continuous solution of (1) necessarily has the form (5) or equals
—%y. We shall now show that only for f* = id, we really get a solution of (1).
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So let f be a continuous solution of (1). Then f = ffor some f*. Fix x < m. Take
y > m so that x + 2y > m. Then

flz+2f(y) = flz+2y) =z + 2y and f(z) +y+ f(y) = f*(z) + 2y. Hence (1)
implies that f*(z) = .

We conclude that f is a continuous solution of (1) if and only if f(z) = z or f(x) =
x
—5 on R.
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10768. Proposed by Sung Soo Kim, Hanyang University, Ansan, Kyunggi, Korea.

(a) Show that there is a continuous function f: R — R such that f + g is not increasing
for any differentiable function g.

(b) Show that there is a differentiable function f: R — R such that f + g is not increasing
for any continuously differentiable function g.

{(c) Show that, for any continuously differentiable function f: R — R, there is areal analytic
function g such that f + g is increasing.

solution of problem 10768 AMM 106 (1999), 963

1
a) Let f(x) = +/|z|sin— for z # 0 and f(0) = 0. Then f is continuous on R. Let
x
g be a differentiable function on R. Then, in every neigborhood of 0, h := f 4+ g — ¢(0)

takes negative and positive values. In fact, suppose that h > 0 on [0,¢]. Then @ >0
on [0,e]. But liminf, o+ @ = ¢'(0) 4+ liminf, o+ %sin% = —o0, a contradiction.

Thus f + g is not monotone on any interval centered at 0.

1
b)  Let f(z) = 2* sin — for z # 0 and f(0) = 0. Then f is differentiable on R,
x

1(0) =0, but f/(x) = 2zsin %2 — %cos x% takes arbitrarily large negative and positive
values in any neighborhood U of 0. Let g be any C'(R) function. In particular, ¢’ is
bounded on every compact interval centered at 0. Hence f' + ¢’ takes arbitrary large
negative and positive values in U. Thus f + ¢ is not monotone on any interval centered

at 0.

c¢) We show that for every function f € C'(R) there exists an entire function g (that
is a function holomorphic on the whole plane), real-valued on R, such that f + g is
increasing on R. In fact, f' 4+ 2|f/| + 2¢ > 2¢ > 0 on R. Let ¢ = 2|f’| + 2¢. Then ¢
is continuous on R. By Carleman’s theorem (see [C] and [G], p. 125), there exists an
entire function @ such that |[¢ — Ql,, < €, where ||, denotes the supremum norm on R.
Let G(z) = Re Q(z). Then |g— Gl < e. Moreover, the function H(z) = £ (Q(z) + Q(2))
is analytic in C, and H coincides on R with G.

Now it is easy to check that f'+ G > ¢ > 0. Let g be a primitive of G. Then g is
the trace of an entire function and f + g is (strictly) increasing, since its derivative is
strictly positive.

References

[G] Dieter Gaier, Approximation im Komplexen, Birkhseuser-Verlag, Basel, 1980.
[C] Carleman, T,: sur un théoréme de Weierstrass, Ark. Mat. Astronom. Fys.,
20B (1927), 1-5.
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10747. Proposed by Athanasios Kalakos, Athens, Greece. Find all differentiable functions
f: R — R that are twice differentiable on an open interval containing 0, have exactly one
real root, satisfy f(1) = 1, and satisfy f/(f (1)) = 2f(t) forevery t € R,

solution of problem 10747 AMM 106 (1999), p. 685

We claim that all differentiable solutions f of f'(f(t)) = 2f(t), t € R, f(1) =1, and
having only one real root, have the form f(t) = t* for t > 0 and f(t) = g(¢) for t < 0,
where ¢ is an arbitrary differentiable function, defined on | — oo, 0] satisfying ¢(t) > 0
for t <0 and g(0) = ¢’(0) = 0. The assumption, that f should be twice differentiable
in a neighboorhood of 0, is not important.

Proof Let f be a solution of the problem. Put h = fo f — f2. Then i/ = (f' o
NDf =2ff=f(f of —2f) =0. Hence h is a constant, say C. Because h(1) = 0,
we see that C = 0 and so fo f = f2. Let y € f(R). Then f(x) = y for some
r € R. Therefore f(y) = f(f(z)) = f?(x) = y>. By hypothesis, {0,1} C f(R). By
continuity we conclude that [0,1] € f(R). Since the left derivative at z = 1 is 2, the
differentiability of f now implies that there exists points xy greater than 1 for which
f(zg) > f(1) = 1. Since f,41 = f2", we obtain that f,,1(z0) = [f(20)]?" — co. Hence
f is unbounded. By the intermediate value theorem, we then get that [0,00] C f(R).
Hence f(z) = 22 for x > 0.

To determine the behaviour of f for negative values, we use the hypothesis that
f should have only one zero. Since f(0) = 0, by continuity, we conclude that either
f(z) <0 forall z <0or f(x) >0 for all z < 0. But f(zg) < 0 for some (all) zy < 0
implies that f(f(z0)) = f2(z0) > 0, a contradiction. Thus f(x) > 0 for x > 0.

It is easy to check that every function of the form f(z) = 22 for z > 0 and f(z) = g(z)
for x < 0, where g > 0 is differentiable and satisfies g(0) = ¢’(0) = 0, is a solution
of fof = f2 Hence, by differentiating, f'(f(z))f' (z) = 2f'(x)f(x). If f'(z) # 0,
then we are done. If f'(z¢) = ¢'(x0) = 0 for some zp < 0, then we use the fact that
y := f(zo) > 0 and that for these positive values f(y) = 2. Hence, f'(f(x0)) = 2f(z0).
So we obtain a solution of our functional equation.
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10739. Proposed by Oscar Ciaurri, Logrofio, Spain. Suppose that f: [0, 1] — R has
a continuous second derivative with f”(x) > 0 on (0, 1), and suppose that f(0) = 0.
Choose a € (0, 1) such that f'(a) < f(1). Show that there is a unique b € (a, 1) such that

f'tay= fb)/b.

solution of problem 10739 AMM 106 (1999), p. 586

Let H(z) = %{{(0) = @ Since f”(x) > 0, the function f is strictly convex
and both its derivative and the quotient H are strictly increasing (see e.g. W. Walter,
Analysis 1, Springer-Verlag, p. 303). Moreover, H is continuous on ]0, 1]. Note that
H(1) = f(1) and that H(0) := lim,_ f'(x) exists in [—oo, f(1)]. Hence, by the
intermediate value theorem, there exists for every value w with H(0) < w < H(1) a
point b €]0,1[ with H(b) = w. Now choose a €]0,1[ such that w := f’(a) satisfies
H(0) < w < H(1) (such a choice obviously is possible). Thus there exists b €]0, 1]
so that @ = H(b) = f'(a). Choose x, €]0,a[ so that H(a) = f'(z,). Due to the
monotonicity of f we obtain: H(a) = f'(x,) < f'(a) = H(b). Since H is monotone, b
is unique and satisfies a < b < 1.
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10697. Proposed by José L. Diaz, Universitat Politécnica de Catalunya, Terrassa, Spain.
Given n distinct nonzero complex numbers 21, z2, .. . , Zn, Show that

12 1 (ﬁ_l)n+l
i=1 %k o1 Tk =% 2122+ 2n
j#k

solution of problem 10697 AMM 105 (1998), p. 955

This is nothing but a Lagrange interpolatory argument:

In fact let wy,--- ,w, € C. Then

- H?:l,j;ék(z - zj)
z) = w
p(z) ; kH?:l,j;ﬁk(Zk - zj)
is the unique polynomial of degree at most n — 1 satisfying p(zx) = wg, k=1,--- ,n.
Now choose wy, = 1 for every k. Since ¢(z) = 1 satisfies the interpolation ¢(zx) = w,
we obtain from uniqueness that ¢ = p. Let z = 0. Then

n n (72) n Hn ) ;ék Zj
1=¢(0) = g | | I — (=)t E : J=1. .
h=1iot R = Tz jn (2 = 25)

J

Dividing by [[}_, zj, yields the assertion
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10651. Proposed by W. K. Hayman, Imperial College, London, UK.. If u; and uj are
nonconstant real functions of two variables, and if u, 4o, and uju; are all harmonic in
a simply connected plane domain D, prove that uy = av| + b, where v| is a harmonic
conjugate of #; in D, and g and b are real constants.

solution of problem 10651 AMM 105 (1998), p. 271

We prove a stronger version than in the formulated problem.

Proposition 1 Let v and v be two non constant harmonic functions on a domain
D C C. Suppose that uv is harmonic. Then u has an harmonic conjugate % on D and
there are constants a,b € R such that

v =at+b. (1)

Remarks. (1) If u is a constant, then (1) is not true (because v may be chosen to
be any harmonic function).

(2) If v is a constant then (1) is true for a = 0, provided a harmonic conjugate exists.
A well known sufficient condition for the existence of a harmonic conjugate being that
D is simply connected.

(3) Of course, if v is any harmonic function satisfying (1), then uv is harmonic.

Solution Let A be the Laplace operator. Because Au = Av = 0 we obtain:
0=A(w) = (umv + QU vy + vm) + (uyyv + 2uyvy + vyy) = 2(umvm + uyvy).

Let f = u; — tuy and g = v, — ivy. The harmonicity of u and v imply that f and g
satisfy the Cauchy-Riemann differential equations; hence f and ¢ are holomorphic. It
is easy to see that Re fg = u,v, + uyv,. Thus Re fg=0on D.

Let Z(g) ={z € D : g(z) = 0} denote the zero set of g. It is a discrete subset of D
provided that g # 0. Since v is assumed not to be a constant, we see that g # 0. Then
on D\ Z(g) we have Re / = Re f|92 Thus Re f =0on D\ Z(g). This implies, in view

g g g
of the analyticity, that 5 is a pure imaginary constant, say 5 =iAon D\ Z(g). Hence
f = 1iAg on D. The definitions of f and g now yield that u, = Av, and uy = —Av,.
Consequently, by the Cauchy-Riemann equations, the function u + i\v is holomorphic
on D. In particular, v has an harmonic conjugate on D. (Note that we do not have
assumed that D is simply connected.) Thus, for any other harmonic conjugate @ of u,
we have Av = @ + ¢ for some constant ¢ € R. Note that u not constant implies that

A # 0. Thus v has the desired form (1).

A natural question now is the following. Let u and v be two harmonic functions on
a domain D C C. Then (u + iv)? = u? — v? + 2iuv. Assume that u? — v? is harmonic.
What can be said for v?7 We have the following result:
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Proposition 2 Assume that u, v and u?> — v? are harmonic in a simply connected

domain D C C. Then there exists a € R and 0 € [0, 2x[ such that

v=cosfu—sinfu+a. (2)
Conversely, every function v satisfying (2) for a harmonic function u has the property
that u?> — v? is harmonic.

Proof Because Au = Av = 0 we obtain:

0=A(?—-v%) = 2(u92£ +u§ — (2 +v§)>.
Hence u?2 + ug =02+ vg. Again, let f = u,; —iu, and g = v, —iv,. As above, f and
g are holomorphic on D. Moreover |f|? = |g|>. Thus g is a rotation of f, say g = ' f.

Let zg € D. Since D is simply connected, u and v have harmonic conjugates @ and
¥ respectively, satisfying @(z9) = 0(z9) = 0. Let F' = u + iu and G = v + i0. Then, by
Cauchy-Rieman, F' = u, + i, = u; — fu, = f. Similiarly G’ = g. Thus G = F + ¢
for some constant ¢ € C. Taking real parts yields

v=cosfu—sinfi+a
for some real constant a. The converse is easy to check.
The above results are related to the following more general result:

Proposition 3. Let h be an entire function and let u : D — R and v : D — R
be two nonconstant harmonic functions in a simply connected domain D. Let u be a
harmonic conjugate of w in D. Then h(u + iv) : D — C is harmonic if and only if
v = +u + a for a constant a € R.

Proof Since h is holomorphic, we have, by Cauchy-Riemann, h, = ih, and h, = /.
Hence hyy = h", hyy = hyy = ih” and hy, = —h". As above, let f = u, — iu, and
g = vz — ivy. Then

Alho (u+iv)] = h" o (u+iv) - [(|f* = g*) + 2iRe f7].

Obviously h” o ¢ # 0 for any nonconstant continuous function ¢q. Hence h(u + iv) is
harmonic if and only if |f| = |g| and Re fg = 0. By the paragraphs above we conclude
that f = i\g for some X\ € R. Hence |\| = 1. Thus u, = +v, and —u, = £v,. So v or
—v is a harmonic conjugate of u in D. Therefore v = +4 + a.

To prove the converse, we have simply to note that the composition of a holomorphic
function with a holomorphic or anti-holomorphic function is harmonic.
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10638. Proposed by Brian Conolly, Cambridge, UK. For0 < A < landm > 0, let
Sm(A) = znzle"‘"(ln)”""'/n!. Show that So(A) = A/(1 — ), $1(A) = 1, $2(A) =
1/A — 1/2, and S3(A) = 1/A2 — 3/(4)) + 1/6.

solution of problem 10638 AMM 105 (1998), p. 69

In the following we present a solution to problem number 10638. We shall not only
compute the functions Sy, --- , 53, but we will give an explicit value for all m € N. To
this end we need the following Lemma.

Lemma Let f(z) = ze®. Then f is invertible in a neighborhood of the origin in C
and the inverse function has the Taylor representation

f‘lmu>::f§i7“%4<——>”‘luﬁ
— n! ’

which converges for |w| < 1

Proof By the residue theorem it is easy to see that whenever f is holomorphic and
injective in a disque D C C (or even a simply connected domain), then

£ wn(T, £ 2m/ e _ww

where I' is an arbitrary cycle (=finite union Of closed, piecewise C''-curves) in D.
Applying this formula for f(z) = ze® and the disk |z| < 2§, § small enough, we
obtain :

_n! (z+1)e?

27 (ze# —w)ntl
|2]=6

dz.

Thus, for the power series f~!(w) = > >° ; a,w™ we have ag = 0 and for n > 1:

1 241 _,, R k / z(nz)F + (nz)k (nt
= — dz = — -1 — " dz = n= .
= o e Tdz=gn) (D) k] 2= 0T
- k=0 2
|z|=0 |z|=0

By d’Alembert’s rule it is easy to check that the radius of convergence is 1/e. O

Proposition For 0 < A < 1 and m € Z, let gmn(N\) = A" Sy (N\), where

Ze (An)" ™™ /nl. (1)

Then, for m € {1,2,---}, gm is a polynom1a1 of degree m vanishing at the origin,
say gm(X) = — >0 bym(—A)", and the coefficients by, ., are given by the recurrence
relation

1
bn,m - E(bn,m—l + bn—l,m—l)7 bl,l =1 (3)

Solving these difference equations yields
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=) () 2

J=1

Proof We note that, by Stirling’s formula, the series g,,(l) converges locally uni-
formly in 0 < I < 1, but does not converge whenever A = 1 and m = 0. Note that
9gm/(0) = 0. Due to local uniform convergence, it is easy to see that, in order to obtain
g, (1), one can differentiate the series for g,, term by term. This yields that for m € Z

1—A
g =g )
Later we shall show that g1(A) = A. Hence, by induction on (5), it is clear that
for m = 1,2,--- the function g, is a polynomial vanishing at the origin, say g,,(\) =

— > by (— )\)" If welet © = —\, then we obtain Y ;" | nb, ma™ = (14x) Y " | bpm—12".

Comparing coefficients, finally yields (3).

This difference equation can be solved by the usual methods. May be Maple or
Mathematica gives the solution. In any case, by the uniqueness of the solution, it
suffices to show that (4) verifies the difference equation. Note also, that for n > m,
the by, in (4) are 0. This follows from the fact that the p-th difference operator
DP(ay) = ?:0 (?)(—l)j an—j vanishes identically whenever a,, is a polynomial (in n)
of degree strictly less than p.

For the readers convenience, here are the coefficients for m =1,--- ,5:
1
1
L3
3 1
L
1 7 L1
8 36 24
] 15 8 2» 1
16 216 288 120

The case m=1 In that case we have

> n—1
n —
= )\Ze (An)" 1 /n! = Z - (e M.
n=1
Let w = —Xe*. Now, forw € C, |w| < %, the function h(w) = >, ”:;1 (=) Ly

is, by Lemma 1, nothing but the inverse function of the holomorphic function f(z) = ze*
, |z| < 0 for sufficiently small 6 > 0. Thus g1(\) = .

The case m=0 By (5) we see that 1 = ¢{(\) = go()\). Hence, go(\) = ﬁ

Using (5) it is also easy to derive, inductively, the values of g, for negative integers
m. For example we get:

A A
(1—A)% (1—=A)° (1=N)7

In general, one can convince oneself that for m € Z,m < 0, g,(\) has the form
Im(A) = (1—>\)+2m“ Qm(N), where @ is a polynomial of degree —m — 1 with value 1 at
the origin and satisfying the differential equations

g-1(\) = g-a(\) = (142)),  g-s(\) = (14+8A+6X2).

Qu1(N) = AL = V@ (V) + (1 = 2mN)Qu ().
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Due to lack of time we were not able to solve this explicitely. May be Maple and
Mathematica will be helpfull.
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10624. Proposed by William F. Trench, Trinity University, San Antonio TX. Suppose that
ap > ay > az > --- and limy—, o0 @y = 0. Define

00
p=) (—1)7"aj =y ~Guy1+anz —
j=n

Show that ) a, S, < coif and only if Ea& < 00,

solution of problem 10624 AMM 104 (1997), p. 871

By Leibniz’s criteria, we know that .S,, actually converges and that S,, > 0 for every
n € N. Since S,, = a,, — Sp1+1, we see that S, < a, and so >_ a,S, < Y a2. Thus the
convergence of > a2 implies the convergence of 3" a,,S,.

Now assume that > a,S, = > (Sp + Sp+1)Sn (1) converges. Since all the terms
are positive, we deduce the convergence of the sums > S2 and > S,:15,. A shift
of the variable yields that Y S2,; converges. Hence Y Spi1(Spt1 + Sn) (2) con-
verges. Summing (1) and (2) yields that > a2 = > (Spt1 4+ Sn)? = Y2(Sn + Snt1)Sn +
> Sn41(Sn41 + Sp) is convergent.
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10605. Proposed by Jonathan M. Borwein and C. G. Pinner, Simon Fraser University,
Burnaby, BC, Canada. Letr and m be positive integers and define

n—-m"
Prm) =[] o
Mémn”+m

(a) Show that P;(m) = 0 and that

_ 1 2 n+m
Py(m) = (~1y™*!2 )]'[ g 2

(b) Show that Pa(m) = (—1)™+1rm/sinh(;rm) and that, more generally, Pa;(m) is given
by

m+12°m jn Jr Y
(—1)ym+1 (smh mm)V n (cosh (2er sin (25 )) ~ cos (Zn'm cos (E)))

j=1
where € = (1 + (—1)¥)/2.

solution of problem 10605 (b) AMM 104 (1997), p. 567

n25 _ m?s B 1— (m/n)Zs

Writ =
L n25 + m25 1 + (m/n)Zs

2
. Let y = (@) . Then
n

1oy = <1 - yexp(ﬁ”)>
T+y° o i\
H;é@ yexp(—i “JQ

Since ¢ € C is an s-root of 1 [resp. (-1)] if and only if € is an s-root, we obtain:

.27 2
1oy Q=9+ yIT |1 - yep(-i2)|

T+ys ‘1—yexp( (21+1))‘
if s =2p and
p 2mjy |2
11—y =91l ‘1—yexp(—zf)‘
s =
Y 14y ll—yexp( (QJH))‘
ifs=2p+1.
This can be written by a single formula:
-1 2(_1)k
1—y° o 3 k
=(1—y)1+y)D 1— —i— 1
T (1-y)(1+y) kllll yexp(—i-=) (1)
In particular
1—9°
s—1 (—1)k
Tk 1+ys s
1— —j— = 2

k=1
It is easy to check that
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k1 SaZm2 if s is even.

Now use the infinite product representation of the function sinwz. This gives:

571 . .
P = H(27r2m2)(71)’“ _ {17 if s is odd 3

and

i 22 sinimz  sinhwz

n2 iz T2
n=1
Moreover we have by de 'Hopital’s rule that

1 (1 _ mj) ~ lim SiW/l_ (2) =
n z—m Tz m 2

n#m

Finally we need that |sin z[* = J(cosh 2y — cos 2z) for z = z + iy.
Put all this together to get from (1)

2

s 2s m+1 : (=1)® s—1 2
(—1)* n —m> (-1) sinh m ' (m .7k
2 H n2s + m?2s 9 J— H H 1 n elEp( 2 99 )

n#m k=1 |n#m

_1\k
sin(rm exp(—ig—];)) D

mm (1 — exp(—iZE))

m™m

(—1)m+t <Sinh 7rm> (=1)° s
2
k=1

(=D*
s—1 |1 sk Tk
- (—1)m+ <sinh7rm>(1)s 1 [2 (cosh (27rm sin 25) — €oS (27Tm cos 25)) }

— . 2(—1)k _ .
2o\ mm o 1= exp(—i) P T (e 1

G
(—=1)m+1 (sinh 7Tm> (-1)s Z;ll [cosh <27rm sin g’;) — cos <27rm cos 7;;)]

_ . 2(—=1)k _
2 m T4 |1 — exp(—im8) M0 TL32h (202m2) (-1

(=¥
(—1)™* 1 (sinh 7m)(=1)° 2;11 [cosh <27rm sin gg) — cos (27rm Ccos gfﬂ

S

(-1 _
(ﬂ-m) 2(_1)5

-P



Clearly

S PN CRE S )Y (@) ,
(7m)=D*s. P s
Putting e = (1 4 (—1))/2, we get the final equality:
n23 o m2s
Pys = 1;[ n2s 1 m2s =

my12imm (71)5871 .k kD"
= (—=1)"" ——(sinh ™m) H cosh 27rmsm2— — cos 27Tmcos2— .

S S S
k=1

If s = 1 we interpret the empty product as 1. This gives

Py(m) = (=1)™ " rm/ sinh(7m).
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10588. Proposed by Herbert S. Wilf, University of Pennsylvania, Philadelphia, PA. Show

that n p
) 1 1 n -
[T~ (1 + __+__2) _ete
BSi ] 2j meY

where y is Euler's constant.

solution of problem 10588/10595 AMM 104 (1997), p. 456

We show that

Let

I'(z) = [6722 ﬁ (1 + %) ez/"] h

n

=1
be the Gamma function and let ¢ = %(1 + 7). Then € = 1 — . Hence, as is well

known,
I(e)0(E) = D(e)T(1 —¢) = —
5 E) = g — &) = .
sin e
Therefore
sin e a € i €
— € <\ —¢/n VE= < —E/n _
- e 5H<1+n>e X e 5H<1+n>e
n=1 n=1
o (1 5) (12 e
2 n n
n=1
1 1 1
— V= I —1/n
—62H<1+n+2n2)6 .
n=1
Hence P — 2sinme 2coshm/2

5 SR which is the assertion.
me me



6654. Proposed by W. O. Egerland and C. E. Hansen, Aberdeen Proving
Ground, Aberdeen, MD.

Suppose w is real, n is a positive integer greater than 1, and a,, a,, se2 @, are
complex numbers with la,| < 1 for k = 1,2,..., n. Prove that the equation
e(z-a)(z-ay) - (z—-a,) =z(1 -az)(1-a,z) (1 -a,z)
has at least n — 1 roots on the unit circle.
Solution to Problem 6654
Amer. Math. Monthly 98 (1991), 273
by Raymond Mortini
Mathematisches Institut I, Universitat Karlsruhe,
D-7500 Karlsruhe 1, West-Germany
coyr G — 2
Let B(z) = e“"H IJ—_ be a finite Blaschke product of degree n > 2
j=11 7 &Z

20—z
(a; € D) and let (z) = 1"_? zn e D.
Then ¢~'0Boy, called a conjugate of B, is again a finite Blaschke product
of degree n > 2. (This follows from Rouché’s theorem which shows that f
is n to 1 and from the maximum principle.)
It is also easy to see that the relation

(*) 1=B()B(3)
implies that 2, zo # 0, is a fixed point of B if and only if 1/% is a fixed
point of B,

Assume now that for some z, € ID we have B(z,) = zo. Then f(0) = 0.
Hence, by Schwarz’s lemma, |f(z)| < |z| in D. Therfore f, and hence B,
cannot have further fixed points in ID. Thus, by (), B can have at most
two fixed points outside the unit circle T. Because B has n (resp. n+1)
fixed points in € whenever 0 ¢ {a1,-..,a,} (resp. 0 ¢ {a,,..., a,}) we can
conclude that B has either n — 1 or n + 1 fixed points on T.

Remark. One can also conclude that B has a unique fixed point in ID if
and only if B is conjugate to a finite Blaschke product of degree n with

£(0) =o.
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6648. Proposed by Walter Rudin, University of Wisconsin, Madison.

Let {1 be the region obtained by removing the points 0, 1, « from tht? Riemann
sphere. Find all nonconstant holomorphic functions defined on () which map (1

into itself.

Solution to Problem 6648
Amer. Math. Monthly 98 (1991), 63

by Raymond Mortini

Mathematisches Institut I, Universitat Karlsruhe,

D-7500 Karlsruhe 1, West-Germany

Answer: Let @ = C\ {0,1,00}. Then there are, besides the constants,
exactly the six functions
1 1 z z—1

z, -, 1-—2
P Y 1-2" z-1’ z

which map 2 holomorphically into €.

Proof: Let f be a nonconstant holomorphic map of 2 into . Because
f omits the two points w = 0,1, Picard’s theorem tells us that none of
the points z = 0,1,00 is an essential singularity. Thus f is a rational
function R of degree (order) n € IN. Because R~1({0,1}), which is a subset
of {0,1,00}, contains at least two different points, R can have at most
one pole. This has then order n. By taking, if necessary, reflections, we
may assume without loss of generality that oo is this pole. Thus R is a
polynomial of degree n. The assumption on f now implies that both the
points z = 0 and z = 1 must be n-fold wo-points, where wo € {0,1}. This
means that the derivative of the polynomial R has at least 2(n — 1) zeros.
This implies that n = 1.

ke
Thus in the general case, f is a rational function of degree n, hence a Mobius

transform. Considering all permutations of (0,1,00) and constructing the
Mé6bius transforms § with $({0,1,00}) = {0,1,00} yields the assertion.



E 3329. Proposed by Michel Balazard, Faculté des Sciences, Limoges, France.

Suppose f and g are differentiable real-valued functions defined on (— oo, + o0).
Must there exist a differentiable real-valued function # defined on ( — oc,+ <o) such

that &' = f'g"

Solution to Problem E 3329
Amer. Math. Monthly 96 (1989), 445

by Raymond Mortini

Mathematisches Institut I, Universitat Karlsruhe,

D-7500 Karlsruhe 1, West-Germany

This problem is well known, and its solution is No.

In fact, let F(z) = cos 1 for z # 0 and F(0) = 0. Then F admits a primitive
f of the form

f(=z) = /=2tsin% dt—:l;zsinl for z #£0
0 z

and f(0) = 0.
But F? does not have a primitive H, because otherwise

1

1 p= 1
2 (0) = im — 2_dt = -
O—F(O)—H(O)—ll_%z[) costdt_z,

which is a contradiction. Note that the last equality follows from the facts

that 1 e 1 1
1= —/ (cos2 Z 4 sin? —) dt
z Jo t i

. 1 r= 1 . .1 = 2
lim — (c:os2 — —sin® —) dt = lim= /| cos—dt
z—0  Jo t t z—0 g Jo t

1 3 1
= lim * cos = ds
=0 2 Jo E]

= f(0) =o.

and that

89
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E 3325. Proposed by Walter Rudin, University of Wisconsin, Madison.

Let us say that a function f of the form

f(z)=z+ L az"
n=2

has property P, if £¥n|a,| < 1. Prove:

(a) If P, holds for some 1 < oo, then [ is continuous on the closed unit disc, i.e.,
on{z€C:z| <1}

(b) If P, holds, then f is one-to-one on the closed unit disc.

(c) If ¢ > 1, there exists a function f satisfying P, which is not one-10-one in the
open unit disc.

Solution to Problem E 3325
Amer. Math. Monthly 96 (1989), 445

by Raymond Mortini

Mathematisches Institut I, Universitat Karlsruhe,
D-7500 Karlsruhe 1, West-Germany

a) Let f(z) = z+ Y _an2" satisfy

o

) Sonla <t

n=2

for some ¢ > 0. Then (%) implies that the power series for f' and that for
f converge uniformly (and absolutely) on D = {z : |z| < 1}. Hence f and
f' have continuous extensions to D.

b) If t = 1, then (x) implies that for z € D we have
1) Ifi(z) -2l <1. i
4
In particular, we have Re f'(z) > 0.
Let z,w € D and let £(t) = z + #(w — 2), 0 < t < 1. By the identity
theorem for power series, relation (1) implies that f’ and hence Re f’ does

not vanish identically on the segment [z, w] unless f(z)=7%. Thus we have
for z,w €D, z # w )

) - ) = | Few)w - 2) di
o #IRe [ f(e(t) at

= fw—z| [ Re f(£() dt £0.

v

Hence f is injective on D.

c) Let t > 1. Then the functions f(z) = z — £ 2? satisfy (x). Looking at the
parabola z (1 -4 ::), we see that its maximum is attained at z = X € (0,1).

Thus f cannot be injective.

Remark. This problem is well known [see P. Duren, Univalent Funktions,
Exercise 24, § 3, page 73]. Related to this problem is Exercise 12 in Rudin’s
book Real and Complex Analysis, 3rd Edition, § 14, page 294.
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2187. Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Forr > s = 0, evaluate







2186. Proposed by Paul Bracken, University of Texas, Edinburg, TX.

Evaluate

dx.

/1 arctanh [1. V2 — x? )
o X







State University, Columbus, GA.

Determine all ordered pairs of real numbers (a, b) such that the line y = ax + b inter-
sects the curve

in exactly one point. (Be careful!)



















Niirnberg, Germany.

Let m and n be nonnegative integers. Determine the value of

B(n,m):=Y (—=1)* (-m. ’ k) ( men 1).

k

n—=k
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2185. Proposed by Sedn M. Stewart, King Abdullah University of Science and Tech-
nology, Thuwal, Saudi Arabia.

Suppose n is a nonnegative integer. Let P,(x) be the nth degree polynomial defined by

(DL +xH)" dm (1 D
sy EV AR (1Y
n(x) n! dx" \ 1+ x2,

Evaluate

~l
, P n {.‘- J ﬂr.l" -
J—1







2181. Proposed by Raymond Mortini, Université de Lorraine (emeritus), Metz,
France, Peter Pflug, Carl von Ossietzky Universitdit Oldenburg (emeritus), Oldenburg,
Germany, and Rudolf Rupp, Technische Hochschule Niirnberg Georg Simon Ohm,
Niirnberg, Germany.

Evaluate

oo o (—1)* (_1')rn+1 o i
lim . . x.-:.m-l—-.—-l—.n. )
x—>00 Z Z kl' Qm+1)!2m+2+k

k=0 m=0







2176. Proposed by Elton Bojaxhiu, Eppstein am Taunus, Germany and Enkel Hysnelaj,
Svdney, Australia.

Show that

where C =1/
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e
“— (12n +9)?
i 1
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1
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1 1 1
- (ﬁ_y 52
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2171, Proposed by Paul Bracken, University of Texas, Edinburg, TX.

Evaluate the following sums in closed form.







2167. Proposed by Moubinool Omarijee, Lycée Henri IV, Paris, France.

Prove that

where ¢







fm‘(Pi~s4~cot(Pi‘.3') +

21 In(r) — 31 + 64(3)

27




primitive of \pi s*4 \cot(\pi s)+\frac{2s*5}{1-s*2}
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2147. Proposed by Lokman Gaokge, Istanbul, Turkey.

Evaluate

n nt +4
Lpt — 17

n=:c







2141. Proposed by Paul Bracken, University of Texas Rio Grande Valley, Edinburg,

Evaluate

I:= [ In (I +2x72 cos @ —|—..1:_4_] dx.

J0O
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2128. Proposed by George Stoica, Saint John, NB, Canada.

Let0 <a < b < 1 and € > 0 be given. Prove the existence of positive integers m and
nsuchthat (1 —bp")" <eand (1 —a™)" > 1 —e.
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2118. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.

It 1s well known that the series

converges. Does the series

o0

Z e "kl gink

k=1

converge or diverge?

solution of problem 2118 Math. Mag. 94 (2021), p. 150.

The series converges. This is an immediate consequence to Abel’s theorem telling
us that if (a,) is a sequence of positive numbers with a, N\, 0, then the trigonometric
series S(t) := 3% jane™ converges for all t ¢ {2km : k € Z} (see i.e. Appendix 4
in my encyclopedic monograph: R. Mortini, R. Rupp, Extension Problems and Stable
Ranks, A Space Odyssey, Birkhduser 2021, ca 2150 pages):

Just take a, = e~ 18" ¢ = 1, and the imaginary part of S(t). The proof is based
on the Abel-Dirichlet rule, telling us that with b, = ¢, and

lbg+ by + -+ bp| = |1+ - ™| =

1 — e(m+1)it )
= % iert#]..
—e
we obtain for ¢ ¢ 27Z that
2
( ) |0+1+ +m|—|1_€2t|

Hence the series > 7 ; a,by, is convergent.
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2117. Proposed by Ahmad Sabihi, Isfahan, Iran.

Find all positive integer solutions to the equation

m+ 1" =m!+1.

Solution to problem 2117 in Math. Mag. 94 (2021), p. 150 by
Raymond Mortini, Rudolf Rupp and Amol Sasane

There are only the three solutions (n,m) € {(1,1),(1,2),(2,4)}.

It is easy to check that these are solutions.

Now suppose that n > m > 2. Then (n,m) cannot be a solution since

(m+1)">m+1)™>m™>ml so(m+1)">m!+1.
Now, if 2 =n < m, then
(m+1)2=ml+1 <= m+2=(m—1)!
which is obviously only satisfied for m = 4.

Next let 2 < n < m. Then we see that if (n,m) is a solution to (m + 1)" = m! + 1,
then m must be even. (Actually, by Wilson’s theorem, m + 1 divides m!+ 1 if and only
m + 1 is prime; but we do not need this result). In particular, m > 4. Note that the
equation (m + 1)" — 1 = m/! under discussion is equivalent to

n—1
(38) D (m+ 1)k = (m—1)L.
k=0

1° m = 4. Then, due to (38), 6 = 3! = 1+ 5+ --- implying that n = 2. A
contradiction to the assumption 2 < n < m..

2°m > 6. Then 2 < m/2 < m — 1. Hence the integer m/2 divides (m — 1)!. Since
m/2 > 2, additionally the number 2 divides (m — 1)!. Thus m = 2 - (m/2) divides
(m—1)L

Now, (38) yields n =0, mod m. That is, m divides n and so m < n. This is again
a contradiction to the assumption 2 < n < m.
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2116. Proposed by Fook Sung Wong, Temasek Polytechnic, Singapore.

Evaluate

/x €“5* cos (ax + sinx)
0 1 ﬂ3

where « and B are positive real numbers.

dx

Solution to problem 2116 Math. Mag. 94 (2021), 150 by

Raymond Mortini, Rudolf Rupp

We use the Residue theorem for the meromorphic function 1, given by f(z) =

& +iaz

2+ p

and the positively oriented contour I', := 5, + H,, where S, denotes the segment [-R,R]and

H ¢ the half-circle connecting R.iR,—R for some R > > 0. Thus the simple pole z, :=ifis

surrounded once in positive direction. The Residue theorem tells us that

aF _ap
e T -F
(*) f(2)d==27iRes(f,z,) 22mi———=¢" ¥ |
b 2 B
Ftax peostssiafn e o850 660 4 gin(x)) + 7 sinorx + sin(x
From f(x)= o> ="— = [cos( ED . ( ())],wefind
x*+p x+ 4 x+p
that f(—x)= f(x)forall x>0, hence
R R R eos(x) i
€% cos(ax + sin(x))
j F(x)dx = j( Fx)+ F(x)dx = 2[ g d .
R 0 ) X +p
For z € H,,i.e. z=Re",0 << 7 we estimate
eR:(g"““‘(’)’m"” +iaR cos(t)—aRsin{t)) ee’““”‘” cos(R cos{t))—a R sin() e
[ f(2)= Ta—— = T S
R -p R -p R -p

ThefaeUEGEL U EEMfor integrals now shows that

j f(=)d=

SrR-ﬁ—)OforR—)Hﬂ.

Passing to the limit in (*) then gives the value of the integral in question:

@ _cos(x)

cos(ax +sin(x)) o T b

e
l ¥+ B Co2p
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1075. Proposed by Raymond Mortini, Université de Lorraine and IECL, France.

Let f : R — R be a bounded and continuous function. Assume that there exist a, b €
R such that f(a) < f(x) < f(b) for all x € R. Is it true that, for every d > 0, there
exists a horizontal segment of length 4 with endpoints on the graph of f?

Solution to Quicky 1075 in Math. Mag. 90 (2017), 384

o /
il F -
& |
a’ a b b’

FIGURE 8. Intersecting curves

Yes. We have to show that for every d € R, there is zyp € R such that f(zg) =
f(xo —ad).

1) Non-elementary geometric approach.

Put g(z) := f(z — d) and choose a,b € R such that m = f(a), M = f(b) and
m < f(z) < M for = €]a,b]. We may assume that a < b. Of course, m < g(z) < M.
Let @ < a and b > V. Then z — (z,9(x)),a’ < x < ¥ is a curve in the rectangle
R :=[d/, V] x [m, M] starting at the left of the graph F:= {(z, f(z)) :a <z < b} of f
and ending at the right (here we need that the Jordan arc F' is a cross-cut of R). Thus
this curve meets the graph: that is there is @’ < g < V' such that (zg,g(zo)) € F.
Hence, there is a < 1 < b such that (zg,g(xo)) = (21, f(x1)). Consequently, zo = x1
and so f(zg) = f(xog — d).

2) Analytic approach. Let H := f — g. Then H(a) = m — g(a) < 0 and
H(b) = M — g(b) > 0. If g(a) = m or g(b) = M, then we are done. So we may
assume that H(a) < 0 and H(b) > 0. Hence, by the intermediate value theorem, there
is xg € ]a, b] such that H(zp) = 0. We conclude that f(xo) = g(z¢) = f(xo — d).

Let us point out that the assertion does not hold whenever merely infr f and supg f exist:
just look at f(x) = arctanz. Motivation for the problem came from the paper: Peter Horak,
Partitioning R™ into connected components. Am. Math. Mon. 122, No. 3, 280-283 (2015),
where periodic functions were considered.
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1947. Proposed by Raymond Mortini and Jérome Noél, Université de Lorraine, Metz,
France.

Let n be a positive integer. Prove that

fn

Z |cos k| =

k=0

| =

Solution to problem 1947 Math. Mag. 87 (2014), 230 by
Raymond Mortini, Jérome Noél

n

n n n
cos(2k) + 1 n 1 :
k|l >1 k)2 =1 Oy T 1+ 24 2ik |
D lcosk| > 1+ (cosk)? =1+ . +2+2Re<Ze
=0 k=1 k=1 k=1
No
" n 2in in o .
S L L esinn _ ey sin(n)
1 1 — e2t et sinl sinl
e = n  cos(n+ 1)sinn n 1
k|l >1+ — >14 — —
kzo|cos Je T 2sin 1 = S T ot
(o L)
S 2 2sinl) = 2’
>0

because 2sin1 > 1 (note that 7/4 < 1 < 7/3 implies 1 < v/2 < 2sin1 < v/3).
Let us remark that in the very first step it was important to begin the sum at £ =1
in order to have the summand 1. Otherwise we would have obtained

n .
n+1 cosnsin(n+1) _n+1 1
k| > > _
kz_o"jos 25—t~ Z2m1 2 2 " 3mmi

_n+1 1 1
22 sinl /)’

an estimate that is less than n/2.
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1871. Proposed by Cosmin Pohoata, Princeton University, Princeton, NJ.

Let f, g be two differentiable real functions such that g(x) # 0 for all real numbers x.
Suppose that ¢ is a real number such that

b b
f(t‘)f g(x)dx #3(6)] f(x)dx,

for all pairwise distinct real numbers a and b. Prove that (f/g)'(c) = 0.

solution of problem 1871 Math. Mag. 84 (2011), p. 229.

The solution is a based on the following Lemma:

Lemma 9. Let F be a continuous, real-valued function on R x R. Suppose that F is
not zero outside the diagonal D and not constant 0 on D. Then either ' > 0 or F' <0
everywhere.

Proof. Let P* = {(z,y) € R% 2z <y} and P~ = {(z,9) € R%z > y}.

Case 1: if F(zg,y0) < 0 and F(z1,y1) > 0 for some points Py = (z¢,y0) and P; =
(x1,y1) in Pt then F must have a zero on the segment S joining Py and P, in P*
(since the image of S under F' is an interval).

Case 2: if F(Py) < 0 and F(Py) > 0 for some Py € P™ and P, € P~, then we may
choose an arc A (piecewise parallel to the axis) such that F' # 0 on AN D, which is a
singleton. By the the intermediate value theorem, there is a zero of F' on the arc A,
but outside D.

Case 3: if F(Qp) < 0 and F(Q1) > 0 for some Qp, Q1 € D, then there are Py € P
and P, € P~ such that F(Py) < 0 and F(P;) > 0. Hence we are in the second case.

Thus, all cases yield a contradiction to the assumption. Hence, in the image space,
0 is a global extremum. O

Solution to the problem Without loss of generality, we may assume that g > 0.

Let fb
flx)de
——— ifa#b
H{a,b) — { Ja 9(¥)d
f(a) T
o(a) if a =0.

We claim that H is continuous on R x R. In fact, it suffices to prove continuity at
the diagonal. So let (ag,ag) € D. Then, for (a,b) € R?\ D, there is £ € ]a, b[ such that
S f(@)dz/(b— a) = f(£) = f(ao) if (a,b) — (ag, ap). Thus lim H(a,b) = H(ao).

By assumption, H(a,b) # f(c)/g(c) whenever (a,b) is outside the diagonal in R2.

Case 1: H = f(c)/g(c) on the diagonal D. Then the function x — f(x)/g(z) has
derivative 0 everywhere, and so satisfies the assertion of the problem.

Case 2: H not constant f(c)/g(c) on D. Then, by Lemma 9 applied to F = H —
f(e)/g(c), we see that H > f(c)/g(c) on RxRor H < f(c)/g(c) on RxR. In particular,
¢ is an extrema of the function x — f(x)/g(z) and so the differentiability of f/g implies

that (f/g)'(c) = 0.
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1867. Proposed by Angel Plaza and César Rodriguez, Department of Mathematics,
Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.

Let f : [0, 1] — IR be a continuous function such that f[}l f(t)dr =1 and n a positive
integer. Show that

1. there are distinct ¢, ¢, .. ., ¢, in (0, 1) such that
fle+ fle)+---+ flen) =n,
2. there are distinct ¢q, ¢, .. ., ¢, in (0, 1) such that
1 1 1

fe e T T e "

solution of problem 1867 Math. Mag. 84 (2011), 150

If f =1, then the assertions are trivially true (just take any n points in |0, 1[ ). If f # 1, then
there exist points at which f is strictly less than 1 and points where f is strictly bigger than
one (note that this is the only occasion where we have used the hypothesis that fol ft)dt =1).
Hence, due to intermediate value theorem, there is at least one point at which f takes the value
1. In particular, if h = f or h = 1/f, and noticing that the image of [0, 1] under f is an interval
containing the point 1 in its interior, there exist b € [0, 1] with M := h(b) > 1 and a sequence
(a;) with h(a;) <1 and lim h(a;) = 1. By compactness, we may assume that (a;) is converging
to some a € [0,1]. Hence h(a) = 1 and

m(d) == min{h(z) :x € [a—d,a+d]N[0,1]} - 1if 6 — 0.
For later purposes, we note that m(d§) < 1. Choose § so small that
(n—1)(1 —m(5)) <M —1.
Then
n—M=(Mn-1)—(M—-1) < (n—1)m(d).
Now choose n — 1 distinct points z1,...,Z,—1 in [a — d,a + 6] N]0, 1[ such that
m(d) < h(z;) < 1.
Then A := Y7~ h(x;) satisfies
m—=1)m(d) <A<n-—1.
Thusn — M < Aandso 1l <n— A< M. Again, by the intermediate value theorem, there is
Zn €]0, 1] such that h(z,) = n — A. Hence

Z h(z;) =n.
j=1

Note that x,, & {z1,...,Zn_1}.

Alternate proof concerning the existence of the c;

Let F(z) = foz f(t)dt be the primitive of f vanishing at the origin. Let z; = j/n,j =
0,1,...,n. Then, by the mean-value theorem of differential calculus, there exist ¢; € |z;_1,2;[ C
10, 1[ such that

n n 1 n
L= F(1) = F(0) = > (Flay) = Flaj1)) = > F(e) @y —251) = = 3 £(e5):
j=1 j=1

Jj=1
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1863. Proposed by Duong Viet Thong, Department of Economics and Mathematics,
National Economics University, Hanoi, Vietnam.

Let f be a continuously differentiable function on [a, /] such that f; f(x)dx =0.

Prove that
b b —a)’
Xf(x)dx
a

< —5— max{|f' ()| : x € [a, b]).

solution of problem 1863, Math. Mag. 84 (2011), 64.

We use Carathéodory’s definition of differentiability: A function f : I — R is differ-
entiable at a point g € I, I C R an interval, if there exists a function g =g, : I = R
continuous at xg such that

f(z) = f(z0) + (z — x0)g(7);
f@=f(zo)  if o + 10

just define g, = =0 .
st define no(2) {ﬂ@m if 2 # g

Now if f € Cl[a,b], then g, is continuous and, by Rolle’s theorem, g.,(z) = f'(£)
for some ¢ € |a, b[, £ depending on zy and x. Hence
< ! =: M.
as;gb\gxo(S)! < max [f(t) = M

Let ¢ = (a+b)/2. Then, using the hypotheses that f: f(z)dx = 0 and the fact that

/ ; (x — ¢)dz = 0 we obtain the following equalities:

J = /abxf(x)dx:/ab(x—c)f(m)dx:

b b
/Xx—@ﬁ@»—ﬂ@wxzjkx—@%xmma
Thus

b
|J] S/ (x —¢)*Mdx =

2 (b—a\® 1
20N = L apmn
3\ 2 12

If f(z) = 2 and a = —1,b = 1 then f_ll f(z)dz = 0 and f_lla:f(x)dx =1/3 =
(b—a)?/12.

[ =], M =

W=
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1860. Proposed by Marian Tetiva, National College “Gheorghe Rosca Codreanu,”
Barlad, Romania.

Let o be a complex number such that |e| > 1 and let n be an integer such that n > 2.
Prove that at least n — 2 roots of the equation z" + az"~! + @z + 1 = 0 have norm
equal to 1.

solution of problem1860, Math. Mag. 83 (2010), 392.

We use the Schwarz-Pick Lemma telling us that holomorphic selfmaps of the unit disk
are contractions with respect to the (pseudo)-hyperbolic metric p and that p(f(2), f(w)) =
p(z,w) for some pair (z,w) € D?, z # w implies that f is a conformal selfmap of D
(hence of the form e £=2) and so a (pseudo)-hyperbolic isometry.

1-bz
Note that 2"+ az" ! +az+1 = 0 for some z € D if and only if 2"~ = —%. Now
suppose that there are two solutions z,w in D. Let f(z) = —ajjzl. Then

plz,0) = p(F(2), F(w)) = p(z"~, "),
But this would imply that z"~! is a bijection of I onto itself; a contradiction since
n > 3.

Thus the equation 2" + az" "'+ @z + 1 = 0 has at most one solution in ID. Since z is
a solution if and only if % is a solution, we see that this polynomial of degree n must
have at least n — 2 solutions (multiplicities counting) on the unit circle.

Next we note that v € T s a solution of modulus one of 2" + az" ' +az+1=0
if and only if u is a fixed point on T of the selfmap ¢(z) = f~1(2"~!) of D. Since the
derivative of ¢ does not vanish at boundary fixed points, we conclude that there are at
least n — 2 distinct solutions of unit modulus.
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4924. Proposed by Yagub N. Aliyev.

Let n be a positive integer. Find all possible values of z > 0 for which the

inequality

< (1) (14 m) (4 prm) - (e

B B. B+z/\ B+ 2x) . B+ (n—-1)z/’

holds true for all B > 0. For which = > 0 is the reverse inequality true?



4930. Pro posed by Toyesh Prakash Sharma.

For positive integers a, b, ¢, show that

/a® + b 4+ 2\

albtc® < (
a+b+c




4925. Proposed by Ivan Hadinata.

Determine all possible real numbers a for which there exists a real-valued function
f R — R such that

fle4+y)+2f(f(y) = fF(f(z) + f(y) + azy

for all z,y € R.




4929. pPro posed by Sedn M. Stewart.
Evaluate

~ du.

/ ! log(1 + V1 —u?)

Jo 1 + T










For simplicity we will use @ = sin a so let's consider:

. "7 In(1 + sin a sin x)
I(a) ::/ %dt
0 sin x

Note that sin a is always inside [—1, 1] so it's equivalent to |a| < 1. Also put
x — & — x, then average the two integrals to see that:

3 In(1 + sin a sin x) 7 In(1 + sin a sin x)
— " dx = — " dx
0

sin x sin x

xf}f’(__a):; dx

g ln(1+sinasinx')d 1/""'
0

sin x 1 + sinasinx

cosa 1 cosa

l+sing-2, 141
141=

r+sina) ®

= a.rclan(
cosa

Sy

Now we integrate to get back:

I(a) = /(% —a)da: ?

& J &

I0)=0=>C=0= I(a)=




https://math.stackexchange.com/questions/549028 /deriving-maclaurin-series-for-frac-arcsin-x-
sqril-x2 137 138 139
https://math.stackexchange.com/questions/1448822/taylor-expansion-for-arcsin2x 137
https://math.stackexchange.com/questions /3262856 /integral-int-0-frac-pi2-Inla-sin-x-cscxdx 137
138 139


https://math.stackexchange.com/questions/549028/deriving-maclaurin-series-for-frac-arcsin-x-sqrt1-x2
https://math.stackexchange.com/questions/549028/deriving-maclaurin-series-for-frac-arcsin-x-sqrt1-x2
https://math.stackexchange.com/questions/1448822/taylor-expansion-for-arcsin2x
https://math.stackexchange.com/questions/3262856/integral-int-0-frac-pi2-ln1a-sin-x-cscxdx

4920. Proposed by f:i.'ﬂ.gf_':'g Plaza.

' log(1 + 2% + 22 4 ...

If £ > 1 and n € IN, evaluate / .
W 0 bl




4918. Proposed by Yagub Aliyev.

AT
Let L =limy 5 40e

[P aedt

a) Show that if < b, then L = 0.

b) Show that if 0 <

a <z =", then L = +o0.




4915. Proposed by Michel Bataille.

oo {'_1'}k+L

Let S, =Y

, where n is a nonnegative int

a,b,c such that lim (nS, — [:('{.'I't.?' +bn+c) ] = 0.

n—Foo

r. Find real numbers







4914. Proposed by Ivan Hadinata.

Let Rxq be the set of all non-negative real numbers. Find all possible monotoni-
sing f: R>0 — Rxo




45

46



4913. Proposed by Albert Natian.

Suppose the continuous funetion f satisfies the integral equation

,pxf(T) 4 2.2
/ F oy ) dt =37 (02"
0 W)

Find f (7).




4910. Proposed by Paul Bracke
let

Prove that the .J;;, ,, are rational multiples of .




148



4909. Proposed by Michel Bataille.

For each positive in rn, let Py(x) = (x—1)?"T1(22 — (2n+ 1)z —1). Show that

the equation 1 has a unique solution x,, in the interval (0, oc). Prove that




4905. Proposed by Aravind Mahadevan.

In a right-angled triangle, the acute angles © and y satisfy the following equation:
tanr + tany + tan™ r + tan? Y+ tan® z 4 tan® y = 70.

Find = and y.




4904. Proposed by Ivan Hadinata.

Find all pairs (z,y) of prime numbers = and y such that = > y, £+ y is prime and
¥ + y¥ is divisible by = + v.




4903. Proposed by Ovidiu Furdui and Alina S

[Calculate
L .
-1 2n+1 2n+3







4900. Proposed by Dani

For a positive integer m, let H,, denote the m-th harmonic number, that is,

4

Hy=1+5+-+ % For m,n,p,q ’e integers, prove that

H-m + H-n. + Hp




4896. Proposed by Ivan Hadinata.

Find all functions f : R — R such that for all z,y,z € R the following equation
holds:
f(x)+yf(z) =)+ f(z+1) = 2f(y) + f(z +2).




4894. Proposed by Ovidi

Calculate

where H, =1+ 1 +... 4+ % denotes the nth harmonic number and Hy = 0.




sum (HarmonicNumber[n]-1/n)*(HarmonicNumber[n]+1/(n+1))/(n*(n+1)), n=1 to infinity

J§5 MATH INPUT EXTENDED KEYBOARD EX

+

/ 1y ¢ 1 3
© |Hy = =)|Hy+ —|)
\ n’?* n+1 a
_ =3

w{_f nin+1)

n+

° |Hp - l:'[Hr!‘ L
Nl A

nn+1)

\.l'\ Hn 1 Hml.

h nn+1)

\ Hu 1 thl

ﬁ nn+1)

2.91351 17114100051500066686563672253196126664946473290321059642"

6096687934813324 785186812243965




4893. Proposed by Albert Natian.

Find all continuous real functions f on [—1,1] that satisfy the integral equation




54

53



4889. Proposed by Ovidiu Furdui and Alina Sintamdrian.

Find all non-constant continuous functions f,g: R — R such that

2

\ &

L /‘y (g(t))dt = f ( Tt y) , YVr,yeR, z#y.
Jr 4

Yy—,
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4862. Proposed by Michel Bataille.

Let m be a nonnegative integer. Find
] (=]
i
lim —— %
n—+oo MM

k=0 *

. ( m + f.) ( m+n+ l)

n—=k




58



4870%*. Proposed by Borui Wang.

. . . . . 1
Define the series {a,} by the following recursion: a; =1, a,11 = a, + for
' q-an

1
n > 0,g > 0. Find the constant number ¢(g) such that

lim (a, —
n—o0







4866. Proposed by Ivan Hadinata.

Find all functions f : R — R such that the equation
fley + f(f(y) ==f(y) +v

holds for all real numbers = and y.
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4857. Proposed by Toyesh Prakash Sharma.

-, 3
Let a, b, ¢ be positive real numbers such that a +b+c = Ok Show that
3
a®d® + b°c° + ca® > ok
Solution to problem 4857 Crux Math. 49 (5) 2023, 323
Raymond Mortini
Since the function log x is concave on |0, o[, we have
log (A-l—?-i—C) > logA-l-loiB-i-logC — R

Here we take
A:=a"b’, B :=bc,C = cfa”.
Now the function f(z) := 2zlogz is convex on |0, oo[, since f’(z) = 2/x > 0. Hence

a+b—|—c)

2aloga + 2blogh + 2cloge = f(a)+f(b)+f(c)23f( 3

= 3f <%) = —3log?2.

Hence 3R > —3log 2, equivalently R > log(1/2) from which we deduce that A+ B+ C > 3/2. In other
words

a®t?® + 8¢ + c%a’ > g
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4855. Proposed by Ivan Hadinata.

Find all pairs of positive integers (a,b) such that a® — b* = a — b.

Solution to problem 4855 Crux Math. 49 (5) 2023, 323

Raymond Mortini, Rudolf Rupp

We claim that all solutions (a,b) € N x N are given by

(1), (1), (1), (2,3),3,2))

where u,v,t € N:={1,2,---} can be arbitrarily chosen.

It is easily seen that these are solutions. Now let (a,b) be a solution. Then (b, a) is a solution, too.
If b = a, or if b = 1, then nothing remains to be shown. So we may assume that a > b > 1. Let logz
be the natural logarithm. Now the function f : x — z/logz is strictly increasing for > e and strictly
decreasing for 1 < z < e with minz~o f(z) =e. Soifa>b>3 > ¢,
a b
loga > logb

or equivalently,

b > a’.
Hence a® — b® < 0, but @ — b > 0. So this case, where a > b > 3, does not occur. So it remains to
consider the case a > b = 2. If a = 3, then we actually have the solution (3,2). If a > 4, then
a 4 2
loga ~ log4 - log2’

and so

a?—-2"<0<a—2.
Thus this case a > 4 > 2 = b does not occur, either. As all cases have been considered, we obtain the
assertion.
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4854. Proposed by Michel Bataille.

Let n be a positive integer and let 6. = nk—_f_rl For r,s € {1,2,...,n}, evaluate
mn
Z(sin 0;r +sinf;,)2.
=1

Solution to problem 4854 Crux Math. 49 (5) 2023, 323

Raymond Mortini, Rudolf Rupp

We prove that for 1 < r, s <n,

n 2 .
. . orT . . ST n+1 ifr#s
S:ZE —_ =
. (s1n(]n+1)+81n(3n+1)) {2(n+1) ifr=s

Jj=1

We first show that

(65) z":cos (anTJ _ {—1 ifpeZ\ (n+1)z

n ifpe(n+1)Z

and that for odd p € Z
= . pm
66 o _
(66) zmen+J
To see this, we will use that cosz = Re(e’®), and that

n n—1 int

- . ™ 1l—e e
(67) E e’ =¢' e’ =¢' =
Jj=1

1—eit 1—eit
j=0

it _ gi(nt1)t

Now put ¢ = 2pm/(n + 1) whenever p € Z \ (n + 1)Z. The latter guarantees that the denominator
does not vanish. Hence

n i20m
ij 267 e ntl — 1
E e’ntl = ——— = —1.
120w
= 1—¢'nt

Now if p € (n + 1)Z, then,
S o,
j=1

Thus (65) holds. If p is odd, then, by putting ¢t = p7w/(n + 1) in (67), we obtain

n nrl 4]
Z e nFT ° —,’,—W =icot = L8
i=1 1— eln+1 2 n —+ 1

This is a purely imaginary number, so its real part is 0. This yields (66).
From (65) we easily deduce that for r € {1,2,...,n}

- Lof . rmw _n+1
(68) Zsm (]n+1)_ 5
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In fact, using that sin® z = 1=5¢*2% e obtain from (65)

. 2rm
n n 1 —cos ]n+1
Zsin2(]’ ”) -y et/
= n—+1 2

j=1

= E—l ncos(jzrw)
2 2]_:1 n+1

. n-+1

N 2

We are now ready to calculate the value of S.

e Case 1 Then
n 2 n
. .. T .. T _ o f . T
Sfjgﬂ <sm (jm) + sin (]m)) = 4 E_ sin (jn+1)

j=1

(6:8) 2

e Case 2 Since r,s € {1,2,...,n}, r and s do not belong to (n + 1)Z. Note that due to
sinzsiny = $(cos(z — y) — cos(z + y)),

(69) (sinz 4 siny)® = sin®  + sin® y + cos(z — y) — cos(z + ).
Hence

n n n n
_ Z .of . MW .o . sT . T—s . r+s
S = . Sin (]m) + E Sin (]m) + E CcOs (jﬂ'n T 1) — E COS (]’ﬂ'n T 1>
Jj=1 Jj=1 j=1 Jj=1
= .. r—S8 - . r+s
= 1 E _E ’
P n+ —I—J 1Cos <]7Tn+1) jilcos (]ﬂ'n+1>

= 7’L+1+S1*SQ.

Several cases have to be analyzed now:

a) r — s is even, say r — s = 2p, where p € Z. Then r + s is even, too. Since 0 < |r —s| <n —1 and
0<r+s<2n<2(n+1), we again have two subcases:

al) r+s € Z(n + 1) (equivalently r + s # n + 1): Then by (65),
S=n+14+(-1)—(-1)=n+1.

a2) r+s=n+1€Z(n+1): Then n is odd, say n = 2m + 1 for some m € {0,1,2,...}, and so
2m—+1

So= 3" cos(jm) = (1) + (+1) + -+ (=1) + (+1) + (=1) = —1L.

Jj=1

Hence
S=n+1+(-1)—(-1)=n+1.
b) r — s is odd. Then r + s is odd, too. Again we have two subcases:
bl) r 4+ s # n+ 1: Then by (66),
S=n+14+0-0=n-+1.
b2) r +s=mn+1. Then n is even, say n = 2m with m € {1,2,...}, and so

S = chos(jﬂ) =-D+HD+--+(=D+ (D) =0

Hence
S=n+14+0-0=n+1.
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4844. Proposed by Sean M. Stewart.

Suppose n is a positive integer. Show that the value of the improper integral

0 gn—leg—z (P71 (9} x—k
f (E k)% m—k—1) |
0 ﬁ k=0 ! "
is independent of n.

Solution to problem 4844 Crux Math. 49 (5) 2023, 273

Raymond Mortini, Rudolf Rupp

oo mn—le—x n—1 2k x—k
I, := _ _ .
Y~ <k2_0 k) m—r—1y ) ®

I, =+

For n > 1, let

‘We show that

We use the following well-known formulas, where I' is the Gamma function:

(70) /Ooo e " dr =T(s), T(s+1)=sT(s),s>0
(71) r(m+;):r(%)%g;.@m—l_fm 21) _ ) o
So, withm =n —k — 1,

- :é (f)M T(n—k—1/2)

) _o (2: ) ooy o e =

_ 4nl_1 "il Eil'f)) E(( - )))) S = 4nl_1 :Z: (2;) (2(:__:__11)>ﬁ.

This is related to the coefﬁment in the Cauchy product of

1 e

with itself and which converges for |z| < 1/4, or if we take x = y/4,

i 1 <2n> P
A\ n 1—
In fact, for |y| < 1,

(= G CRs) Y m
Zy_l_y \/11?\/1? Z_(Z )4mk)y

k=

]

The coefficients being unique, we deduce that for every m = 0,1, -

e

4k Agm—k
k=0
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Hence, with m = n — 1, we conclude that I, = /7.
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4850. Proposed by George Stoica.

Let R be a finite field of characteristic 2 and n > 2. Then the sum of all invertible
n X n matrices over R is the n X n zero matrix over R.

Solution to problem 4850 Crux Math. 49 (5) 2023, 274, first version '*

Raymond Mortini, Rudolf Rupp

Let n > 2. We show that for any finite field the sum S of all invertible n X n matrices is the n X n
zero matrix O,.

For n > 1, let M,, be the set of all n X n matrices and let U,, be the set of all invertible n x n
matrices. Since the field has only a finite number of elements, U/, has only a finite number of elements.
So S:=3 ey, U is a well defined element in M,,. We will show that for every U € Uy,

S.U=5.
Fix an invertible matrix U € Uy, and consider the map
.- My = My
X XU

Then ¢ is a bijection of M,, onto itself. The inverse is given by ¢™*(Y) =Y - U™, since
Lo (Y)Y =Y - U )=(v.U ") U=Y
and R o
TlouX) =1 (X-0)=(X-U)- U =X,
Moreover, and this is the main point here, ¢ maps U, bijectively onto itself. Thus (and here we have
not yet used that n # 1)

(72) S= Y uU)=u> U)=uS)=S-U.

Ueln Ueln

Now we use that n > 2. Take for U and 1 < i < j < n the elementary matrices

Eijj=(e1,..., € ,..., € ,...,€n),
i=(é J )

i-th col j-th col
which interchange for X - E;; the i-th and j-th column of X. Thus S - E;; = S implies that all the
columns of S are the same. Say S = (§,...,5). Next we consider the matrix

1 1 0

0 1 0

E =
0 |

Note that the action X - F of E on a matrix X is to replace the second column of X by the sum of the
first and second column. Since F is invertible, we obtain from (72) that S - E = S and so
§+5=5.

Hence § = 0. Consequently S = O,,.

Remark We may also consider the case n = 1. Note that the smallest field is given by Fs := {0,1},
with 1 # 0, where 0 is the neutral element for addition and 1 the one for multiplication. This necessarily
has characteristic 2. Here S = 1. If the finite field is not field-isomorphic to Fo, it has more than two
elements, and so there is an (invertible) element u different from 1. Now by (72), S = Su, hence
S(1—wu) =0. Since 1 — u # 0, hence invertible,we conclude that S = 0.

14 This was tacitly replaced by another problem later on.
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4835. Proposed by George Stoica.

Prove that the four complex numbers z;, i = 1,...,4, are the consecutive vertices
of a cyclic quadrilateral (or are collinear) in the complex plane if and only if the
(21 — 24)(23 — 22)

is real.
(21 — 22)(23 — 24)

number

Solution to problem 4835 Crux Math. 49 (4) 2023, 213

Raymond Mortini, Rudolf Rupp

This is a standard result/exercise in old monographs on function theory/complex analysis and is for
instance in [1, p. 70] (see figure (?7?).

Using a not so sophisticated wording, we will show that four distinct points z; (j = 1,...,4) in the
plane belong to a circle or a line if and only if their cross-ratio (bi-rapport, Doppelverhéltnis)

21— k2 23 — 22
DV(21,22,23,Z4) = 7/7

21 — 24/ 23 — Z4

is a real number.

In particular, being real, will be independent of the ”order” of the points on the circle, respectively
line. R

Our proof will be done in the extended complex plane, C := C U {oco} (also called the one-point
compactification of C). Let us recall some terminology here. If L is a line in C, then L U {oco} is called
an extended line. As usual we call the elements of the set of circles and extended lines in C ” generalized
circles”. R

We also use an extension of the definition of the cross-ratio to points in C. This is done by taking
limits. For instance
(73) D(z1, 22, 23,00) = L —

Z3 — 22
Finally, let us recall the following results:

i) There is a unique linear-fractional map (or in modern terminology, a Mdbius transform) T'(z) :=
(az +b)/(cz + d), ad — bc # 0, viewed as map from CtoC mapping three distinct points 22, 23, 24 in
C to 0,1, 00, namely T'(z) = DV (z, 22, 23, 24)-

ii) The cross ratio is invariant under linear-fractional maps:

DV (T(21),T(22),T(23),T(24)) = DV (21, 22, 23, 24).

Note that the latter is an immediate consequence of i).
iii) The class of generalized circles is invariant under Mébius transforms.
Now we are ready to confirm the statement above:

Given four distinct points z1, 22, 23,24 € C, consider the map S(z) := DV/(z, 22, 23,24). Suppose
that these z; belong to a generalized circle E. Now S maps E to the extended real line R U {oco},
since z2 — 0, z3 — 1 and z4 — oo. In particular, w; := S(z;) € RU {oo} for j = 1,...,4. Since
DV (w1, w2, ws,wa) is real, the invariance result shows that DV (z1, 22, 23, 24) is real.

Conversely, suppose that DV (z1, 22, 23, 24) is real. Note that S(z;) € {0,1,00} € RU {oo} for
j =2,3,4. Now the image of the extended real line by the inverse Mébius transform S~! is a generalized
circle, E. Of course E contains the points z2, z3 and z4. But, by (73), and the assumption, we have

S(Zl) = DV(S(Z;[),S(ZQ),S(Z:;), S(Z4)) = DV(Z17Z2723724) e R.

Hence z1 = S™'(S(21)) € E. In other words, all the z; belong either to a circle or a line.
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This can be shortened, without the explicit use of the cross ratio. Actually, just iii) is relevant here:
Consider the Mobius transform
M(z) =222 37 %2
Z — 22 R3 — Z4
Then z4, 23, 22 are mapped to 0, 1,00, and so the (unique) generalized circle E determined by z4, 23, 22
is mapped to the extended real line. Thus the point z1 belongs to F if and only if M(z1) € R. In other
words, all the z; belong either to a circle or a line if and only if Z1=22 2=22 € R.

REFERENCES

[1] K. Knopp, Elemente der Funtionentheorie Sammlung Goschen, Berlin, Leipzig 1937
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4836. Proposed by Mohammad Bakkar.

Prove the following formula:

3 ﬁ in(n +1)
Eo R 9 1727
n=12n+1¢P (2n +1)

where P is the set of prime numbers.

Solution to problem 4836 Crux Math. 49 (4) 2023, 214

Raymond Mortini, Rudolf Rupp

We first calculate the missing part

— 4n(n+1)
P = | | —_—.

T4 (2n+1)2
2n+1€P

Put p:=2n+ 1. Then n = (p — 1)/2 and so, in view of the Euler formula

oy Lo
- n2 =2
6 —n pePl p
we have
p_TTP-1_46 _8
2 2 2
op P 3w s
p#2

To calculate

L (@n+1)2
" 2
we use partial products and Stirling’s formula lim neni'm =1.
n— oo .
o ﬁ dn(n+1) AN N(N+1)!  4VNI(N +1) (2VNY)?
Yol gn ey T ( @N11)! )2 T @eN+e 1
= N_ (2n)

£VNIYN +1)
(2N +1)!2
42N N4Ne_4N47r2N2(N + 1)
(2N 4 1)4N+2e—4N-2 27 (2N + 1)
2 (2N)*MNEN +1)
(2N + 1)*N (2N + 1)3
9 1 N%(N +1)
[(1 " i)21\7]2 (2N +1)3

= e

(2n+1)2 ~ 8/x2 32

=4 1 4 3
Hence H n(n+ 1) w/ T

n=1
2n+1¢P

A second way to derive the value of P is as follows:
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For z € C we have

sin(rz) = 7z ﬁ (1 =

_ wz(l—z)ezﬁ(l—nj_l)
= 1a(1 - 2)e” eXnmi (77 f_j[ (
- m(kz)ﬁ(pnil)(u—

Hence

ﬁ dn(n+1) ﬁ 2n 2n+2
( - 2n+12n+1

n=1

_ 1"-"[ 1 1 _
I+ 1= smm ﬁ<

n=1
n=1
mz(1 — z)
sin(mz) lz=1/2
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4828, Soumis par Narendra Bhandari.

Démontrer que

/0Z /oZ el + ysects - y)dwdy = Z(_l)n/(Qﬂ- +1)%

sec.xT secy 0
n=

Solution to problem 4828 Crux Math. 49 (3) 2023, 157

Raymond Mortini, Rudolf Rupp

Let

/4 /4
I ::/ / cosST Cosy dy dz.
o Jo cos(e+y) cos@—)

=I(x)

Now fix the variable z. Since

cos(z +y) cos(z —y) = cos® y —sin® z,

we obtain
/4 cosy
I = d
() Cosx/o (1 —sin?z) —sin?y Y
v2/2 du
u:=siny = COS :c/ "
0 cos?z —u
1 V2/2
= 3 (log(cosx 4+ u) — log(cos z — u))
u=0
1 cosx + 1/\/§>
= = log _ .
2 cosz —1/v/2
Hence (using Fubini),
1 /4
(74) I= ,/ log (M) de.
2 Jo V2cosz — 1
The value of this integral is known to be the Catalan number C' (see formula (18) in [1]). An indepen-
dent proof is below: using that cosa 4 cosb = 2 cos(%?) cos(%52) and cos(a — b) = —2sin “t sin 452,

we obtain

o V2cosz + 1 - 1o coszx + cos /4
S V2cosz —1 & cosx — cosm/4

= —logtan (%71-/4) — log tan (#) .

A change of the variable z + /4 = 2y, respectively —z + 7/4 = 2y, and a standard integral
representation of C' yields

1 /4 1 /8 /4
I= —f/ logtany (2dy) — f/ logtany (2dy) = —/ logtany dy = C.
2 Jrys 2 Jo 0

A proof of this standard representation can be given for instance by using power series or Fourier
series:

1 1+z > 1 2n+1
h(z) = =1 =3 2
(2):=3 Og(l—z) 2 5Tt

n=0

Its Taylor coefficients belong to £% and so the associated Fourier series

. N 1 ienti)t
h(et)::E it
n:02n+1
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converges in the L?(]0, w[)-norm to
; 1 1
h(e™) =  log(i cot(t/2)) = z% — 5 log tan(t/2)
(Actually the series h*(e‘*) converges pointwise for z = e with 0 < ¢t < m by the Abel-Dirichlet rule,
but we do not need this.)
Taking real parts, and using that [> = > [ (note that Fourier series converge in the L?-norm,

hence in the L' norm), we may conclude that
1

/4 T/2 o0 1 =)
- logtany dy = ——cos(2n + 1)t dt = B ) i —
/0 gtany @y /0 nZ:oQ”“Ll ( ) HZ:O( U T

REFERENCES

[1] Sedn M. Stewart, A Catalan constant inspired integral odyssey, Math. Gaz. 104, No. 561, 449-459
(2020), 179
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4830. Proposed by Goran Conar.

Let a; € (0,3), i € {1,2,...,n} be real numbers such that "7, a; = 1. Prove
that the following inequalities hold:

,fn—l - —1
Vari= z_: <{+1\ n+1’

Solution to problem 4830 Crux Math. 49 (3) 2023, 158

Raymond Mortini, Rudolf Rupp

T .
is convex. In fact,

1+x
1

\/:(14—%)

") = 1-2x >0

A —a)(@+1)% /15
Since the graph of a convex function lies below the secant determined by (a, f(a)), (b, f(b)), we obtain
that f(z) < 1—2(1 —37Y?)z, where a = 0 and b = 1/2. Since 1 — 37*/2 > 1/3, we deduce that for
0<z<1/2

First we claim that on [0,1/2] the function f(z) =

OEE

and

fl) <1-(2/3)z

, and so
n

> fla) <n—(2/3)) ai=n—2/3.
i=1 =1
But for n > 2, we have

I

n—2/3<(n+1)

since

n®—1—(n—2/3)>=4/3n—13/9 >8/3 —13/9=11/9 > 0.
This upper bound in the problem appears to be artificial. We did not see a way to derive this in a
natural way. To prove the reverse inequality, we use Jensen’s inequality and obtain

—Zfal >f(21 ) = 1(/n).

~ 1—a; 1—% n—1
g >n T =n .
4 1+a; 14+ = n+1
i=1 n

Hence
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4826. Proposed by Paul Bracken.

Let H, is the n-th harmonic number H, = $7}_; 1/k. Evaluate the following
sum in closed form

oo Hk
S=5 — 2k
kzzl k(k+1)(k +2)

Solution to problem 4826 Crux Math. 49 (3) 2023, 157

Raymond Mortini, Rudolf Rupp
We claim that

T 1
5:5_5'
Just write
H;. 1 1 1
WD+ 2 (H’“(k(kﬂ) B (k+1><k+2>)>
_ 1 Hk . Hk+1 1
2(k<k+1> <k+1><k+2>+<k+1>2<k+2>)'
Now

1 _1_k:+1—1_1_1+1
(k+1)2(k+2) k+2 (E+1)2 \k+2 k+1 (k+1)2

Since the Cesaro means of the sequences (1/k) converge to 0, that is Hy/k — 0, we conclude that

oo

111 11
22 2141 24 (k+1)2 12 2
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4825. Proposed by Ovidiu Furdui and Alina Sintamdrian.

Let On:1+%+---+ﬁ, n = 1. Calculate

Solution to problem 4825 Crux Math. 49 (3) 2023, 157

Raymond Mortini, Rudolf Rupp
‘We prove that

[eS) On

First we note that

On — O L Yno n+1 + 1
n(n+1) "\ n n+1 n+1 (n+1)(n+1)
Since the Cesaro means of the null sequence (1/(2

n + 1)) converge to 0, we obtain

(1
01 1
s e —142l0g2—1=logd.
1 +;(2n+1)(n+1) +2log 8

—

o0
The value of the series S := Z can be determined as follows:
= 2n

< 2n+ 1)(n+1)

|
M=

al 1 2 1
2 G DD (zos7 1)

n=1

N ) N 1 aNH1
splitting into even an odd = nz:: (Zn 1 gt 1) nz:: ( Qn) + n;ﬁ n
2N+1 1 2N+1
~ oy eyl d
n=1 n= N+1

— —1+1log2+ log2.

N—o0

Note that the well-known assertion limy_, oo fol N4l % = log 2 is a direct consequence of the fact
that the Euler-Mascheroni constant v is given by

~v =lim(H, — logn),

where H, := Y. | 1, since

Hony — Hy = (Hany —1og(2N) — ) + (log N + v — Hn) + log 2 — log 2.
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4822. Proposed by Anton Mosunowv.

The n-th Chebyshev polynomial of the first kind is defined by means of the recur-
rence relation

To(z) =1, Ti(z) ==z, Th(z)=22T,—1(z)—Th—2(z) forn>2.

Prove that for all n > 2,

—+oo

1
— /4
</Tn o <37

1

o =

Solution to problem 4822 Crux Math. 49 (3) 2023, 156
Raymond Mortini, Rudolf Rupp

Substituting z = cosht we obtain T, (cosht) = cosh(nt). In particular, T}, has no zeros on [1,c0][.
Hence

o dx o sinh ¢ ° el —et
I ':/ To(@)?lm / a7 dt :/ ot om0t
1 In o (cosh(nt)) o, (e +e )

2
o] 1— —2t
271+2/n/ . 2/n dt.
0 ef(l4e-2mt)7"

Hence
_ ] —e _ PR P e
I < 2 1“/"/ 7f dt = 912/ [—e L4 e 3*]
0 e 3 o
2 1
_ 2—1+2/n7 — 114
3 3 va
Moreover

_ o1 [ 1= 42 1
I 21+2/"/ 7&:21/ - gt=2"1'2 =,
> o ef(l+1)2/n 0 et 3 3



4816. Proposed by Ovidiu Furdui and Alina Sitntamarian.

Let a,b, k > 0. Calculate

. a
lim 2"/ = + bn222n dx
n—oo T

Solution to problem 4816 Crux Math. 49 (2) 2023, 101

Raymond Mortini, Rudolf Rupp

We show that for a, b,k > 0 (k not necessary an integer)

1
L= [ /% 4 bn2arn de 25 Vo YO
[ /Ox x—i—n:c m—)\[+k+1/2
Write
fo(z) = 272\ /a + bn2g2n+,
If @ = 0, then
1
In:/ Vonz"rdr = n Vb — Vb,
0 n+k+1
For a > 0, let
dn(x) = xkfl/Q(\/a_’_ananﬁ»l _ \/bn2m2n+1)'
Then

0 < dn(z) — gh1/2 imkq/g

a
<
/a + bn2x2n+1l Jr\/l;nxn-‘rl/Q - \/E

Hence d,, is dominated by an L'[0, 1] function and so, by using that nz™ — 0 for 0 < z < 1,

1 1 1
lim/ dn(x)da::/ limdn(m)de/ VazF? = va
mJo o " 0

k+1/2
/0 fn(z)dz

Consequently,

1 1
/ dn(z)dz + Vb / na® 2 2 gy
0 0
1

n
/0 dn(2)dz+ Vb i

va
o k+1/2+\/5'

185
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4819. Proposed by Daniel Sitaru.

Let f:[0,1] — [0,1] be a continuous function and 0 < a < b < 1.

Prove that:
atb a+b a+b Zab
2 2 7 alh
2[ tf(t)dt 2/ f(t)dt / f(t)dt—l—/ f(t)dt
22 = 0 0

Solution to problem 4819 Crux Math. 49 (2) 2023, 102
Raymond Mortini, Rudolf Rupp

Note that the harmonic mean xo := 2ab/(a + b) is less than or equal to the arithmetic mean
Yo := (a + b)/2. We show that the inequality holds for arbitrary xo,yo with 0 < zo < yo < 1. So let F'
be that primitive of f on [0,1] with F'(0) = 0. We shall prove that

[2 / Pt p(tydt > (Flyo) — F(z0)) (F(yo) + F(wo@,

[¢]

from which the desired inequality immediately follows. By partial integration,

(75) 9 /y LF(E) di =2 /y(, L (1) dt = 2(yo F(yo) — 0 F(0)) — 2/“ F(t)dt.

zo zo

For 0 <z,y <1, put
H(z,y) :=2yF(y) — 2zF(x) — Z/y F(t)dt — (F(y)2 - F(x)z)

We have to show that H(xo,yo) > 0. Since 0 < f <1, F(x) < foz 1 dt = z. Hence
O0H

B (z,y) = —2(F(Jc) + xf(x)) +2F(z) + 2F(x) f(z) = 2(F(x) — ac)f(ac) <0.
Consequently, by using that H(y,y) = 0, we obtain & €]z, yo[ with
H(xo,y0) = H(xo,y0) — H(yo,y0) = %(57 Yo) (xo — yo) > 0.
—_————

<0 -
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4817. Proposed by Goran Conar.

Let a,b,c > 0 be real numbers such that abc = 1. Prove that the following
inequality holds

a " +at+bc BT+ +eca S +ab

> 3.
a+bc+1 b4+ca+1 ct+ab+1

When does equality occur?

Solution to problem 4817 Crux Math. 49 (2) 2023, 102
Raymond Mortini, Rudolf Rupp
Let E :=]0, 00[ % ]0, 00[ x ]0, 00 and let H : E — ]0, co[ be given by

a +a®+be 4+ 4+ca T+ +ab
a+bc+1 b+ca+1 c+ab+1"°

H(a,b,c) =

Put L := {(a,b,c) € E : abc = 1}. To be shown is that inf; H = 3 and that this lower bound is
obtained exactly at (1,1,1). To this end, consider for z > 0 the function

7 3 -1 8 4
'+t >+ +1 6 5 3
= = = — — 1.
f@) =TT T~ Freg1 O F @ T o

Then f is convex on [0, co[. In fact,
f'(x) = 62° — 5z* + 322 — 1 and ' (x) = 302* — 202> + 62 = 22(152% — 1022 + 3).
Now f”(z) = 2z (52°(3z — 2) + 3). Then, clearly, f’(z) > 0 if 2 > 2/3. Since

2 5
2 —3z)=32/3°<3/5
[glzf}g]w( ) /3> <3/5,

we deduce that f”(z) > 0 on [0,2/3], too. Due to Jensen’s inequality, for (a,b,c) € L

Habe) = fla)+ 1)+ (o) =3 LOTIOTIE 5 praxbrey

Since f is convex for z > 0, f(z) > f(1) + f/()(z —1) = 1+ 3(x — 1) = —2 + 3z. Why we take
evaluation at 1?7 Because it works! It is an a posteriori choice, since the minimal value is taken at
(a,b,¢) = (1,1,1). Thus we obtain the estimate

H(a,b,c)23(—2+(a+b+c)):—6+3<a+b+$).

We can even avoid Jensen’s inequality:
H(a,b,c) = f(a)+ f(b) + f(c) > (=24 3a) + (—2+3b) + (—2+3¢) = =6+ 3(a + b+ ¢).
Since a + b+ = > 3 (see below) we deduce that for abc = 1 we have H(a,b,c) > —6+9 = 3. As
H(1,1,1) = 3, we are done.

The inequality g(a,b) :== a + b+ ib > 3 is well known. It can for instance be shown by using
a

differential calculus:
1

ba?
In other words, ab(a —b) = 0. Hence a = b = 1 is the only stationary point. Thus g(1,1) = 3 is the
minimum, since the limit of g at the boundary ab = 0 is oco.

1

ga(a,b):l—ﬁzo<:>a62:1andgb(a,b):1— =0 < ba®=1.
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4811. Proposed by Nguyen Viet Hung.

Find all positive integers n such that v/n3 + 1 + v/n + 2 is a positive integer.

Solution to problem 4811 Crux Math. 49 (2) 2023, 101
Raymond Mortini, Rudolf Rupp

We show that n = 2 is the only solution. In fact v/23 +1++/2+2 =342 = 5. Now, for z,y > 0,
one has v/z + /y € N if and only if z and y are perfect squares. To see this, just note that

e

implies that v/z +/y € Q if and only /= — /¥ € Q and so, by adding (respectively substracting), v/z
and ,/y are rational. Thus \/z = p/q for some p, ¢ € N with no common divisor. Hence z? =p?/¢® €N,
and so ¢ = 1.

Due to a classical result by L. Euler, the Diophantine equation n®+1 = m? hasin N = {0,1,2,...}
only the solutions (m,n) = (1,0) and (m,n) = (3,2) (see for instance [1], a reference provided to the
first author by Amol Sasane). Thus n = 2 is the only positive integer also satisfying v/n +2 € N.

REFERENCES

[1] https://mathoverflow.net/questions/39561 /is-there-an-elementary-way-to-find-the-integer-
solutions-to-x2-y3-1 188
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4810. Proposed by Goran Conar.

Let a1,as,...,a, > 0 be real numbers such that a? + a3 + ...

189

—|—a,21:1,n>1.

Prove that
aj+aj+--+ay | aj+ai+-4a | aitatta, | nyh
(2 tas+ 4 (atast—Tanl  (@tat o tan )P @12
Solution to problem 4810 Crux Math. 49 (1) 2023, 45
Raymond Mortini, Rudolf Rupp
We first show that whenever Y27, a3 = 1, then
n
2
> 4
j=1
i#i 1 vn—1
(76) J: 3 = V1—ad? (n” 1)2°
— 4 —
(X ) 1
j=1
i
In fact, using Cauchy-Schwarz, we immediately obtain
2
> d >_dj
i S et 1 a1
n 3 n 3/2 1—a2 (n—1)%
(Xw)  ((Za)n-)
j=1 j=1
i i
Next we prove that whenever Y, a5 = 1, then
” n
7 .
(77) 2 af XV
In fact, consider the convex function f(z) = \/ﬁ’ By Jensen’s inequality (or one of the possible

defintions of convexity), if > 7_, ¢; = 1 where (0 < ¢; < 1), then
f(ztj%) <> tif(z))
j=1 j=1

n 2
Here we choose x; = a%, and t; = 1/n. Note that % = 1/n. Hence

Z —nzz fxz>nf%;xj):%:n 1

Now putting (76) and (77) together yields
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4803. Proposed by Nguyen Viet Hung.

Find all non-negative integers a, b, ¢ and pairs (p, ¢) of prime numbers satisfying

pQQ +q26 _ (2C+ 1)2

Solution to problem 4803 Crux Math. 49 (1) 2023, 44
Raymond Mortini, Rudolf Rupp

It turns out that the triple (3,4,5) satisfying 3% 4+ 42 = 52 is relevant here. Only one solution to the
problem with p < g exists: p=2,¢g=3 and a =2,b=1,c = 2. To sum up:

[22.2 132l 2.2+ 1)2j

To see this, we use of course the well known parametrizations of the solutions to A% + B? = C?,
which are given by

(¥) A=2mn,B=m?—-n?and C =m?+n? m,ncN.

The conditions to be dealt with are

i) 2mn = p?, i1) m? —n? = ¢® and ii) m? + n? = 2c + L.
e First we note that (a,b) = (0,0) is not admissible as 1 + 1 = 2 is even. Now if b =0 and a # 0,
then by i) p necessarily must be an even prime, that is p = 2. Hence

2% 41 =(2c+1)%

By (*), 1 = m? —n? and 22* = 2mn. Consequently m and n are powers of 2. Hence m? — n? is an
even number; and not 1. Thus ab # 0.

e So let ab > 0. Since p is prime, m and n can only be powers of 2 by (i). Due to iii), telling us
that m2 + n? is an odd number, not both m and n can be proper powers of 2. Since m > n (by ii)),
we necessarily have n = 1 and m = 2* with = # 0. By ii),

@ =m—1=(2")2—1=(2"-1)(2° 4+ 1).

This implies that ¢ # 2 (as the right hand side is odd). Since the difference of the factors is 2, ¢ > 3
cannot divide both factors. Thus we can only have that the factor 2 — 1 equals 1.

Hence ¢ = 1 and ¢° = 3, yielding b = 1 and ¢ = 3. Finally by i), p* = 2mn =2-2' -1 =22, So
p=2and a =2. Finally, ¢ = 2 as 3% + 42 = 52,
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4809. Proposed by Daniel Sitaru.
Let a,b > 0. Find

i 1 &« L gk - L -
lim — dx dx .
n—oo 1 ! o ar—+b 0o bx+a

k=

Solution to problem 4809 Crux Math. 49 (1) 2023, 45

Raymond Mortini, Rudolf Rupp
We show, more generally, that whenever f,g : [0,1] — [0, oo are continuous and f(1)g(1) # 0, then

EILH;O % ni (/01 ¥ f(x) dac)

=1

1

(/01 xkg(x)dx>7 -1 10(11)5,(11)]

—1

Hence the limit in the problem is (a 4 b)?/3.

Proof Let M := max{|f(z)| : 0 <« < 1}. Given ¢ with 0 < & < 3 min{f(1),g(1)}, choose § > 0
so that |f(z) — f(1)| < e for § < 2 < 1. Moreover, let ng be so large that §*7! < ¢/(2M) for k > no.
Then

1

m’k(f(w) f(1)) da

[ i - )

< 2M/:c +/ FIf(x (1)| dz
k+1
< 2Mk+ —|—€/O:rd1:
€ €
<
- k+1+k+1

Therefore

(s 27) = ([etrma) < (o - 25)

‘We conclude that
1 -1 n
k+1 k+1
kg(z)d ) < .
([ stome) < ¥ 775 s

i: S k++125 g(k)++12€ . z": (/lekf(x) da:)

k:no k—'n.()

-1

2 _ %, we deduce that

Hence, by using that Z?zlj

1 < !
li — Ff(x)d
17?Lsolip 3 </0 ¥ f(x) ;1:>

n=1

-1 -1 1 1

</olxkg(x) dx) = é g —2: f(1)—2¢

and
1

</o1 () dx) = é f(1)1+ 2% g(l)l—i- %

-1

n 1

linrgioréf % ; </0 zF f(x) dm)
from which we conclude that
N I

nlggoﬁnz::l (/0 ¥ f(x) dx)

Remark The lower estimate show that the limit is infinite if f(1)g(1) = 0.
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4805. Proposed by Goran Conar.

Let a,b,c > 0 be real numbers such that ab + bc + ca = 4abc. Prove

L1, 1.

4 .
o W e V3

Solution to problem 4805 Crux Math. 49 (1) 2023, 44

Raymond Mortini, Rudolf Rupp
First we note that ab + bc + ca = 4abc is equivalent to
(%) l(a,b,c) = 2 +
If @ = b = ¢, then this condition is satisfied if a = 3/4. Let
gla,b¢) = a= Y@ 4 b= /0 4 Ve

It suffices to show that the minimum M of g under condition (*) is obtained for a = b = c.
Note that M := g(3/4,3/4,3/4) = 3(3/4)~4/3 = 4(4/3)"/3 ~ 4.402.
The gradient of the Lagrange function

H(a,b,c,\) = g(a,b,c) + Al(a,b,c) — 4)

1

1
—=4.
b+c

is zero if
A=a"Y%(1—loga) =b""" (1 —logh) = ¢~/ (1 —loge).
Since the function x + 271/% (1 —logz) is strictly decreasing on ]0, o[, the only solution is
where a = b = ¢. The existence of the minimum is shown as follows (note that

E :={(a,b,c) :a,b,c>0,{(a,b,c) =4}
is not compact. Condition (*) implies that a,b,c¢ > 1/4. Let L := infg g. Then

L>3 min 27 /% =3¢ /¢ > 3 x 0.692 = 2.076.
[1/4,00]

If this infimum is not taken on F, then there is a,, — oo (or b, — 00, or ¢, — o) such that
(an,bn,cn) € E and g(ap, by, c,) — L. In particular ant/® 1. We may assume that b, — b
and ¢, — ¢y (since otherwise b, — co and so ¢, — 1/4, as wellas L = 1+ 1+4* > M, a

contradiction). Hence L = infg: (1 +b~1/0 4 ¢=1/¢), where
E = {(b,c):bc>0,1/b+1/c = 3}.
In particular, b > 1/3. Thus (by using Lagrange again, yielding x = 2/3)

3x—1

3r—1 T g=

L= inf 1427V (”C> 2% 1 4 2(3/2)3% ~ 4.674 > M.
11/3,00] T

A contradiction. Consequently (an,by,c,) — (o, 8,7) € F and so the infimum is a minimum.

Hence

g(&,b#ﬁ > 9(07577):: L=M.

Here is a second proof, based on the article [1] (which unfortunately contains many typos
(poor proofreading? Poor referee job?). The function f(z) := 2% is convex. Let Ty (z) :=
f'(uw)(xz —u)+ f(u) be the tangent to the graph of f at the point (u, f(u)). Then f(x) > T, (z).
Next, let 1 = 1/a, v = 1/b and 3 = 1/c. Then with v := S = (1 + z2 + 23)/3,

3 3 3 3
Y S =Y Ts(x) =Y (F'(S)a; = 8) + £() = f'(S) Y _(x; — 5) +3f(5)

Jj=1 Jj=1 Jj=1 J=1
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3
= 1'(S) > w; = 3Sf'(S) +3f(S) = 3(S).
j=1

Since S = (1/a+1/b+1/c)/3 =4/3, we obtain with 1/a + 1/b+ 1/c = 4 that
3
(L/a) + (1/B)Y" + (1)) =) flaj) = 3£(4/3) = 3(4/3)"/* = 4(4/3)'/°.
j=1
REFERENCES

[1] Manasseh Ahmed, The Tangent Line Trick, CRUX 49 (2023), 38-43
192
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4801. Proposed by Michel Bataille.
Find all functions f : (0,00) —+ R such that

f(a+3) =uf+y)

for all z,y > 0.

Solution to problem 4801 Crux Math. 49 (1) 2023, 44

Raymond Mortini, Rudolf Rupp

C
[We show that all solutions are given by f(z) = g
x

for C e R}

o It is straightforward to check that these are solutions:

1 c cy
€T — = = = x .
f( + y) 1+ 2 % ytyr+1 yf(zy +vy)

e Suppose that f :]0,00[— R is a solution. Let y = H% Then

(79) f20-+1) = fa+ ) = uf (o1 +2)) = 1= 0)
Next, let y = % Hence, by using (78),
B 1 1 11 1 o1 f1) 2f()
f(2$)—f($+§)—yf(y(1+l’))—;f(1+;)—5f(1+2%) Tl L Al
2/(1)  C

Now let X := 2z and C :=2f(1). Then f(X) = —=5 = ——.
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4772. Proposed by Mihaela Berindeanu.

Find all functions f : (0,00) — (0, 0c0) such that f(kz+ f(y)) = % -f(zy+1) for
all =,y € (0,00), where k > 0 is a real and fixed parameter.
Solution to problem 4772 Crux Math. 48 (8) 2022, 483
Raymond Mortini, Rudolf Rupp
For k = 1, this problem was given for instance in the Middle European Mathematical

Olympiad (MEMO) in 2012 in Switzerland (see [?] and [?]) and we follow those published
solutions.

We claim that for a > 0, all solutions f : RT — Rt of °
Y
(79) flaz +f(y) = = flzy +1)

are given by f(xz) = a/x. First, it is straightforward to see that this is a solution. Now we
proceed as in [?, ?]. Let f be a solution.
Step 1 Consider for y > 0, y # a, the auxiliary function

ﬂw:a—w@

a—y
(this function is formally obtained by solving in R x Rt the equation az + f(y) = zy + 1, which
gives z = 2, = LW for y £ a, and so az + f(y) = 2@ — 4(y). Tt will turn out that
Y a—y a—y

x=—-1/y and g =0).

Now for every y > 0 with y # a and x, > 0, we have that g(y) < 0, since otherwise f is
well-defined at g(y) > 0 and so f(g(y)) = £f(g(y)), yielding that y = a, a contradiction.

Step 2
Case 1 If there would exist yo > 1 such that f(yo) < a/yo, then with z¢ := 1 — i > 0 we
have ToYo +1= Yo,

a
g :=axo+f(yo)=a—yfo+f(yo)<a,

and

fuo) = flazo+ f(y0)) = 2

f(yo) < 1.

Then z,, = %(500) > 0 and so

9(uo) = azy, + f(uo) = Tyyug +1 > 0.
But by Step 1, g(ug) < 0, a contradiction.

Case 2 If there would exist y; > 1 such that f(y1) > a/y1, then by the same reasoning as

above, with =1 := 1 — y% and

uy :=azy + f(y1) > a,
we have f(u1) > 1 and so g(u1) > 0, again. A contradiction.

We conclude that f(y) = a/y for every y > 1. To deal with the remaining case, take z = 1/a
and 0 < y < 1. Then by (79),

(80) Ja+iw) =27 (L+1).

15 We prefer to use the letter a instead of k, as for us k always belongs to N.
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As both 1 + f(y) and £ + 1 are bigger than 1, we deduce from (80) that
a Yy a ay

1+f(y) aZ+1 y+a

Hence f(y) = a/y.
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4779. Proposed by Marian Ursdrescu.

Let 0 <a < b and let f: [a,b] = R be continuous on [a, b], differentiable on (a,b)
and with f(a) = f(b). Prove that there exist distinct e;, ¢z € (a,b) such that

\/Ef!(cl) + \/Ef!((:?) =0.

Solution to problem 4779 Crux Math. 48 (8) 2022, 483

Raymond Mortini

If f is constant, then f’ = 0 and we may choose any numbers a < ¢; < ¢ < b to satisfy

(81) Vbf'(e1)4vaf (e2) = 0.

Otherwise, f takes its distinct extremal values on [a, b]. We may assume that M := max(, ;) f >
f(a) (if not, M = f(a) and so minf, ) f < f(a) and we consider —f). Say M = f(xo) for some
xo €la,bl. Then f'(xo) = 0, and due to continuity of f’, there are a < 1 < x2 < x with
f'(x) > 0 for x € |z, x2], but f/'(x2) = 0; we may choose

xo =inf{t <xo: f =0 on [t,zo]}.

By a similar argument, there are g < y» < y; such that f'(y2) = 0, but f'(z) < 0 for
x € Jy2,y1[. By the intermediate value theorem for continuous functions, here for f’, there
exists a small € > 0 such that f’ takes every value from [0,&] on |z1,z2] and every value from
[—&,0] on [y2,y1[. Now choose ¢; € |z1, 23] so that %f’(cl) € 10,¢] (this is possible since
lim, ~,, f'(z) = 0). Hence there exists ¢z € Jy2, y1[ with

f'le2) = —:/[gf’(cll

Thus Vbf'(c1)+v/af (c2) =0 and ¢; < ca.

Remark I do not see the role played by the special coefficients y/a and v/b. The whole works
for any 0 < s1 < 89 < 00.
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4TT1] Proposed by Michel Bataille.

Let I be an open interval containing 00 and 1 and let f : I — R be a differen-
tiable, strictly increasing, convex function. If f/(1) < 2f(1), prove that there exist
positive real numbers a, b such that

1 T
/{f{x})2“+1dm ~ a-% as 1 — oo
0

and express a and b as a function of f(1) and f'(1).

Solution to problem 4771 Crux Math. 48 (8) 2022, 483

Raymond Mortini, Rudolf Rupp

The problem is a bit ambiguous, due to an undefined ~ symbol. Let

1 pn
L, 52/ f(x)*dr and R,=a - —
0 n
Isit L, — R, — 0?7 Or L,/R,, — 1? Or ¢L,, < R, < CL,, for almost every n and some
positive constants ¢, C? Note that, a priori, it is not even clear that L,, > 0.
We are going to show the following;:

ntl n f)
Ezh—{r;of 2n+1 / f 2 +1 2]0/(1)J

2

Hence, with a := ;;/1()1) and b = f(1)? we get that L,,/R,, — 1.
Proof. Since f is assumed to be increasing, we see that f'(z) > 0 for 0 < x < 1. To exclude
that for some points zo € ]0, 1], f/(x) = 0, we need the convexity '° of f: in fact, let T be the
tangent to the graph of f at (zo, f(x0)); then T'(z) = f(zo) + f/'(z0)(x — zo). The convexity of
f implies that the graph of f lies above T. In particular, if f'(z¢) = 0, then, due to f being
strictly increasing, f(xo —¢) < f(xo) < f(xo+€) would contradict this fact. We conclude that
f'(x) > 0 for every = €]0,1].

Example 12.

To calculate our limit, we let 0 < s < 1 and write the integral #%L as I, (s) + Jn(s),
where
n+1 n n+1 n
In(s): 2n+1/f )" hdr  and  Ju(s) = 2M/f )2 da.
Claim 1 There is a function h(s) with 0 < h(s) < 1, such that
f() 2n42 f(1)
82 1—h" <J < .
(52) s ( (5)) < n() < 5505

To see this, note that f convex and C! imply that f’ is increasing (by the way, a fact
equivalent to f being convex). By the mean-value theorem, and for s < x < 1, there is

¢y €8, 1] with f/(¢cz) = w Hence
fl(s) < flea) < F1(1)

f() = f=x)

1—=x

and so

f'(s) < < (D).

16 Note that f merely being strictly increasing, does not exclude the existence of zeros of f': flz) =

(x —1/2)%.
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In other words

(83) Q) = F O+ Dz < fz) < F(1) = f1(s) + [ (s)a.
Now for f(z) = Ax + B with A # 0 we have

A+ B)>"t2 — (As + B)?+?

1
/ (Az + B)*"*! do = (

A(2n +2)
Applying this to (83) yields
n+1 Jent1 n+1 (f'(s)+ 1) = f(8)* 2 = (f'(s)s + f(1) — f'(s))*"*?
2““/ J@T e < gy F(5)2n + 2)
L fP - (f(9)s A+ £(1) - f1(s))* P
2f'(s) fa)zn+t
(O U SR O PN S
= 27 (1 (1= 70 -9) )
f(1)
= 2709

because 0 <1 — I

i@ (1 —-s) <1fors € [s1,1]. Similarily,

n+1 /f et gy > _ntl (f'(W) + fQ) = fW)*+2 = (fF(Ws + f(1) = £1(1))*"*2

T Jz F1n+2)
L FOPPR (s (D) - f1()2
2f/ 1) f(1)2n+1

(
IR A PR
Ty (1 (- Fme-) )
—. f(l) _ 32n2

2y T,

with h(s) :==1— %(1 — ). Note that 0 < h(s) < 1 for s € [s2,1].

This finishes the proof of Claim 1.

Claim 2 lim,_, I,(s) =0 for every 0 < s < 1.

To this end, we need to show that maxg 1) |f| = f(1) and that the maximum is only obtained
at 1 (note that f may take negative values). In fact, since f is increasing, f(0) < f(z) < f(1)
for every x € [0,1]. If f(0) > 0, nothing has to be proven. So let f(0) < 0. Then, by the mean
value theorem on [0, 1] there is 0 < ¢, < 1 such that

f@) = f(0) + f'(ex)z < f(0) + f'(1)x < £0) + /(1)

(note that f’ is increasing). Using that 0 < f/(1) < 2f(1) '7, we obtain f(1) < £(0) + 2f(1).
Hence f(0) > —f(1). As f is strictly increasing, we also have f(0) < f(1), and so |f(0)] < f(1).
Moreover, |f(x)| # f(1) for any x € [0,1].

We conclude that
n+1 / f 2n+1 maX[O,s] |f('T’)‘ el
2n+1 f(1)

whereO<M:M( )< 1. As Y07 (n+ 1)M?* ! converges, I,(s) — 0 as n — oo.

<(n+1)s ( = (n+1)M>"H,

(s

17 Tt is only here that we use this assumption.
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We are now ready to determine the limit of #ﬁﬂ fol f(x)?"* 1 dz. To this end, fix ¢ > 0
and choose s3 = s3(¢) €]0,1[ so that for all s € [s3,1]
0|
2f'(s)  2f'(1)
Now for sg := max{si, $2, s3}, depending on e, we obtain from Claim 1 that
f() ( 2n42 f@) f@)
1— p2n ) < Jn(so) < < .
271) o)) = Inlso) < 50y = 2p)
Since 0 < h(sg) < 1, there is ng = ng(e, sp) such that
0< h(so)2”+2 < ¢ for all n > no.

Thus, for n > ng

f(1) f(1)
2f7(1) 2f7(1)
By Claim 2, there is ny > ng (depending on ¢) such that |I,(so)| < € for n > ny. We
conclude that for these n > n;

(1—¢) < Ju(so) < +e.

£

n+1 < et+5pgyte
L, = L.(50) + Ju(50) Fe)
F(1)2n i1 > —e+ ik 1-e).

Hence

st~ gep| =2 (e gy ) |
]

Remark The function f(x) =  — 1/2 shows that the assertion may fail if /(1) = 2f(1),
since in this case L, = 0. On the other hand, it may hold, too if f/(1) = 2f(1). In fact, if
f(x) = e** then f'(1) = 2f(1) and

e4n+2 -1 64 e4n e4n+2

L,=——— d R,=— —= ,
dn +2 At 4e2 n 4n

nevertheless L, /R, — 1. What is the reason for this? Well, an analysis of the proof shows
that the condition f’(1) < 2f(1) can be replaced by the assumption that the maximum of | f]
is only obtained at 1. This makes the class of functions with the wished assymptotic behavior
of the integrals fol f(x)?"*+1 do much larger.
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4780. Proposed by Florica Anastase.
Let0<a<bm= %b and f: [a,b] — R differentiable with derivative continuous
on [a,b] such that f(m) = 0. Prove that

2a3 /ﬂ (f’(gg))*z dr > 3( ’ f(x) da:)Q.

—i —a

Solution to problem 4780 Crux Math. 48 (8) 2022, 484

Raymond Mortini, Rudolf Rupp

The assertion is not compatible with the hypotheses. So we prove the following two results

Example 13. Let a > 0 and f € C'[—a,a]. If f(0) =0, then
a a 2
/ (f'(x))? da > % ( _af(x) dx) .

—a
12

Example 14. Let 0 < a,b < oo and f € C*a,b]. If f((a+b)/2) =0, then, with C = Gk

b b 2
x xr > x)dr | .
Laﬂ>fd C(Lf(M)

Proof of Example 1. Let p be a polynomial. Then, using The Cauchy-Schwarz inequality

I::(Aﬂfwxxwm)2s;(Aau%x»%M) ([ oto2ar)

Using partial integration,
a a 2

- [ e ao)
0 0

a

1= (U@t

= %a?’. Hence, by noticing that

= 3(z —a)®

Now choose p(z) = x — a. Then [ p(x)*dx .

p(a) = f(0) =0, )
I— (/Oaf(x) da:) < (/Oa(f’(a:))Qdas> éa3

If we choose p(z) = « + a, then p(—a) = 0, and we similarily obtain the appropriate estimation

for fi)a f(x)dz. Hence, using that (z +y)? < 2(2? + y2),

a

([ swa) <2 [ oy
O

Proof of Example 2. Just use the affine transformation ¢ given by ¢(x) = = + %“’ Then
¢(—25%) = a and ¢(55%) = b, as well as ¢(0) = “FL. Let ¢ := (b — a)/2. Hence, with
F(t) := f(¢(t)) for —c <t < ¢ we obtain

/ab(f’(;u))2 dx = / (F'(t))*dt > % ( ) F(t) dt)2 = ﬁ (/abf(:z:) dx>2.

—C

—c
(]
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Of course Example 1 is a special case of Example 2. Is C best possible? Let

(137@)2 3 (b*a)Q jfaﬁmg(a+b)/2

— 2 8
q(z) = (x = b)? - (a —b)?
2 8
Then ¢ is continuous on [a, b], ¢((a +b)/2) = 0 and

b b 2
/ <q'<x>>2dm=(bi)3< / q(x)dx> .

Unfortunately, ¢ is not C'. How to modify?

if (a+b)/2<z<b.
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4777 Proposed by Goran Conar, modified by the Editorial Board
Let n € N and x4, T2,

,Tn > 1 such that Y i, = = 1. Prove

1/2—1—712 ; 1

Solution to problem 4777 Crux Math. 48 (8) 2022, 484

Raymond Mortini, Rudolf Rupp
The assertion is not correct. In fact, let x

= (z1,...,2,), Rt ={z €eR: 2 > 0}

S = {(xl,...mn) e (RH)": in - 1},
and

i—1

We prove that for n > 2

e = a0 <9 = |

x€S
and that for n =1, S = {1} and so

1 2
[f(ﬂﬁ)zwzf(l):j

Proof Wlog n > 2. First we note that Z?zl 1/x; = 1 for z; € RT implies that 2; > 1 for
every ¢. Now max *

| =
——— = —, since the function is decreasing on [1, oo[. Hence, for x € S
1<z<oo 1+ 222 3
n n n
1 2 2 21 2

) S D BE v il D Dt

= gota i lt2iw 3w 3
since for n > 2, no x; can be 1. If for k > n

1
= (o, o9 = (1

n—1)/k"" """ )’
then 1(1/x§k)

)=1, %, — (1,00 ) and f(xx) — 2/3. Hence supg f = 2/3.

To prove the assertion on the minimum, we use Lagrange. It is preferable to work with the
new variable y; := 1/x; (to get a compact definition set, guarantying the existence of the global
extrema). So let

n
S/ {(yh ‘7yn)€Rn7 ngOZZ/J_l}
j=1
and

n
9(Y1, -y Yn) : Z

Then S’ is compact and inf fg = inf g¢» = mingg: =: m Say 9(

. x') =
In order to apply Lagrange, we need to show that x’ is an interior point of S’ (in symbols
"€ (8°). Lety = (1/n,..

N\H

) = m for some x' € S’
.,1/n). Then y’ € (5)°.

b
Now on 0S5’ at least one of the
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coordinates of these points y := (y1,...,yn) € 95" is 0. Say, y, = 0. But then Z?;ll yi =1
and (via induction on n, starting with the trivial case of one-tuples)

S n—1 S n

T 1/24+(n—-1)2 " 1/2+n?

Hence the absolute minimum of g on S’ does not belong to the boundary.
By Lagrange’s theorem, there exists A € R and (y1,...,yn) € S’ such that

V(g(yl,-.-,yn) +A(1 - zn:yz)) =0.

i=1

g(y) =g(y').

That is, for every i € {1,...,n},
2y
T+ 37

Unfortunately, the function y — ¢(y) :=

(84)

uﬁiyy,“)? is not injective on [0, 1] (note that the
2

derivative vanishes at y = £4/2/3). So we must discuss several cases (see figure 9):

FIGURE 9. Non injectivity of ¢ on [0, 1]

(1) If8/9 = q(1) < X < max|g 1) ¢, then the equation ¢(y) = A has two solutions 0 < y;,y2 < 1.

(ii) If A = maxg 1) ¢ or if 0 < X < ¢(1) = 8/9, then the equation ¢(y) = A has exactly one
solution 0 < gy < 1.

(iii) In all other cases, there is no solution with y > 0.

We first show that the case (i) does not yield minimal solutions. In fact, for fixed A €
[q(1), maxpg 17 [, equation (84) has 2" solutions of the form P := (a,...,a, b,...,b ) and their
k-times (n—k)-times
permutations, where k = 0,...,n and 0 < a < b < 1. Note that
3

(85) a(1/n) = (lf#) <4(1/2) < a()) = ¢ < q(\/23).

Hence 1/n < 1/2 < min{a, b} (see figure 9).
Let A:=(1/n,...,1/n). Then A € . Since the function y — y*/(1 + 14?) is increasing on
[0, 00[, we deduce that
a? b?
P)=k— 4 (n—k)—— >
so P does not yield a minimum. Thus only the second case occurs. That is, we need to
consider only a solution of (84) of the form (yi,...,yn) = (a,...,a) with 0 < a < 1. Using the

9(4),
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constraint condition ) .-, y; = 1, we obtain that a = 1/n, hence (y1,...,y,) = (1/n,...,1/n).
Consequently, x’ = (1/n,...,1/n) is the unique point where g takes its absolute minimum on

S’. We conclude that n

1 2"
5+n
2

For completeness, we observe that M := maxg g necessarily is obtained on the boundary of
S’ (for instance, M = ¢(1,0,...,0) = 2/3), as Lagrange only yields a single stationary point of
the Lagrange function in (S")°.

min ggr =

A second way to see that case (i) does not occur goes as follows:
We first show that the case (i) does not yield minimal solutions. In fact, for fixed A €
[q(1), maxp 17 [, equation (84) has 2" solutions of the form P := (a,...,a, b,...,b ) and their
—— ——

k-times (n—k)-times
permutations, where k = 0,...,n and 0 < a < b < 1. Note that ¢(1/2) = (8/9)? and that
n > 2. Thus

(86) q(1/n) < q(1/2) <q(1) <A <q(v/2/3).
Hence 1/n < 1/2 < min{a,b} = a (see figure 9). Since for such a point P = (y1,...,yn) we
have .

Zy»:ka—i—(n—kz)b>kl+(n—k)1: Tsq

= ! 2 2 2=
P does not belong to S’; that is such a solution of the system (84) of equations does not satisfy
the constraint P € S’.
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4763. Proposed by William Weakley.

Let K be a field and let 5§ be a nonempty subset of K that is closed under
subtraction.

a) For all K and S, characterize the functions f : S — K such that

flx)f(y) = f(z —y) forall o,y € 5.

b) As K and S vary, what finite cardinalities can the set of such functions have?

Partial Solution to problem 4763 Crux Math. 48 (7) 2022, 421
Raymond Mortini, Rudolf Rupp

Here we give our thoughts on this not very precisely formulated problem.

First we note that S C K necessarily is an additive subgroup of the field K. Note that
{0,1} C K. In particular 0 =« — 2 € S and with € S we have —x =0—z € S.

If

(FE) flx—y) = f(x)f(y) for all z,y € §

then we get the following:

(1) y =2 = £(0) = f(x)?

(2) y=0= f(z) = f(2)f(0) = f(x)(1 - f(0)) =0

Case 1 There exists g € S with f(zg) = 0. Then, by (1), f(0) = 0 and so f(z) = 0 for all
xeS.

Case 2 f has no zeros. Then (2) implies that f(0) = 1.

We claim that f(2z) =1 for every x € S (note that ZS C 5).

In fact, f(z) = f(2x — x) = f(2z) f(z), hence f(2z) = 1.

We conclude that for S = R e.g., the constant function f(y) = 1 is the only solution, as
every y € R writes as y = 2x for some z.

Next we show that f is even and that f(z) € {—1,1}. In fact, by (FE), for = 0,

f(=y) = f(0)f(y) = f(y) for every y € S.
Hence 1 = f(2u) = f(u— (—u)) = f(u)f(—u) = f(u)? for any u € S.
If S = Z, then we have three solutions: f =0, f =1 but also

{1 if n even

TW=9_1 it odd.

In fact by the claim above, f(2m) = 1 for every m € Z. Now let o := f(1). We already
know that o = +1. Now for every m € Z,

o= f(1) = f(2m+1) — 2m) = f2m + 1)f(2m) = f(2m + 1).

Let P:=P;:={z€S: f(z)=1}and R:={z € S: f(z) = —1}. Then P is a subgroup of
S since x,y € P implies that © — y € P, because f(z —y) = f(x)f(y)=1-1=1.

As shown above, 25 C P C S and 2S5 is a subgroup of S. Here S = 2§ if and only if all the
translation operators 7, : S — S,y — = — y have a fixed point.

Also note that R has the following property:

(PR) (R—R)CPand (R—P)U(P—-—R)CR.
Conversely, if P is a proper subgroup of S and R := S\ P such that (PR) holds, then the

function g given by
1 ifxzeP
9(z) = {—1 itreR’
satisfies the functional equation (FE) g(z —y) = g(z)g(y) for z,y € S.
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Note that P may be strictly bigger than 2S: in fact, let K =C, S :=Z +iZ, P = 2Z +iZ
and R =S\ P. Then S, P, R satisfy (PR), but P := 2S5 does not satisfy (PR).

If S = K is a field of characteristic 2, then P = R = S (note that 1 = —1), and so only the
constant functions 1 and 0 satisfy (FE).
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ATA47T. Proposed by Stanescu Florin.

Determine all the functions f : R — R such that

(@2 f(2) + f(y)) = f(f(=®) +y
for all z,y € R.

Solution to problem 4747 Crux Math. 48 (2022), 282 by
Raymond Mortini, Rudolf Rupp

We claim that all solutions of the functional equation
f@?f(@) + f(y) = f(f@@®)) +y, z.y €R
are given by f(z) =z and f(z) = —=.

Claim1 f is injective:
Put = 0. Then

(87) W) = f(f(0) +y.
Now if f(y1) = f(y2), then by (87)

F(fn)) = f(f(0)) +y1 and f(f(y2)) = f(f(0)) +y2
Hence y1 = ys.

Claim 2 f is surjective:
Let w € R. Then, by (87),

w = f(£(0)) + (w—= f(£(0)) = f(f (w — f(f(0))).

Claim 3 f(0) = 0:
Take y = 0: then f(2%f(x) + f(0)) = f(f(23)). Since f is bijective, we conclude that
22 f(z) + f(0) = f(2*®). Now put z = 1: then 12 f(1) + f(0) = f(1). Hence f(0) = 0.

Claim 4 f o f =id (that is, f is an involution).
This follows from (87).
Hence our equation becomes

(88) f@f(@)+f(y) =2"+y (v.y €R).
In particular, for y = 0,
(89) f(x2f(z)) = 2® or equivalenty 2% f(x) = f(x?).

Claim 5 f is additive:
In fact, the surjectivity of f and z + 3 now imply that x — 22 f(x) is surjective, too. Hence
F@f(@)+f(y) =2° +y = f@*f(z) +y = fla) + f(b)

——

=a =b
yields the additivity of f.
Claim 6 f(—z) = —f(z).
Just use that with f(0) = 0 and f additive,
0=f(0) = f(z + (=2)) = f(z) + f(-2).
Claim 7 Let f(a) = 1. Then a = +1.
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Recall that by (5) and (6), f(a+b) = f(a)+ f(b) for a,b € R and f(mz) = mf(z) for every
m € Z. Hence, by (89), for x = a +,

(a+b)%f(a+b) = f((a+b)?>).

Expansion yields:

(a® + b +2ab)(f(a) + f(b)) = f(a®)+3F(a®b) +3f(ab®) + f(b7)
a’f(a) + b f(a) + 2abf(a) + a® f(b) + b* f(b) + 2abf(b) = f(a®)+3f(a®b) + 3f(ab®) + f(b*)
b2 f(a) + 2abf(a) + a* f(b) + 2abf(b) 3f(a®b) + 3f(ab?).
e Let b =1 and note that a = f(1). Then
1+ 2a+a®+2ad® =3f(a®) +3 =30+ 3 <=
20° —2a* —20+2=0 <= d*(a—1)—(a—1)=0 <= (a—1)(a*-1)=0 < ac{-1,1}.

—
—

Claim 8 If the additive function f satisfies 22f(z)) = f(23), then f(z) = f(1)z. To see
this, we consider four cases:
e Let a=2, f(1) =41 and b = x. Then

(90) (£2® + 4w — 4f (2) + 20 (2) - 3f(2%) =0
e Let a=1, f(1) = £1 and b = z. Then,

(91) (22 + 20— 2f(x) + 20/ ( )=0)
Calculating (90)-(91), yields £22 — 2f(x) = 0. Hence f( ) tx = f(1)x.

One can also prove Claim 8 without using Claim 7, and then deducing Claim 7 from Claim
8 if additionally we assume that f is an involution.

In
(92) b2 f(a) + 2abf(a) + a® f(b) + 2abf(b) = 3f(a®b) + 3f(ab?).
choose a =1, resp. a =2 and b= 2. Then f(2) = f(2-1) =2f(1) and so
(93) 2 f(1) +2f (D + f(2) + 22f(2) - 3f(2) — 3f(2®) = 0
(94) 202 f(1) + 8f(1)z + 4f(x) + daf(x) — 12f(z) — 6f(2°) =
Hence, by calculating (93)-3(94), we obtain
(95) —2f(Wz — f(W)x +3f(z) = 0.
Hence f(z) = f(1)z. Using (89), that is f(2?f(z)) = 2*, we have

FWa?f()a = 2°.
Hence f(1)2 =1 and so f(1) = £1.
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4657. Proposed by George Stoica.
Let us consider the equation f(z) + f(2z) =0, =z € R.
(i) Prove that, if f is continuous at 0, then f(z) =0 for all z € R.

i1) Construct a function f, discontinuous at every = € R, that solves the given
(ii) : ry : g
equation.

Solution to problem 4657 Crux Math. 47 (2021), 301 by
Raymond Mortini, Rudolf Rupp

a) Suppose that the function f satisfies f(z) + f(22) = 0 on R. Then the continuity of f at
x = 0 implies that f = 0. In fact, fix x € R\ {0}. By induction, f(z/2") = (-1)"f(z). By
taking limits, the continuity at 0 implies that for n even we get f(0) = f(z) and for n odd, we
get f(0) = —f(x). Hence 2f(x) = f(0) — f(0) =0, and so f = 0.

b) Define the function f : R™ — R by f(0) =0, f(z) = 1if1 <z and z rational,
f(z) = —1if1 < 2 < 2 and z irrational. Ifn € Nand 2" < z < 2"+ p ut f( ) (=)™ f(x/2™).
If i <o < o, put f(z) = (=1)"f(2"z). If z < 0, then let f( ) = f(—z). Then f is
discontinuous everywhere and, by construction, f(z) + f(2z) = 0.

c¢) All solutions to f(z) + f(22) =0 on R:
Let g : [-2,—1[U[1,2[— R be an arbitrary function. Put

0 ifx=0
J@) = (Dng(a/2n) it 2" < Ja] < 20

(—D)g(2nz)  if 5 < ] < o
This functional equation and its companion f(z) = f(2x) appear multiple times:
https://math.stackexchange.com/questions/3144431 /if-fx-f2x-is-continuous-is-f-continuous-or-

not

https://math.stackexchange.com/questions/3374236 /limit-question-unknown-function
https://math.stackexchange.com/questions/1046961 /finding-continuous-functions
https://math.stackexchange.com/questions/1039622/continuous-functions-satisfying-fxf2x-0

https://math.stackexchange.com/questions/3480985 /find-an-example-of-function-where-lim-
x-t0-0fxf2x-0-but-lim-x-to

https://math.stackexchange.com/questions /2757365 /find-f0-if-fxf2x-x-space-space-forall-x

https://math.stackexchange.com/questions/2579482 /function-satisfying-lim-limits-x-to-0fx-f2x-
but-doesnt-have-lim-1i

https://math.stackexchange.com/questions/3524310/if-fx-f2x-then-f-is-differentiable

https://math.stackexchange.com/questions /277313 /proving-a-function-is-constant-in-mathbbr-
if-fx-f2x-and-f-is-continuo

https://math.stackexchange.com/questions/2821984 /functional-equation-satisfying-f2x-fx


https://math.stackexchange.com/questions/3144431/if-fx-f2x-is-continuous-is-f-continuous-or-not 
https://math.stackexchange.com/questions/3144431/if-fx-f2x-is-continuous-is-f-continuous-or-not 
https://math.stackexchange.com/questions/3374236/limit-question-unknown-function 
https://math.stackexchange.com/questions/1046961/finding-continuous-functions 
https://math.stackexchange.com/questions/1039622/continuous-functions-satisfying-fxf2x-0 
https://math.stackexchange.com/questions/1039622/continuous-functions-satisfying-fxf2x-0 
https://math.stackexchange.com/questions/3480985/find-an-example-of-function-where-lim-x-to-0fxf2x-0-but-lim-x-to 
https://math.stackexchange.com/questions/3480985/find-an-example-of-function-where-lim-x-to-0fxf2x-0-but-lim-x-to 
https://math.stackexchange.com/questions/2757365/find-f0-if-fxf2x-x-space-space-forall-x 
https://math.stackexchange.com/questions/2579482/function-satisfying-lim-limits-x-to-0fx-f2x-but-doesnt-have-lim-li 
https://math.stackexchange.com/questions/2579482/function-satisfying-lim-limits-x-to-0fx-f2x-but-doesnt-have-lim-li 
https://math.stackexchange.com/questions/3524310/if-fx-f2x-then-f-is-differentiable 
https://math.stackexchange.com/questions/277313/proving-a-function-is-constant-in-mathbbr-if-fx-f2x-and-f-is-continuo 
https://math.stackexchange.com/questions/277313/proving-a-function-is-constant-in-mathbbr-if-fx-f2x-and-f-is-continuo 
https://math.stackexchange.com/questions/2821984/functional-equation-satisfying-f2x-fx 
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4636. Proposed by Mihaela Berindeanu.

Solve the following equation over the set of real numbers:

(37 4 7)lBe? _ (4= _7)lomsd g 37 _ 14,

Solution to problem 4636 Crux Math. 47 (2021), 200 by
Raymond Mortini, Rudolf Rupp

The equation
(395 + 7)log43 _ (4m _ 7)log34 — 4% _ 395 — 14

has on R the unique solution z = 2. In fact, first note that a := log, 3 = iggi > 0 and

log; 4 = 1/a. Then with A := 3% + 7 and B := 4 — 7 we have to solve A* — B/ = B — A or
equivalently,

A+ A= (Bl/a)a +Bl/a.

Since the function z — x4 z is strictly increasing, we deduce that A = B'/®. In other words,
3% + 7 = (4% — 7)1/, or equivalently
(96) log 4log(4” — 7) = log 3log(3” + 7).

The curve y(z) = log4log(4® — 7) —log 3log(3” + 7) is defined for x > log 7/log 4 := x¢ with
lim, 4, y(x) = co and its derivative

1

= _loe?3——
1704 %% 117,73
is strictly decreasing with lim, ., v'(z) = 0o and lim, . ¥/'(z) = (log® 4 — log®3). Note that
the asymptote at infinite is the line y = (log? 4 —log? 3)z. In particular, 4’ > 0 and so the curve
is strictly increasing and its unique zero is 7 = 2 (observe that log(4) log(9) = 41og(2) log(3) =
log(3) log(16), so (96) holds).

y () = log” 4
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4634. Proposed by George Stoica.

[ w]
Let E a, <ocotora, >0,n=1,2,... Find lim n- ¥a;---a,.
o T—F >0

Solution to problem 4634 Crux Math. 47 (2021), 200 by
Raymond Mortini, Rudolf Rupp
For a, > 0, let G, := n(ay -~ a,)"™. Then lim, o G, = 0 whenever "> | a,, is conver-
gent. In fact, given € > 0, choose N so big that > > \ a, < &. Due to the arithmetic-geometric
inequality, for n > N,

n—N

n n n— " _n—N
G = (ay- ..aN)l/ — ((n — N)(anq1- ..an)l/( N) (n—N)!
n n—N
<o X w)
j=N+1
where n
on = (ag---ay)/" 7n7N(n—N)N/".
Since lim, 0, = 1, we have limsup,, G, < lim suan% = g, from which we deduce that

G, — 0.
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4615. Proposed by Anthony Garcia.

Let f be a twice differentiable function on [0, 1] such that fol f(z)dz = @ Prove
that

1
/ (f"(@))dz > 30(£(0))>.

0

Solution to problem 4615 Crux Math. 47 (2021), 301 by
Raymond Mortini, Rudolf Rupp

If p is a polynomial, we have (due to Cauchy-Schwarz)

/ f”pdx < (/Ol(f”)?d:c) (/01p2dm).

Now, by using twice integration by parts,

[tz =+ ap= ((F+eo sl = [(7+ ot p'de)

Now let p(z) = z(x — 1). Evaluation at the end-points and using the hypothesis that fol fdx =
f(1)/2, yields
1
e
0
Since fol p?dx = fol (% + 2% — 223)dz = 1/30, we deduce that

/0 (f")2dx > 30£(0)°.

Equality is given if f”/ = p and f(1) =2 fo fdz; for instance if
1, 11
J@) =57 =% 5

Here f(1) = —7/60.



7. ELEMENTE DER MATHEMATIK

Aufgabe 1441: Sei ¢ die Kurve gegeben durch die Parameterdarstellung

" A » B
x(t)=1— R y()=1t"+ i firr € R ~ {0}.

Fiir welche ganzzahligen Werte von A und B besitzt ¢ eine Selbstiiberschneidung mit
senkrechtem Schnittwinkel?
Gregory Dresden, Lexington VA, USA



















Aufgabe 1442 (Die einfache dritte Aufgabe): Es sei

. 1 1 2
f(\l ) =—+4 1— + -

mit positiven x, y, z in R. Man bestimme

min fx,
x24y2+z2=1

Frieder Grupp, Bergrheinfeld, D
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Aufgabe 1438: Es seienz; = rje’ zwei Punkte in der komplexen Ebene C mit0 < r; < 1
und |¢;| < m/2. Weiterhin sei A = (zy, z5, 1) das durch die Punkte z;, z5, 1 bestimmte
abgeschlossene Dreieck. Man zeige: Fiir alle z = re'’ € A mit |t| < x/2 gilt

11—z 1—z 11—z t t t
| |Em{| il | 2|} - |Emax{|1 1 }

1—|zq]" 1= |z5| 1—r 1—ri'1—r,y

Raymond Mortini, Metz, F und Rudolf Rupp, Niirnberg, D



Aufgabe 1437: Die Funktion

flx)= x#0, f(0)=-—1,

X
In(l—=x)’

sich in eine Potenzreihe entwickeln, etwa f(x) = Y 72, axx*, x| < L.
SN k=0
PN . _ B -
(a) Man beweise % <ap < g fur k>1.
(b) Konvergieren die Reihen ¥ 7° [—l']"'a;\. und 32°  ax und falls ja, gegen wel-
e h Lik=0\ / 2ak=0 J f-hd =
chen Grenzwert?

Frieder Grupp, Bergrheinfeld, D




19
720 160

A=+



https://en.wikipedia.org/wiki/Gregory_coefficients

Aufgabe 1434: Berechne

Michael Vowe, Therwil, CH




101

101



102



Aufgabe 1435: Man beweise fiir x, y > 0, x + y = 2 die Ungleichung

P A e (Y

Sefket Arslanagié, Sarajevo, BIH







Aufgabe 1431: Man bestimme den Wert der Doppelreihe

(—1)ktn —1/2
Z 2n+ D2k + 1)(2n + 2k + 3)2 ( n )

k,n=0

Raymond Mortini, Metz, F und Rudolf Rupp, Niirnberg, D
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Aufgabe 1428: Es seien a, b und ¢ positive reelle Zahlen. Man bestimme die grosste Zahl
k1 > 0 und die kleinste Zahl k, > 0 derart, dass die folgende Ungleichung gilt:
VJaz + b? + 2 a b ¢ a? + b? + ¢?
8 < + +- <k, .
ab+bc+ca  b+c c+a a+b ab + be + ca

Péter Ivady, Budapest, H

Partial solution to problem 1428 Elem. Math. 77 (2022), 196

Raymond Mortini, Rudolf Rupp

Let ) b
a c ab + bc + ca
b,c) = .
flab,e) (b+c+c—|—a+a+b> a? + b2 + 2
Then, by using that%ﬁ,/zyg%ﬂ,
1 bc ca ab
b = b 1
fa,b,e) a? + b2 + 2 (ab+c+ c+a+ca+b)+
1 b+c c+a a+b
< b 1
= 2+ (a I )+
1 2ab + 2bc + 2ca
a? + b% + 2 4
B 1 (a—|—b+c)2—(a2+b2—|—02)+1
a2+ b2+ 4
- 1 (a2+b2—|—02)(1+1+1)—(a2+b2—|—02)+1
T a4+ 4
3
< —.
- 2
If we let a = b= ¢, then f(a,a,a) =3/2 and so | k2 = 3/2|. To determine k1, let
(a,b, ) a n b n c > ab+ b+ ca
a,b,c) = .
91,9 b+c c+a a+b a? + b2 + c2

Then, by using two of the estimates above, namley f > 1, and Cauchy-Schwarz,
220 2 2 24 2
L e F(a,b,¢)? > atrore >
ab+ bc + ca ab+ bc + ca
We guess ki = v/2. In fact, we may restrict to triples (2,1, ¢) (homogeniety). Then it remains

to prove that
1 T c 2l xter+tec
. = > 2.
fe(2) (x+c+c+1+1+x) (1+m2+02 -

lim f.(e) =7+~ = fola) > 2

Graphical evidence seems to indicate that m. := ming g fo(x) > 2 and lim._,g m. = 2.

As it is customn with this type of questions, the infimum of the two-variable function
flz,¢) := fe(x) is taken on the boundary of the first quadrant; that is when ¢ = 0. We
have no proof though of this last claim.

g(a,b,c) =

Now
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Aufgabe 1383:
a) Man zeige, dass fira € (0,1]dieinD = {z € C: |z] < 1} holomorphe Funktion
f(z) = (1 — z)* Holder—Lipschitz stetig ist zur Ordnung a, d.h.
[(1—2z)* — (1 —w)*|
< 00

Ogq = Sup
z,w el |: = ”)‘u
27w
Hierbei ist, wie iiblich, (1 — z)* = exp(a log(l — z)). wobei der Hauptzweig des
Logarithmus in der rechten Halbebene genommen wird.

b) Man bestimme o, explizit.
Raymond Mortini, Metz, F und Rudolf Rupp, Niirnberg, D

Solution to problem 1383 in Elem. Math 74 (2019), 38, by
Raymond Mortini and Rudolf Rupp

Theorem 17. Let 0 < aa < 1. Then
1 _ o 1 _ «
sup{|( ?) (1= w)?| :|z|,|w|§1,z7£w}

ola) = Z =
= max{1,2'"*sin(ar/2)}
B {1 if0<a<1/2
2= gin(ar/2) if1/2<a<1.
Moreover,
max logo(a) = (1 _2 arctan <7T>) log 2 + log (77) .
0<a<l1 T 2log 2 /72 + 4(log 2)2

0(0(0)

v
Q

FIGURE 16. The Hoélder-Lipschitz constant o(«)

See R. Mortini, R. Rupp, The best Hlder-Lipschitz constant associated with the function
(1 — 2)*, Computational Meth. Funct. Theory 20 (2020), 667—-676.
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Aufgabe 1350: Fiir p > 3 sei
f@) =xP72@2~xP).

Man zeige, dass 0 < f(x) < 1 gilt, wann immer 0 < x < COS(,,”Tl) ist.

Raymond Mortini, Metz, F

Solution to problem 1350 in Elem. Math 71 (2016), 84

Dies folgt aus Lemma 2 in [1], welches besagt dass fur 0 <t < 7/2 —w(p — 1)
die Ungleichung cost+ (sint)? < 1 gilt, indem man folgende Transformationen
benutzt: x =sint, 0 < = < cos( ”1),
e
Vi-m24P<1le=1-2°< (1—:*.:?)24:‘»[]33:2—}—32?—2:1:1’
= 0<1+2%2 207 —= P22 -2P) < L.

Einen davon unabhangigen Beweis wurde ich gerne sehen. Ist mir aber un-

bekannt.

REFERENCES

[1] Mortini, R; Rhin, G.: Sums of holomorphic selfmaps of the unit disk II, Comp. Meth.
Function Theory 11 (2011), 135-142.
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Aufgabe 1339: Beweise die Produktdarstellung

1+ \/E}ﬁ =c-Vel3. Jelis Y1 Vello. .

Horst Alzer, Waldbrol, D

solution of problem 1339 Elem. Math. 70 (2015), 82.

Man betrachte die fiir |z| < 1 konvergente Reihe

; - 1 2n+t1 x
R(I)ZZ:UQH—HI =I+§+

Deren Wert ist leicht zu bestimmen durch Ableitung:

oo 1
! _ 2n __
R'(z) = E =g

n=0

Somit gilt wegen der gleichmassigen Konvergenz auf [0,7], 0 < 7 < 1, und [} =3 f;,
dass R(r) die Stammfunktion von (1 — z?)~! ist, welche in = 0 verschwindet; also

R(x) = %(log(l + ) —log(l —x)) = %log(i ti) :

Ersetzt man x durch 1/4/2, so erhilt man:

Desweiteren gilt

=}
s
~
—
-+
Nls
~——
I
=}
o9
_
+
=

Daher

= 1 1
nzzum n = \/Elog(l + \/5)

Durch ﬁbergang zur Exponentialfunktion unter Verwendung der fiir konvergente Reihen
geltenden Formel e an = [1e%", erhilt man die gewiinschte Gleichung:

o0 oo
(1+ \/Q)‘/ﬁ — H TR — H 2 /el/(@n+1)
n=0 n=>0
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Aufgabe 1281: Man bestimme den Wert der Reihen

o0

S:Z(2+nlog(1—i))

n=2 n+1
und

o0

S*:g(l—(n+%)log(l+%)).

Raymond Mortini, Metz, F
Solution to problem 1281 Elem. Math. 65 (2010), 127, by

Raymond Mortini, Jérome Noél

a) Exponentiating, we have to calculate the value of the infinite product
I
P=11(*(51) )
We claim that P = ‘é—?;; so S = log(4m) — 3
Let Py = Hfj:z (62 ("—*1

n+1
we obtain

) ) Then by Stirlings formula, telling us that n! ~ e™"n"v/27n,

N n
Py — l 2N HnZQ(n — 1) _
N = 5¢€ N =
€ Hn=2<n+ ]_)n

N @ N
l€2N [T —1)" I

n+1
n:2n _
e Lo [ ,(n+1)"
2 eN(NN2 2 (NNN\? O ONY 1
2 NNTIN+1)N ~ &2\ NN ) (N+1)N N

2 (V2rN)? 1

47
e? N

— —.
L+x)N e

b) To determine S*, we use the same method and calculate the value of

oo

n \"z
P=11 ()

We claim that P* = @ and so S* = 1 log(2m) — 1.
In fact

N n+i N
5 n eV N! 1
PNH@( ) 1

ano\n+1 N+1)N /N +
Using Stirling’s formula we obtain

—

NV 1
Py ~ 2N
NNy VT

1 VN N
T
1+ %)V VN +1

V2r

@
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Aufgabe 901. Die Funktion f:{zeC||z| <1} = {26 C| | z] <1} sei holomorph und es
sei f(0)=0. Dann trifft genau eine der beiden folgenden Aussagen zu:

1
| fe)dx] <2/3. m
-1
, Es gibt eine Konstante a e C mit |a | =1 derart, dass
f@=az’. @)
Dies ist zu zeigen.

P. von Siebenthal, Ziirich

solution of problem 901 Elem. Math. 38 (1983), 128.

El. Math., Vol. 39, 1984 131

Losung: Es sei D die offene Einheitskreisscheibe, also D = {z€C:|z| < 1}. Zunéchst
zerlegen wir die Funktion f in den geraden Anteil w und den ungeraden Anteil v, also

f@)=w(2)+v(2), 3)

mit
1 1
w@= (0 +7-2) wd 2@ =3 (10 -5-2).
Aus den Voraussetzungen iiber f folgt, dass w die Form
w(z)=7g(2)
/™ hat, wobei die Funktion g holomorph in D und lg(z)| < 1 fiir jedes zeD ist.

1. Fall. |g(2)| <1 fiir jedes zeD.
+
Da die Funktion v ungerade ist, ist das Integral | v(x)dx = 0. Daher ergibt sich sofort

-1
die gewiinschte Ungleichung:

+1 +1
<f I¥Pg@)dx< | FPdx= 2,
-1

if:f (x)dx 3

2' }‘ w(x)dx

2.Fall. |g(z,)] = 1 fiir ein z,€D.

Nach dem Maximumprinzip ist demnach |g(z)} =1 fiir jedes zeD, also g(z) = const
=g mit Ja|= 1.

Die Funktion f ldsst sich daher nach (3) in der Form

f@=az+0v(2)

darstellen.

Beachtet man, dass v ungerade ist, so gilt fiir jedes zeD.
lez +v(2) =)<
e = v@)l = =2 <1.

~

Quadrieren und Addition ergibt wegen |a| = 1:
2]* + e <} (zeD). @)

Die Ungleichung (4) impliziert jedoch, dass v(z) gleichmissig gegen Null geht, falls z
gegen den Rand von D strebt. Nach dem Maximumprinzip ist also v identisch Null.
Somit hat f die Gestalt

f@=az,

mit || = 1.
R. Mortini, Karlsruhe, BRD
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10. EMS NEWSLETTER

Q.68 A function fsatisfies the equation f(z+ 1)+ f(z —1) = v2f(z) for all real z. Prove that this function is

periodic. (Quantum)

Aufgabe Q68, EMS Newsletter 25 (1997), 27.

Q.68 A function f satisfies the equation f(z + 1) + f(z — 1) = V2 - f(z) for all real z.
Prove that this function is periodic.

First Solution (Raymond Mortini, Luxembourg, Université de Metz, Département de
Mathématiques)

—Ed. It is the first time that I received a submission in German language, and astoundingly it came to me from
France. The overtures of friendship between Germans and Frenchmen aforementioned appear to work. So, it is
fortunate that Mathematics can amplify such advances; hence this solution is presented true to the original.

Behauptung. Es sei f eine Funktion auf R welche der Bedeinung geniigt:
flz 4+ 1)+ f(z = 1) = V2f(z)

Danp hat f die Periode 8.

Beweis. Es sei z € R beliebig aber fest gewahlt. Dan ergeben sich aus der Voraussetzung die folgenden
Gleichungen:

f(z+8) = V2f(z+7)~ f(z+6) = V2[~f(z +5) + V2f(x +6)] — f(z +6) = —v2f(z +5) + f(z +6) = —f(z +4).

Damit ergibt sich sofort die Behauptung f(z +8) = —f(z + 4) = —(—f(z)) = f(=).
Bemerkung. Alle Losungen der obigen Funktionalgleichung haben die Form

flz4+n)=r(z) sin(d(z)+n-7) firze0,1], nekZ,
wobel r(z) > 0 und 6(z) beliebige Funktionen sind.

Also solved by Dr. J N Lillington.
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