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1. American Math. Monthly

Solution to problem 12470 in Amer. Math. Monthly 131 (2024), ??, by
Raymond Mortini and Rudolf Rupp

We show that�
�

�
�S :=

∞∑
n=1

1

2n
log

(
tanh 2n

tanh 2n−1

)
= log(e2 + 1)− 2 ∼ 0.1269280110 · · · .

One has to transform this into a telescoping series.

tanh 2n

tanh 2n−1
=

sinh 2n

sinh 2n−1

cosh 2n−1

cosh 2n
=

2 sinh 2n−1 cosh 2n−1

sinh 2n−1

cosh 2n−1

cosh 2n

= 2
(cosh 2n−1)2

cosh 2n
.

Hence

1

2n
log

(
tanh 2n

tanh 2n−1

)
=

1

2n

(
log 2 + 2 log(cosh 2n−1)− log cosh 2n

)
=

log 2

2n
+

1

2n−1
log(cosh 2n−1)− 1

2n
log(cosh 2n).

Note that εn := 1
2n log(cosh 2n)→ 1 since (by using l’Hospital’s rule).

lim
x→∞

log(ex + e−x)

x
= 1.

Consequently the series below converges and

S =

∞∑
n=1

log 2

2n
+

∞∑
n=1

(
1

2n−1
log(cosh 2n−1)− 1

2n
log(cosh 2n)

)
= 1 · log 2 + log cosh 1− lim

n
εn = log 2 + log

(
e1 + e−1

2

)
− 1 = log(e2 + 1)− 2.
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Solution to problem 12422 in Amer. Math. Monthly 130 (2023), 862, by
Raymond Mortini and Rudolf Rupp

We solve (a). Put

R :=
∞∑
n=1

1

an2 + bn+ c
.

Let r1 and r2 be the zeros of the polynomial p(x) = ax2 + bx+ c. Suppose that a 6= 0
and b2 − 4ac = k2a2 for some k ∈ {1, 2, 3, . . . }. Then

r1 =
−b− ka

2a
and r2 =

−b+ ka

2a
and r1 − r2 = −k. As an example we mention a = 1, b = 5 and c = 4, k = 3, r1 = −4,
r2 = −1.

Now the partial fraction decomposition of 1/p(n) reads as

1

an2 + bn+ c
=

1

a(n− r1)(n− r2)
=

1

a(r1 − r2)

(
1

n− r1
− 1

n− r2

)
.

Hence, for n ≥ n0 > 1 and n0 chosen so that n− rj − 1 > 0,

S :=

∞∑
n=n0

1

an2 + bn+ c
=

1

a(r2 − r1)

∞∑
n=n0

∫ 1

0
(xn−r2−1 − xn−r1−1)dx

=
1

ak

∞∑
n=n0

∫ 1

0
xn−1(x−r2 − x−r1)dx

(1)
=

1

ak

∫ 1

0
(x−r2 − x−r1)

∞∑
n=n0

xn−1dx

=
1

ak

∫ 1

0
xn0−1x

−r2 − x−r1
1− x

dx =
1

ak

∫ 1

0
xn0−1x−r2

1− xr2−r1
1− x

dx

=
1

ak

∫ 1

0
xn0−r2−1 1− xk

1− x
dx =

1

ak

∫ 1

0

k−1∑
j=0

xn0−1−r2+j dx

=
1

ak

k−1∑
j=0

1

n0 − r2 + j
.

Hence S is rational, and therefore R is rational, too.
Note that in (1) the interchanging

∫ ∑
=
∑∫

is possible, since xn−1(x−r2 − x−r1)
has constant sign.



4

Solution to problem 12460 in Amer. Math. Monthly 131 (2024), by
Raymond Mortini and Rudolf Rupp

(2) =⇒ (1): If f(x) = mx+ c and g(x) = m, then trivially

S(n) := f(an) + bng(bn) = man + c+ bnm = m(an + bn) + c

and so S(n) converges whenever an + bn converges.
(1)=⇒ (2): Let N := {0, 1, 2, . . . }. Fix a, q ∈ Q. Consider the sequences

(an)n∈N = (a+ q, a, a+ q, a, a+ q, a, . . . ) and (bn)n∈N = (−q, 0,−q, 0, . . . ).
Then an + bn = a for all n. Moreover

sn := f(an) + bng(bn) =

{
f(a+ q)− qg(−q) if n is even

f(a) if n is odd.
.

As by assumption (sn) converges, we deduce that

(1) f(a+ q)− qg(−q) = f(a)

Next consider the sequences (an)n∈N = (q, 0, q, 0, . . . ) and (bn)n∈N = (−q, 0,−q, 0, . . . ).
Then an + bn = 0 and

rn := f(an) + bng(bn) =

{
f(q)− qg(−q) if n is even

f(0) if n is odd.

Since by assumption also (rn) converges, we have

(2) f(q)− qg(−q) = f(0).

Now (1)–(2) yields that for every q ∈ Q and a ∈ Q
f(a+ q)− f(q) = f(a)− f(0).

Since f is assumed to be continuous, f(a + x) − f(a) = f(x) − f(0) for every x ∈ R.
This implies that f is an affine function. In fact, let h(x) = f(x) − f(0). Then
h(a + x) = h(x) + h(a), that is, h is a continuous additive function. By a classical
result due to Cauchy, h is linear; that is h(x) = mx for some m ∈ R. Consequently
f(x) = mx+ f(0). Let c := f(0). Then the condition on f and g has the form

Sn = f(an) + bng(bn) = man + c+ bng(bn) = c+m(an + bn) + bn(g(bn)−m).

Let p, q ∈ Q and consider the sequences (bn)n∈N = (p, q, p, q, . . . ) and (an)n∈N =
(−p,−q,−p,−q, . . . ). Then an + bn = 0 for all n and, by assumption,

Sn =

{
c+ p(g(p)−m) if n is even

c+ q(g(q)−m) if n is odd

converges. Hence the function x(g(x)−m) must be constant on Q, hence on R (due to
continuity). Consequently g(x) = m for every x ∈ R.
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Solution to problem 12459 in Amer. Math. Monthly 131 (2024), by
Raymond Mortini and Rudolf Rupp

We prove that for a > 1�
�

�

I(a) :=

∫ ∞
0

Li2(−xa) + Li2(−x−a)
1 + xa

dx =
π3

3a

(
sin2(π/a)− 3

sin3(π/a)

)
.

To start with, we use the known formula [1]

Li2(z) + Li2(
1

z
) = −π

2

6
− 1

2
log2(−z), z ∈ C \ [0,∞[,

for z = −xa. So the integral to be computed is

I(a) = −π
2

6

∫ ∞
0

1

1 + xa
dx− 1

2

∫ ∞
0

log2(xa)

1 + xa
dx.

The change of variable xa 7→ e−t now yields

I(a) = −π
2

6a

∫ ∞
−∞

e−
t
a

1 + e−t
dt− 1

2a

∫ ∞
−∞

t2e−
t
a

1 + e−t
dt.

We solve this with the help of the residue theorem. So, for m = 0 or m = 2, let

fm(z) := zm
e−

z
a

1 + e−z
.

In order the obtained series converge and the path-integrals tend to 0 when ”blowing
up” the contours, we consider for 0 < r < 1 the auxiliary functions

ur(z) := r−iz/2π := e−i
log r
2π

z

(which converge locally uniformly to 1 as r → 1) and

Fm,r(z) := fm(z)ur(z),

and calculate the integral

(3) Jr(a) := −π
2

6a

∫ ∞
−∞

e−
t
a r−it/2π

1 + e−t
dt− 1

2a

∫ ∞
−∞

t2e−
t
a r−it/2π

1 + e−t
dt.

As |ur(t)| ≤ 1, we deduce from Lebesgue’s dominated convergence theorem that

lim
r→1

Jr(a) = I(a).

Note that Fm,r is meromorphic in C with simple poles at zn = iπ(1 + 2n) for n ∈ Z.
We integrate Fm,r over the positively oriented boundary ΓN = γ1 + γ2 + γ3 of the
rectangles [−2Nπ, 2Nπ]× [0, 2Nπ], where N ∈ N∗. Let sN := 2πN . Then
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γ1(t) = sN (1 + it), 0 ≤ t ≤ 1,

γ
[−1]
2 (t) = sN (t+ i), −1 ≤ t ≤ 1,

γ
[−1]
3 (t) = sN (−1 + it), 0 ≤ t ≤ 1.

By the residue theorem∫
ΓN

Fm,r(z)dz = 2πi
N−1∑
n=0

Res (Fm,r, zn).

Now Fm,r = g/h and so

Res (Fm,r, zn) =
g(zn)

h′(zn)
.

Moreover,

∫
ΓN

Fm,r(z)dz → 0 as N →∞. To see this we have to consider three cases:

Since on γj for j = 1, 3, we have |ur(γj(t))| ≤ etN log r ≤ 1, we see that∣∣∣∣∫
γ1

Fm,r(z)dz

∣∣∣∣ ≤ ∫ 1

0

|sN (1 + it)|m |e−sN (1+it)/a| |ur(sN (1 + it))|
|1 + e−sN (1+it)|

sNdt

≤ CNm+1e−sN/a

1− e−sN
→ 0 as N →∞.

∣∣∣∣∫
γ3

Fm,r(z)dz

∣∣∣∣ ≤ ∫ 1

0

|sN (−1 + it)|m |e−sN (−1+it)/a| |ur(sN (−1 + it))|
|1 + e−sN (−1+it)|

sNdt

≤ CNm+1esN/a

esN − 1
· e
−sN

e−sN

=
CNm+1e−sN(1− 1

a)

1− e−sN
→ 0 as N →∞.

Next we observe that on γ2 we have

|u(γ2(t))| =
∣∣∣e−iN log r(t+i)

∣∣∣ = eN log r,

and that

Nm+1eN log r = e(m+1) logN+N log r → 0 as N →∞.
Hence ∣∣∣∣∫

γ2

Fm,r(z)dz

∣∣∣∣ ≤ ∫ 1

−1

|sN (i+ t)|m|e−sN (t+i)/a| |ur(sN (i+ t))|
|1 + e−sN (t+i)|

sNdt

≤ CNm+1eN log r

∫ 1

−1

e−sN t/a

1 + e−tsN
dt

≤ CNm+1eN log r

∫ 1

0
e−sN t/a︸ ︷︷ ︸
≤1

dt+

∫ 0

−1
esN t(1− 1

a)︸ ︷︷ ︸
≤1

dt


→ 0 · 0 as N →∞,

where the property lim
∫

=
∫

lim is used (Lebesgue’s dominated convergence theorem:
the integrands are bounded (in moduli) by 1 and converge to 0 on the associated open
intervals).

By letting N →∞, we conclude that
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Jr(a) = 2πi

(
−π

2

6a

∞∑
n=0

Res (F0,r, zn)− 1

2a

∞∑
n=0

Res (F2,r, zn)

)
.

That the series converge will be clear in a moment. To this end, we need to calculate
the residua. Note that

ur(zn) = e−i
log r
2π

iπ(1+2n) = (
√
r)1+2n.

Hence

Res (Fm,r, zn) = zmn
e−zn/a

−e−zn
ur(zn) = −(iπ(1 + 2n))m

e−iπ(1+2n)/a

e−iπ(1+2n)
ur(zn)

= (
√
r)1+2n (iπ(1 + 2n))me−iπ(1+2n)/a.

Let ζ := e−iπ/a. Then

Jr(a) = 2πi

(
−π

2

6a

∞∑
n=0

(
√
rζ)2n+1 − 1

2a

∞∑
n=0

(iπ(1 + 2n))2(
√
rζ)2n+1

)

= 2πi

(
−π

2

6a

∞∑
n=0

(
√
rζ)2n+1 +

π2

2a

∞∑
n=0

(2n+ 1)2(
√
rζ)2n+1

)
.

It is straightforward to check the following result:

(4)

∞∑
n=0

(2n+ 1)2z2n+1 = z
z4 + 6z2 + 1

(1− z2)3
=: S(z).

Hence

Jr(a) = 2πi

(
−π

2

6a

√
rζ

1− rζ2
+
π2

2a
S(
√
rζ)

)
,

and so

I = lim
r→1

Jr(a) = 2πi

(
−π

2

6a

ζ

1− ζ2
+
π2

2a
S(ζ)

)
.

Note that ζ ζ = 1, but ζ 6= 1. A short calculation yields

S(ζ) =
ζ2 + 6 + ζ

2

(ζ − ζ)3
.

Consequently, by using that ζ2 + 6 + ζ
2

= (ζ − ζ)2 + 8,

I = 2πi

(
−π

2

6a

ζ

1− ζ2
+
π2

2a

ζ2 + 6 + ζ
2

(ζ − ζ)3

)

= 2πi

(
−π

2

6a

1

ζ − ζ
+
π2

2a

(ζ − ζ)2 + 8

(ζ − ζ)3

)
= 2πi

(
−π

2

6a

(ζ − ζ)2

(ζ − ζ)3
+
π2

2a

(ζ − ζ)2 + 8

(ζ − ζ)3

)
= −π

3

3a

(
i

(−4) sin2(π/a)

(2i)3 sin3(π/a)
− i (−12) sin2(π/a) + 24

(2i)3 sin3(π/a)

)
= −π

3

3a

(
3− sin2(π/a)

sin3(π/a)

)
.
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Remark A more classical way is to compute

I(a) = −π
2

6

∫ ∞
0

1

1 + xa
dx− 1

2

∫ ∞
0

log2(xa)

1 + xa
dx

”directly” without the change of variable by applying the residue theorem to the func-

tions 1
1+za , log z

1+za and log2 z
1+za for the standard branches of the power and logarithm and

the boundary of the sectors

{z ∈ C : |z| < R, 0 ≤ arg z ≤ 2π

a
},

which contains one simple pole.

References
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Solution to problem 12451 in Amer. Math. Monthly 131 (2024), by
Raymond Mortini and Rudolf Rupp

As usual, M0 = Is where M is a square s× s matrix. Via induction(
A B
0 0

)k
=

(
Ak Ak−1B
0 0

)
.

Hence

exp

(
A B
0 0

)
=

∞∑
k=0

1

k!

(
A B
0 0

)k
= In+m +

∞∑
k=1

1

k!

(
Ak Ak−1B
0 0

)
=

(
expA

∑∞
k=1

1
k!A

k−1B
0 Im

)
.

But ∫ 1

0
exp(At)dt =

∞∑
j=0

Aj
∫ 1

0

tj

j!
=
∞∑
j=0

1

(j + 1)!
Aj .

Hence

exp

(
A B
0 0

)
=

(
expA

(∫ 1
0 exp(At)dt

)
B

0 Im

)
.



10

Solution to problem 12436 in Amer. Math. Monthly 130 (2023), by
Raymond Mortini and Rudolf Rupp

We show that�
�

�
�P (x) :=

n∏
k=1

(
x+ sin2

(
kπ

2n

))
= 2−2n+2(x+ 1)Un−1(2x+ 1) ,

where U0 = 1 and

Un(x) =

bn
2
c∑

k=0

(−1)k
(
n− k
k

)
(2x)n−2k n≥1

= 2n
n∏
k=1

(
x− cos

(
kπ

n+ 1

))
is the Chebyshev polynomial of the second kind.

This is very easy, though.

P (x) =

n∏
k=1

(
x+ sin2

(
kπ

2n

))
=

n∏
k=1

(
x+

1

2

(
1− cos

(
kπ

n

)))

= 2−n
n∏
k=1

(
2x+ 1− cos

(
kπ

n

))
= 2−n

n−1∏
k=1

(
2x+ 1− cos

(
kπ

n

))
(2x+ 1− cos(π))

= 2−2n+2(x+ 1)Un−1(2x+ 1).
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Solution to problem 12433 in Amer. Math. Monthly 130 (2023), ?
Raymond Mortini and Rudolf Rupp

Let G := {z ∈ C : Imz < 0.5} be the shifted lower half-plane, and let log z =
log |z| + i arg z with −π < arg z < π be the standard holomorphic branch of the
logarithm. Since for z ∈ G we have Re (0.5 + iz) > 0, the function

(0.5 + iz)x = ex log(0.5+iz)

is well defined and holomorphic in G. Consequently, the function

f(z) :=
tanh(πz)

(0.5 + iz)x
,

is meromorphic in G with simple poles at zk := −i(0.5 + k) ∈ G, where k ∈ N =
{0, 1, 2, . . . }. We apply now the residue theorem to f . To this end, we integrate for
N ≥ 1 the function f along the positively oriented boundary ΓN of the rectangles
RN := [−N,N ]× [0,−N ] and conclude that∫

ΓN

f(z)dz = 2πi

∞∑
k=0

n(ΓN , zk)Res(f, zk),

where n(Γ, z) denotes the number of times the point z is surrounded by Γ. Observe
that at most a finite number of terms in this sum are not equal to 0 as

n(ΓN , zk) =

{
1 if k = 0, 1, . . . , N

0 if k > N.

Let us calculate the residue now. We use the formula Res ( gh , a) = g(a)
h′(a) , whenever a is

a simple zero of h. That is, when we choose g(z) =
sinh(πz)

(0.5 + iz)x
and h(z) = cosh(πz),

Res(f, zk) =
sinh(πz)

(1 + k)x
1

π sinh(πz)

∣∣∣
z=−i(0.5+k)

=
1

π

1

(1 + k)x
.

It remains to show that the integral along the three parts ΓjN of ΓN that are contained
in the lower half plane Im z < 0 tends to zero. First note that

tanh(πz) =
e2πz − 1

e2πz + 1
.

i) Let z(t) = −N − it, where 0 ≤ t ≤ N . Then for n ≥ N0,

| tanh z(t)| =

∣∣∣∣e−2πNe−2iπt − 1

e−2πNe−2iπt − 1

∣∣∣∣ ≤ 1 + e−2πN

1− e−2πN
≤ 2.

Moreover,

|0.5 + iz(t)|x = |0.5− iN + t|x ≥ Nx.
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ii) Let z(t) = N − it, where 0 ≤ t ≤ N . Then for n ≥ N0,

| tanh z(t)| =

∣∣∣∣e2πNe−2iπt − 1

e2πNe−2iπt + 1

∣∣∣∣ ≤ e2πN + 1

e2πN − 1
≤ 2.

Moreover

|0.5 + iz(t)|x = |0.5 + iN + t|x ≥ Nx.

iii) Let z(t) = t− iN where −N ≤ t ≤ N . Then

| tanh z(t)| =

∣∣∣∣e2πte−2iπN − 1

e2πte−2iπN + 1

∣∣∣∣ =
e2πt − 1

e2πt + 1
≤ 1.

Moreover

|0.5 + iz(t)|x = |0.5 + it+N |x ≥ (N + 0.5)x ≥ Nx.

Since x > 1, we conclude that for N ≥ N0∣∣∣∣∣∣
3∑
j=1

∫
ΓjN

f(z)dz

∣∣∣∣∣∣ ≤
2∑
j=1

∫ N

0
|f(zj(t))|dt+

∫ N

−N
|f(z3(t))|dt

≤ 2 · 2N

Nx
+ 2N

1

Nx
=

6

Nx−1
→ 0 as N →∞.

We conclude that

i

2

∫ ∞
−∞

tanh(πt)

(0.5 + it)x
dt = − i

2
2πi

∞∑
k=0

1

π

1

(1 + k)x
= ζ(x).

Note that the minus sign comes from the fact that the upper boundary of the rectangle
RN is run through from the right to the left.
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Solution to problem 12415 in Amer. Math. Monthly 130 (2023), 765 by
Raymond Mortini and Rudolf Rupp

Let n ∈ N = {0, 1, 2, . . . } and let

Sn :=

2n∑
j=0

j∑
k=bj/2c

(
2n+ 2

2k + 1

) (
n+ 1

2k − j

)
.

We show that �� ��Sn = 23n+1.

First we interchange the two summations.

Figure 1. k ≤ j ≤ 2k + 1, k = 0, 1, 2, 3, 4, or bj/2c ≤ k ≤ j for j = 0, 1, 2, 3, 4

Sn =
2n∑
k=0

2k+1∑
j=k

(
2n+ 2

2k + 1

) (
n+ 1

2k − j

)
=

2n∑
k=0

(2n+ 2

2k + 1

) 2k∑
j=k

(
n+ 1

2k − j

)
=

n∑
k=0

[(
2n+ 2

2k + 1

) k∑
m=0

(
n+ 1

m

)]

It is well known that

n∑
k=0

(
2n+ 2

2k + 1

)
= 22n+1. In fact

22n+2 =
2n+2∑
k=0

(
2n+ 2

k

)
and 0 = (1 + (−1))2n+2 =

2n+2∑
k=0

(−1)k
(

2n+ 2

k

)
.
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Substraction yields that

22n+2 = 2
2n+2∑
k=0
k odd

(
2n+ 2

k

)
= 2

n∑
m=0

(
2n+ 2

2m+ 1

)
.

Also,

2n+1 = (1 + 1)n+1 =

n+1∑
j=0

(
n+ 1

j

)
=

k∑
j=0

(
n+ 1

j

)
+

n+1∑
j=k+1

(
n+ 1

j

)

=

k∑
j=0

(
n+ 1

j

)
+

n+1∑
j=k+1

(
n+ 1

n+ 1− j

)

=
i=n+1−j

k∑
j=0

(
n+ 1

j

)
+

n−k∑
i=0

(
n+ 1

i

)
.

Hence

Sn =
n∑
k=0

(
2n+ 2

2k + 1

) k∑
m=0

(
n+ 1

m

)
=

k=n−j

n∑
j=0

(
2n+ 2

2n− 2j + 1

) n−j∑
i=0

(
n+ 1

i

)

=
n∑
j=0

(
2n+ 2

(2n+ 2)− (2n− 2j + 1)

) n−j∑
i=0

(
n+ 1

i

)

=
n∑
j=0

(
2n+ 2

1 + 2j

) n−j∑
i=0

(
n+ 1

i

)
=
j→k

n∑
k=0

(
2n+ 2

2k + 1

) n−k∑
i=0

(
n+ 1

i

)
.

Addition yields

2Sn =
n∑
k=0

(
2n+ 2

2k + 1

) k∑
j=0

(
n+ 1

j

)
+

n∑
k=0

(
2n+ 2

2k + 1

) n−k∑
i=0

(
n+ 1

i

)

=

n∑
k=0

(
2n+ 2

2k + 1

) k∑
j=0

(
n+ 1

j

)
+

n−k∑
i=0

(
n+ 1

i

)
= 22n+1 · 2n+1 = 23n+2.

Hence Sn = 23n+1.
Remarks
(1)Note that

Sn =
j=k−m

n∑
k=0

(2n+ 2

2k + 1

) k∑
j=0

(
n+ 1

k − j

)
This has the form

∞∑
k=0

ak

k∑
j=0

bk−j , which is a little bit different from the Cauchy product

( ∞∑
k=0

ak

) ( ∞∑
k=0

bk

)
=
∞∑
k=0

k∑
j=0

ajbk−j .
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(2) Replacing bj/2c by dj/2e yields the same result

Rn :=
2n∑
j=0

j∑
k=dj/2e

(
2n+ 2

2k + 1

) (
n+ 1

2k − j

)
= 23n+1

(see below), alhough the associated index-grid is different (see figure 1 and 2).

-1 0 1 2 3 4 5 6 7 8

1

2

3

4

5

k

j

Figure 2. k ≤ j ≤ 2k, k = 0, 1, 2, 3, 4, or dj/2e ≤ k ≤ j for j = 0, 1, 2, 3, 4

Just note that

Rn =
2n∑
k=0

2k∑
j=k

(
2n+ 2

2k + 1

) (
n+ 1

2k − j

)
=

2n∑
k=0

2k+1∑
j=k

(
2n+ 2

2k + 1

) (
n+ 1

2k − j

)
= Sn

-1 0 1 2 3 4 5 6 7 8

1

2

3

4

5

k

j
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Solution to problem 12406 in Amer. Math. Monthly 130 (2023), 679 by
Raymond Mortini and Rudolf Rupp

Let p ∈ R. Consider the functional equation

(5) f(x2) + 2pf(x) = (x+ p)2.

We claim that all solutions of (5) on [0, 1] and continuous at {0, 1} are actually
continuous on [0, 1] and are given by

f(x) = x+
p2

1 + 2p

whenever p 6= −1/2.

• If p = −1/2, then f(x2)− f(x) = (x− 1
2)2 has no solution on [0, 1] (independently

of being continuous or not) since for x = 1, we would get 0 = f(1)− f(1) = 1/4.
• If p = 0, then f(x2) = x2 implies that on [0, 1] one has f(x) = x.
• Let p 6= −1/2. We first determine the polynomial solutions. So let q be a polyno-

mial solving (5). Then the degree of q is at most 1. Say q(x) = ax + b. Pulling into
the functional equation yields

ax2 + b+ 2p(ax+ b) = x2 + 2px+ p2

or equivalently

(a− 1)x2 + 2p(a− 1)x+ b(1 + 2p)− p2 = 0.

Hence a = 1 and b = p2

1+2p .

It is straighforward to check that q(x) = x + p2

1+2p is indeed a solution to (5). We

conclude that all polynomial solutions are given by the linear function q above.

Next we determine the general solution (5). So let f be a solution on [0, 1] continuous
at 0, 1. Now put h(x) := f(x)− q(x). Then h satisfies on [0, 1] the functional equation
(of Schroeder type)

(6) h(x2) = −2ph(x).

Of course this implies that h(0) = 0.
i) Let p < −1/2 or p ≥ 1/2. Via induction

h(x2n) = (−2p)nh(x).

Since h is continuous at 0, and x2n → 0 for 0 < x < 1, h(0) = 0, and |2p|n → ∞
respectively (−2p)n = (−1)n if p = 1/2, we deduce that h(x) = 0 for 0 < x < 1, too.

ii) If 0 < |p| < 1/2, we rewrite (6) as

(7) h(
√
x) = − 1

2p
h(x).



17

Via induction

h(x1/2n) =

(
− 1

2p

)n
h(x).

Since h is assumed to be continuous at 1 and h(1) = 0 by (6),
(

1
2p

)n
→∞ implies that

0 = h(1) =∞ · h(x),

and so h(x) = 0 for x > 0.

We conclude that for p 6= −1/2, the general solution to (5) on [0, 1], and continuous
at 0, 1, is given by our poynomial

q(x) = x+
p2

1 + 2p
.

Thus the solution is completely established.
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Solution to problem 12407 in Amer. Math. Monthly 130 (2023), ** by
Raymond Mortini and Rudolf Rupp

Given r > 0, let

I(r) :=

∫ ∞
0

xr−1

(1 + x2)(1 + x2r)
dx.

We show that �



�
	I(r) =

π

4r
.

First it is clear that the integral converges since at∞ we have that the integrand fr(x)
is similar to 1/xr+3 and at 0 fr(x) is similar to xr−1, where r − 1 > −1. We make the
change of the variable x→ 1/y. Then

I(r) =

∫ ∞
0

y1−r

(1 + y−2)(1 + y−2r)

dy

y2
=

∫ ∞
0

y1+r

(1 + y2)(1 + y2r)
dy

=

∫ ∞
0

(y2 + 1− 1)yr−1

(1 + y2)(1 + y2r)
dy =

∫ ∞
0

yr−1

1 + y2r
dy − I(r).

Hence

2I(r) =
1

r
arctan(yr)

∣∣∣∞
0

=
π

2r
,

from which we deduce that I(r) = π/(4r).
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Solution to problem 12398 in Amer. Math. Monthly 130 (2023), 587 by
Raymond Mortini and Rudolf Rupp

We suppose that this agglomeration csch of letters is nothing but 1/ sinh. So let

S :=

∞∑
n=0

1

sinh 2n
.

We prove that �
�

�
�S = 2

e−1 .

This is very simple though. Since 2 sinhx = ex − e−x and

(e2n + 1)(e2n − 1) = e2n+1 − 1,

we obtain

S = 2
∞∑
n=0

1

e2n − e−2n
= 2

∞∑
n=0

e2n+1− 1

e2n+1 − 1

= 2

∞∑
n=0

(
1

e2n − 1
− 1

e2n+1 − 1

)
=

2

e− 1
.

Another possibility would be to use the formula

1

sinhx
= coth(x/2)− cothx.

Then

S =
∞∑
n=0

(
coth(2n−1)− coth 2n

)
= coth(1/2)− 1 =

2e−1/2

e1/2 − e1/2
=

2

e− 1
.
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Solution to problem 12389 in Amer. Math. Monthly 130 (2023), 386 by
Raymond Mortini and Rudolf Rupp

Our tool will be the fact that for Hn :=
n∑
j=1

1

j
we have Hn − log n ↘ γ, where γ is

the Euler-Mascheroni constant. First note that
∞∑
j=1

N

(N + j)2
≤

∞∑
j=1

N

(N + j)(N + j − 1)

= N

∞∑
j=1

( 1

N + j − 1
− 1

N + j

)
= 1.

Fix 0 < x < 1 and let N := N(x) :=

⌊
1

x

⌋
. Let ε ∈ ]0, 1/2]. Since | sin y| ≤ y for

y ≥ 0, we obtain for

∞∑
n=1

| sin(nx)|
n2

≤
N∑
n=1

nx

n2
+

∞∑
n=N+1

1

n2
≤ x

N∑
n=1

1

n
+

1

N

≤ x
(
HN − logN − γ

)
+ xγ + x logN +

1

N
.

Hence, for x small enough, N is big, and so

H(x) :=

∑∞
n=1

| sin(nx)|
n2

x log(1/x)
≤ 1

log(1/x)
+

γ

log(1/x)
+

log
⌊

1
x

⌋
log(1/x)

+
1

x log(1/x)
⌊

1
x

⌋ .
We conclude that

0 ≤ lim sup
x→0

H(x) ≤ 0 + 0 + 1 + 0 = 1.

Now we estimate lim infx→0H(x). Let ε ∈]0, 1/2]. Since x 7→ (sinx)/x is decreasing
on [0, π/2], we see that for 0 < u ≤ ε

sinu

u
≥ sin ε

ε
.

For 0 < x < ε put N := N(x) :=
⌊ ε
x

⌋
. Then, N > 0 and for n ≤ N we have

nx ≤ Nx =
⌊ ε
x

⌋
x ≤ ε

x
x = ε,

and so
sin(nx)

nx
≥ sin ε

ε
.
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Hence
∞∑
n=1

| sin(nx)|
n2

≥ sin ε

ε

N∑
n=1

nx

n2
= x

sin ε

ε

N∑
n=1

1

n

≥ x
sin ε

ε
logN.

We deduce that for 0 < x < ε

H(x) ≥ sin ε

ε

log
⌊
ε
x

⌋
log(1/x)

≥ sin ε

ε

log( εx − 1)

log(1/x)

=
sin ε

ε

log(ε− x)− log x

− log x
.

Since

lim
x→0

log(ε− x)

− log x
= log ε · 0

we conclude that

lim inf
x→0

H(x) ≥ sin ε

ε
.

Now ε→ 0 yields that lim inf
x→0

H(x) ≥ 1. Consequently limx→0H(x) = 1.
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Solution to problem 12388 in Amer. Math. Monthly 130 (2023), 385 by
Raymond Mortini and Rudolf Rupp

For a ∈ [0, 2π], let

I(a) :=

∫ ∞
0

(log x)2 arctanx

1− 2x cos a+ x2
dx.

We prove that

I(a) =



π
a

sin a

(2π − a)(π − a)

12
if 0 < a < 2π, a 6= π

π3

6
if a = 0 or a = 2π

π3

12
if a = π.

If a is arbitrary, we replace a by a − 2kπ, where k ∈ Z is chosen so that 2kπ ≤ a <
2(k + 1)π.

First we let ”disappear” the arctangent: the substitution u = 1/x, dx = −1/u2 and
the formula arctan(1/x) + arctanx = π/2 for x > 0 yield

I(a) =

∫ ∞
0

(log u)2
(
π
2 − arctanu

)
1− 2 1

u cos a+ 1
u2

du

u2
= −I +

π

2

∫ ∞
0

(log x)2

1− 2x cos a+ x2
dx,

and so

I(a) =
π

4

∫ ∞
0

(log x)2

1− 2x cos a+ x2
dx.

Using again the transformation u = 1/x, we obtain that∫ 1

0

(log x)2

1− 2x cos a+ x2
dx =

∫ ∞
1

(log x)2

1− 2x cos a+ x2
dx,

and so �
�

�

I(a) =

π

2

∫ 1

0

(log x)2

1− 2x cos a+ x2
dx.

Next we use that for a /∈ {kπ : k ∈ Z}

1

1− 2x cos a+ x2
=

A

x− eia
− A

x− e−ia
,
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where A = − i

2 sin a
. Hence, in that case,

I(a) = 2Re
(π

2
A

∫ 1

0

(log x)2

x− eia
dx
)

=
π

2 sin a
Im

∫ 1

0

(log x)2

x− eia
dx

=
π

2 sin a
Im (−eia)

∫ 1

0

(log x)2

1− xe−ia
dx

Since
∑∞

n=0 x
n(log x)2 is an L1(0, 1)-majorant, we have

∫ ∑
=
∑∫

. Thus

I(a) = − π

2 sin a
Im
( ∞∑
n=0

e−ia(n+1)

∫ 1

0
xn(log x)2 dx

)
.

By twice partial integration,∫ 1

0
xn(log x)2 dx =

2

(n+ 1)3
.

We conclude that

I(a) = − π

2 sin a
Im
( ∞∑
n=0

e−ia(n+1) 2

(n+ 1)3

)
=

π

sin a

∞∑
n=0

sin(n+ 1)a

(n+ 1)3
.

Let

h(a) :=
∞∑
n=0

sin(n+ 1)a

(n+ 1)3
.

Then

h′(a) =

∞∑
n=0

cos(n+ 1)a

(n+ 1)2
.

Since 1
3π

2 + 4
∑∞

n=1
cosnx
n2 is the Fourier series of the function (x − π)2, 0 ≤ x < 2π,

extended 2π-periodically, we see that for 0 < a < 2π,

h′(a) =
(a− π)2

4
− π2

12
.

As h(0) = 0, we deduce that for 0 < a < 2π,

h(a) =
(a− π)3

12
− π2

12
a+

π3

12
=
a3 − 3πa2 + 2π2a

12
.

Consequently, for 0 < a < 2π, a 6= π,

I(a) = π
a

sin a

(2π − a)(π − a)

12
.

Now let an ↘ 0 and fn(a) :=
(log x)2

1− 2x cos an + x2
. As fn is positive and increases

to (log x)2

(1−x)2
, we deduce from Beppo-Levi’s monotone convergence theorem that I(an)→

I(0). Hence I(0) = π3/6.

Moreover, I(bn)→ π3

12 as bn ↗ π. This is also the value of

I(π) =
π

2

∫ 1

0

(log x)2

(1 + x)2
dx.
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Just write
(log x)2

(1 + x)2
=

∞∑
n=1

(−1)n−1nxn−1(log x)2,

and use again that
∫ ∑

=
∑∫

. Finally, I(2π) = I(0) = π3/6.
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Solution to problem 12380 in Amer. Math. Monthly 130 (2023), 285 by
Raymond Mortini and Rudolf Rupp

Lemma Let f , g, h be positive increasing functions on [0,∞[ satisfying for every
xj ≥ 0 and 0 ≤ tj ≤ 1 with

∑n
j=1 tj = 1 the concavity inequality

(8) f
( n∑
j=1

tjxj

)
≥

n∑
j=1

tjf(xj)

and similarily for g, h. Let M2, Pj ∈ [0,∞[×[0,∞[. Then the function G given by

G(M2) := G(x, y) := f(x+ g(y))

also satisfies

G
( n∑
j=1

tjPj

)
≥

n∑
j=1

tjG(Pj),

Similarily, if M3, Qj ∈ [0,∞[×[0,∞[×[0,∞[, then the function H given by

H(M3) := H(x, y, z) := f(x+ g(y + h(z)))

satisfies

H
( n∑
j=1

tjQj

)
≥

n∑
j=1

tjH(Qj).

Proof

G
( n∑
j=1

tjxj ,
n∑
j=1

tjyj

)
= f

( n∑
j=1

tjxj + g
( n∑
j=1

tjyj

))
≥ f

( n∑
j=1

tjxj +

n∑
j=1

tjg(yj)
)

= f
( n∑
j=1

tj(xj + g(yj))
)

≥
n∑
j=1

tjf(xj + g(yj))

=

n∑
j=1

tjG(Pj).
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Now applying this, we get

H(
n∑
j=1

tjQj) = f
( n∑
j=1

tjxj + g
( n∑
j=1

tjyj + h(
n∑
j=1

tjzj)
))

≥ f
( n∑
j=1

tjxj +

n∑
j=1

tjg(yj + h(zj))
)

= f
( n∑
j=1

tj(xj + g(yj + h(zj))
)

≥
n∑
j=1

tjf(xj + g(yj + h(zj)))

=
n∑
j=1

tjH(Qj).

Now we are ready to give the solution to the problem. Let

S(a, b, c) :=
m

√
a+

n

√
b+ p
√
c+

m

√
b+

n

√
c+ p
√
a+

m

√
c+

n

√
a+

p
√
b.

For M := (x, y, z) ∈ R3, x, y, z ≥ 0, let

f(M) := f(x, y, z) :=
m

√
x+

n

√
y + p
√
z.

By Lemma, for P := (a, b, c), Q = (b, c, a) and R = (c, a, b) we have

(9)
1

3

(
f(P ) + f(Q) + f(R)

)
≤ f

(
P +Q+R

3

)
.

Since a+ b+ c = 3, we deduce that

f(P ) + f(Q) + f(R) ≤ 3 · f(1, 1, 1) = 3
m

√
1 +

n
√

2.

In case mnp > 1, at least one function r
√
x for r ∈ {m,n, p} is strictly concave and

we have strict inequality in (8) whenever not all the xj are the same and 0 < tj < 1.
The proof of the Lemma in particular then yields that equality holds in (9) only if
P = Q = R, and so a = b = c. Thus, due to a + b + c = 3, we deduce that
a = b = c = 1. Hence

S(a, b, c) = 3
m

√
1 +

n
√

2

if and only if (a, b, c) = (1, 1, 1).
If m = n = p = 1, then f(M) is linear in R3, and so for all a, b, c with a+ b+ c = 3

we have equality:

S(a, b, c) = 3(a+ b+ c) = 9 = 3
m

√
1 +

n
√

2.
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Solution to problem 12372 in Amer. Math. Monthly 130 (2023), 187 by
Raymond Mortini and Rudolf Rupp

For a > 0, let I :=

∫ 1

0

log |xa − (1− x)a|
x

dx, which is a double improper integral

(with singularities at 0, 1/2). We show that�
�

�

I = −a

2 + 2

12a
π2 .

To this end, we first note that xa ≤ (1 − x)a if and only if 0 ≤ x ≤ 1/2. Hence, by
substituting x→ 1− x in the second integral

I =

∫ 1/2

0

log
(
(1− x)a − xa

)
x

dx+

∫ 1/2

0

log
(
xa − (1− x)a

)
x

dx

=

∫ 1/2

0

log
(
(1− x)a − xa

)
x

dx+

∫ 1/2

0

log
(
(1− x)a − xa

)
1− x

dx

=

∫ 1/2

0

log
(
(1− x)a − xa

)
x(1− x)

dx

=

∫ 1/2

0

log
(

1−
(

x
1−x

)a )
+ a log(1− x)

x(1− x)
dx.

Next we substitute x/(1−x) = y. Equivalently, x = y/(1 + y). Note that 0→ 0 and
1/2→ 1, dx = 1

(1+y)2
dy and 1− x = 1

1+y . Hence

I =

∫ 1

0

log(1− ya)− a log(1 + y)
y

(1+y)2

1

(1 + y)2
dy.

Consequently,

I =

∫ 1

0

1

x
log

(
1− xa

(1 + x)a

)
dx.

Using partial integration for
∫ 1−η
ε with u′ := 1/x and v = log

(
1−xa

(1+x)a

)
, and passing

to the limits ε, η → 0, we obtain

I = 0 + a

∫ 1

0

(
xa−1

1− xa
+

1

1 + x

)
log x dx

= a

∫ 1

0

( ∞∑
n=0

xa−1xna +
∞∑
n=0

(−1)nxn

)
log x dx.
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Note that I has the form I =
∫ ∑

. Now let us calculate J :=
∑∫

.
To do this, we apply for β > −1 the formula∫ 1

0
xβ log x dx = − 1

(β + 1)2
,

(which can easily be obtained by partial integration u = log x, v′ = xβ). Hence

J/a = − 1

a2

∞∑
n=0

1

(n+ 1)2
+
∞∑
n=0

(−1)n+1 1

(n+ 1)2
(10)

= − 1

a2

π2

6
− π2

12
(11)

= −a
2 + 2

12a2
π2.(12)

To finish the proof, we need to show that
∫ ∑

=
∑∫

. As the summands in the
first sum

∑∞
n=0 x

a−1xna log x do not change sign, we may use Beppo-Levi’s theorem. In
the second sum,

∑∞
n=0(−1)nxn log x, we have absolute convergence, in particular any

rearrangement converges (to the same function), and so we apply Beppo-Levi to the
sum over the odd integers and the sum over the even integers. Thus

∫ ∑
even =

∑
even

∫
and

∫ ∑
odd =

∑
odd

∫
. Similarily to (97), it can be shown that the values of

∑
odd

∫
and

∑
even

∫
are finite. Hence∫ ∑

=

∫ ∑
even

−
∫ ∑

odd

=
∑
even

∫
−
∑
odd

∫
=
∑∫

.
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Solution to problem 12375 in Amer. Math. Monthly 130 (2023), ?? by
Raymond Mortini

A change of the variable x→ 1/x yields that

J :=

∫ ∞
0

(
1− x2 sin2

(
1

x

))n
dx =

∫ ∞
0

(x2 − sin2 x)n

x2n+2
dx.

Now we ”linearize” the trigonometric powers: using sin2 x = (1/2)(1 − cos 2x), we
obtain

J =
1

2

∫ ∞
−∞

(
x2 − 1

2 + 1
2 cos(2x)

)n
x2n+2

dx

=
1

2

∫ ∞
−∞

1

x2n+2

n∑
j=0

(
n

j

)
1

2j

(
x2 − 1

2

)n−j
cosj(2x) dx.

Noticing that

cosj(2x) =
1

2j

j∑
k=0

(
j

k

)
cos(2(j − 2k)x),

we finally obtain that with I := 2J

I =

∫ ∞
−∞

n∑
`=0

1

x2n+2
p`(x) cos(2`x) dx

where p` is a polynomial of degree at most 2n and with rational coefficients.
Next we consider the functions

f(z) :=

n∑
`=0

1

z2n+2
p`(z)e

2i`z

and

F (z) := f(z)− p(z)

z2n+2
,

where p(z)
z2n+2 = q(z)

z2n+2 + r
z is the principal part of the meromorphic function f . Note that

deg p ≤ 2n+ 1, deg q ≤ 2n, and r ∈ Q + iQ.
In particular, F has a holomorphic extension to the origin, hence is an entire function.

Therefore
∫

Γ F (z)dz = 0, where Γ is the boundary of the half-disk |z| ≤ R, Im z ≥ 0,
consisting of the half circle ΓR and the interval [−R,R]. Hence, by letting R→∞ and
taking real parts,

0 = Re lim
R→∞

∫
ΓR

F (z)dz + I.
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By Jordan’s Lemma, lim supR→∞

∣∣∣∫ΓR
einzdz

∣∣∣ < ∞. Hence, by noticing that the

differences of the degrees of the polynomials in the denominator and numerator if f is
bigger than 2,

lim
R→∞

∫
ΓR

F (z)dz = 0 + 0 + lim
R→∞

∫
ΓR

r

z
dz = i r π.

We conclude that the value of the original integral J is rational.
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Solution to problem 12362 in Amer. Math. Monthly 129 (2022), 986, by
Raymond Mortini

We reduce the present problem to Problem 12340, telling us that for each f : [0, 1]→
R continuous,

(13) lim
n→∞

n

2n

∫ 1

0

f(x)

xn + (1− x)n
dx =

π

4
f

(
1

2

)
.

First we note that one may replace of course n by t, t → ∞. Later we shall take
t = n/2. As a result we obtain

(14)

�
�

�
�

lim
n→∞

∫ π/2

0

n(√
2 cosx

)n
+
(√

2 sinx
)n dx =

π

2

To see this, let u := sinx. Then, dx = (1− u2)−1/2 du and so with

In :=

∫ π/2

0

n(√
2 cosx

)n
+
(√

2 sinx
)n dx,

we obtain

In = n

∫ 1

0

(1− u2)−1/2

2n/2 (1− u2)n/2 + 2n/2 (u2)n/2
dx

Now let y := u2. Then du = 1
2
√
y dy, and so

In =
n

2 · 2n/2

∫ 1

0

y−1/2(1− y)−1/2

(1− y)n/2 + yn/2
dy

Let gε(y) = (y + ε)−1/2(1− y + ε)−1/2 and g := g0. Then

(15)
n

2 · 2n/2

∫ 1

0

gε(y)

(1− y)n/2 + yn/2
dy ≤ In.

Next we estimate from above. Let x ∈ [0, 1] satisfy |x− 1/2| ≥ δ, where δ > 0 is small.
Then, for t ≥ 1,

xt + (1− x)t ≥ (1/2 + δ)t + (1/2− δ)t.
Hence

t

2t
1

xt + (1− x)t
≤ t

(1 + 2δ)t + (1− 2δ)t
=: mt → 0 as t→∞

Now for ε > 0, choose δ so small that |g(x)− g(1/2)| < ε for |x− 1/2| ≤ δ. Then

t

2t

∫ 1

0

g(x)

xt + (1− x)t
dx ≤ t

2t

∫
|x−1/2|≤δ

g(1/2) + ε

xt + (1− x)t
dx+mt

∫
|x−1/2|>δ

g(x) dx

≤ t

2t

∫ 1

0

g(1/2) + ε

xt + (1− x)t
dx+mt||g||1 −→

t→∞

π

4
(g(1/2) + ε).
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Together with (15), we obtain that
π

4
gε(1/2) ≤ lim inf

n
In ≤ lim sup

n
In ≤

π

4
(g(1/2) + ε).

Hence, by letting ε→ 0,

lim
n
In =

π

4
g(1/2) = π/2.
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Solution to problem 12347 in Amer. Math. Monthly 129 (2022), 786, by
Raymond Mortini

We show that on R there are exactly 4 continuous solutions to the functional equation

(16) f(f(x))− (a+ b)f(x) + abx = 0,

whenever f(0) = 0 and 0 < a < 1 < b. Namely

F1(x) = ax, F2(x) = bx, F3(x) =

{
ax if x ≤ 0

bx if x > 0
and F3(x) =

{
bx if x ≤ 0

ax if x > 0.

It is easy to check that Fj are solutions. Now suppose that f is a solution.

i) f is injective: let f(x) = f(y). Then

abx = −f(f(x)) + (a+ b)f(x) = −f(f(y)) + (a+ b)f(y) = aby

and so x = y.

ii) f is strictly increasing: monotonicity implies that M± := limx→±∞ f(x) exists
in [−∞,∞]. Now M± cannot be finite, since (1) and continuity would imply that
f(M±) − (a + b)M± + ±∞ = 0, which is impossible. But M+ 6= −∞, either, since
otherwise

f(f(x)) + abx = (a+ b)f(x)→ −∞ as x→∞,
and so lim

x→∞
f(f(x)) = −∞. Hence, with y := f(x)→ −∞, we deduce that

lim
y→−∞

f(y) = −∞ = lim
x→∞

f(x),

contradicting the monotonicity of f . We conclude that f is strictly increasing, f(x) ≥ 0
for x ≥ 0, f(x) ≤ 0 for x ≤ 0, and limx→−∞ f(x) = −∞, limx→∞ f(x) =∞.

iii) The inverse h := f−1 : R→ R satisfies the functional equation

(17) h(h(y))−
(

1

a
+

1

b

)
h(y) +

1

ab
y = 0.

Just take x := h(h(y)) in (16) and note that h ◦ f = f ◦ h = id. Then

y − (a+ b)h(y) + ab h(h(y)) = 0.

Now divide by ab. We also deduce the following identity:

(18)
[
f(y)− ay

]
+ ab

[
f−1(y)− (1/a) y

]
= 0.

In particular f−1 is increasing, too.

iv) The only fixed point of f is 0: let f(s) = s. If s 6= 0, then, by (16) s− (a+ b)s+
abs = 0. Thus 1 + ab = a + b, or equivalently, b(a − 1) = a − 1. That is, b = 1 (since
a < 1). A contradiction. We conclude that for x > 0 either f(x) < x or f(x) > x for
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every x > 0.

v) Let fn := f ◦ · · · ◦ f︸ ︷︷ ︸
n-times

be the n-th iterate of f 1.

• Suppose that there is x0 > 0 such that f(x0) < x0. Then fn(x) → 0 for every
x ≥ 0. Indeed, by iv), 0 < f(x) < x for x > 0. Hence

fn+1(x) = f(fn(x)) < fn(x)

and so M(x) := limn→∞ fn(x) exists for every x > 0. Plugging fn(x) into the functional
equation (16), yields

M(x)− (a+ b)M(x) + abM(x) = 0.

Consequently, M(x)(1 + ab− (a+ b)) = 0. But 1 + ab− (a+ b) = (1− a) + b(a− 1) =
(1− a)(1− b) 6= 0. Hence M(x) = 0.
• Suppose that there is x0 > 0 such that f(x0) > x0. Then, by iv) f(x) > x for every
x > 0 and the sequence (fn(x)) of iterates is increasing for each x > 0. As its limit
M(x) can’t be finite, in particular not 0, we see that limn→∞ fn(x) =∞ for every x > 0.

vi) For each x ∈ R we obtain the following three terms difference equations:

fn+2(x)− (a+ b)fn+1(x) + abfn(x) = 0,

with initial condition f0(x) := x and f1(x) := f(x).
The associated characteristic polynomial is p(z) = z2 − (a + b)z + ab, which has as

roots a and b. Hence, there exist real coefficients Ax and Bx depending on the initial
value x such that

(19) fn(x) = Axa
n +Bxb

n.

If f(x) < x for every x > 0, then limn fn(x) = 0 implies that Bx = 0, because b > 1
and 0 < a < 1. Hence f(x) = Axa. As the initial value f0(x) equals x, we deduce
from (19) that Ax = x. Thus, for x > 0, f(x) = ax whenever there exists x0 > 0 with
f(x0) < x0.

If f(x) > x for every x > 0, then x > f−1(x) (note that by iii) h := f−1 is increasing).
Hence, the difference equations,

(20) hn+2(x)−
(

1

a
+

1

b

)
hn+1(x) +

1

ab
hn(x) = 0

with initial values h0(x) = x have for x > 0 the solutions

(21) hn(x) = Cx
1

an
+Dx

1

bn

for real coefficients Cx and Dx. Using (20), we see as above that limn→∞ hn(x) = 0.
Hence Cx = 0. Thus h(x) = h1(x) = Dx

1
b . As h0(x) = x, we deduce from (21) that

Dx = x.
To some up, f−1(x) = h(x) = x/b and so f(x) = bx for every x > 0 whenever there

exists x0 > 0 with f(x0) > x0.

1 We never use the exponent n to designate the n-th iterate when working with functions, as the
risk to mix it up with the n-th power is too big.
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vii) The case for negative arguments follows from the observation that if f is a
solution to (16), then the function g given by g(x) = −f(−x) is a solution, too:

g(g(x))− (a+ b)g(x) + abx = −f(−f(−x)) + (a+ b)f(−x) + abx

= −
(
f(f(−x))− (a+ b)f(−x) + ab(−x)

)
= 0.
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Solution to problem 12340 in Amer. Math. Monthly 129 (2022), 686 by
Raymond Mortini and Rudolf Rupp

As g : [0, 1]→ R is continuous, ||g||∞ = max{|g(x)| : 0 ≤ x ≤ 1} <∞. Let

In :=
n

2n

∫ 1

0

g(x)

xn + (1− x)n
dx.

We claim that limn→∞ In = (π/4)g(1/2).
To see this, we split the integral into two parts and use two different change of

variables:

In =
n

2n

∫ 1/2

0

g(x)

xn + (1− x)n
dx︸ ︷︷ ︸

x=: 1
2
− s

2n

+
n

2n

∫ 1

1/2

g(x)

xn + (1− x)n
dx︸ ︷︷ ︸

x=: 1
2

+ s
2n

=
n

2n

∫ n

0

g(1
2 −

s
2n)

(1
2 −

s
2n)

n
+ (1

2 + s
2n)

n
1

2n
ds+

n

2n

∫ n

0

g(1
2 + s

2n)

(1
2 + s

2n)n + (1
2 −

s
2n)n

1

2n
ds

=
1

2

∫ n

0

g(1
2 −

s
2n) + g(1

2 + s
2n)

(1− s
n)n + (1 + s

n)n
ds.

Note that n 7→ (1 + s
n)n is increasing; so the integrand is dominated for s ≥ 1 by

||g||∞
(1 + s

2)2
≤ ||g||∞4s−2.

Hence, as n→∞,

lim
n→∞

In =
1

2
2g(1/2)

∫ ∞
0

ds

e−s + es
ds

= g(1/2)

∫ ∞
0

es

1 + (es)2
ds

= g(1/2)
[

arctan es
]∞
0

= g(1/2)
(π

2
− π

4

)
=

π

4
g(1/2).
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Solution to problem 12338 in Amer. Math. Monthly 129 (2022), 686 by
Raymond Mortini and Rudolf Rupp

Let f(x) :=
cosx− 1

x(ex − 1)
and I :=

∫∞
0 f(x)dx. Note that limx→0 f(x) = 1/2, that f is

bounded, and that the integral converges (absolutely). Using the Laplace transform of
f , we are going to show that

I =
1

2
log
( π

sinhπ

)
.

So let

F (s) :=

∫ ∞
0

e−sxf(x)dx.

Also this integral converges absolutely and uniformly in s ≥ 0, as the integrand is
dominated on [1,∞[ by 4e−x. Moreover, F is continuous on [0,∞[ with F (0) = I.
Now, by a similar reason,

G(s) := −
∫ ∞

0
xe−sxf(x)dx

is absolutely convergent, as the integrand is dominated on [1,∞[ by 4xe−x. Hence
F ′(s) = G(s). Moreover, by considering for x > 0 the geometric series for (1− e−x)−1,

G(s) = −
∫ ∞

0

e−(s+1)x

1− e−x
(cosx− 1) dx =

∫ ∞
0

∞∑
k=0

e−(s+1+k)x(1− cosx) dx.

As all the summands are positive, Beppo Levi’s monotone convergence theorem for
Lebesgue integrals implies that

∫ ∑
=
∑∫

. Hence, by using that for a > 0∫ ∞
0

e−ax cosxdx =
a

a2 + 1
,

we obtain

G(s) =
∞∑
k=0

∫ ∞
0

e−(s+1+k)x(1− cosx) dx =
∞∑
k=0

(
1

s+ 1 + k
− s+ 1 + k

(s+ k + 1)2 + 1

)
n=k+1

=

∞∑
n=1

1

(s+ n)3 + (s+ n)
.

The convergence being absolut and uniform on [0,∞[ (a majorant is given by
∑∞

n=1 n
−3),

we can integrate termwise to re-obtain F . Note that a primitive P of G on [0,∞[ is
given by

P (s) =

∞∑
n=1

∫
1

(s+ n)3 + (s+ n)
ds =

∞∑
n=1

log
s+ n√

(s+ n)2 + 1

= −1

2

∞∑
n=1

log
(s+ n)2 + 1

(s+ n)2
= −1

2

∞∑
n=1

log

(
1 +

1

(s+ n)2

)
.
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Now F = P + c for some constant c. Since P is uniformly convergent, it easily follows
that lims→∞ P (s) = 0 (just take a tail uniformly small, and use that the limit of
the remaining finitely many summands is 0). But also lims→∞ F (s) = 0, because
|F (s)| ≤ ||f ||∞

∫∞
0 e−st = ||f ||∞/s.

Hence c = 0 and so F (0) = −1

2

∞∑
n=1

log

(
1 +

1

n2

)
. Next we use that

sinh(πz) = πz
∞∏
n=1

(
1 +

z2

n2

)
.

So,

log sinh(π) = log π +

∞∑
n=1

log

(
1 +

1

n2

)
.

Hence

F (0) = I = −1

2
log sinh(π) +

1

2
log π =

1

2
log

π

sinhπ
.
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A different solution to problem 12338 in Amer. Math. Monthly 129 (2022), 686 by
Raymond Mortini and Rudolf Rupp

Let I :=

∫ ∞
0

cosx− 1

x(ex − 1)
dx. We show that

I =
1

2
log
( π

sinhπ

)
.

Recall that N = {0, 1, 2, . . . }. First we develop for x > 0 the integrand into a double,
absolutely convergent series (so this is independent of the arrangement):

g(x) :=
cosx− 1

x(ex − 1)
=

cosx− 1

x

e−x

1− e−x
=

∞∑
n=1

(−1)n

(2n)!
x2n−1

∞∑
k=1

e−kx =

∞∑
k=1

∞∑
n=1

(−1)n

(2n)!
x2n−1 e−kx︸ ︷︷ ︸
:=akn

=
∞∑
k=1

∞∑
n even

1

(2n)!
x2n−1 e−kx −

∞∑
k=1

∞∑
n odd

1

(2n)!
x2n−1 e−kx.

Note that limx→0 g(x) = 1/2, but that both absolutely convergent double series at the
right vanish at 0. Beppo Levi’s monotone convergence theorem for Lebesgue integrals
applied twice, gives

(22)

∫ ∑
k≥2

∑
n even

=
∑
k≥2

∑
n even

∫
and

∫ ∑
k≥2

∑
n odd

=
∑
k≥2

∑
n odd

∫
.

As the calculations below show, the sums
∑

n odd

∫
|akn| and

∑
n even

∫
|akn| converge

for k ≥ 2, but diverge for k = 1, though
∑

n

∫
a1n converges. Moreover,

∑
k≥2

∑
n odd

∫
and

∑
k≥2

∑
n even

∫
are finite; hence (by (22)) ,

(23)
∑
k≥2

∑
n

∫
=

∫ ∑
k≥2

∑
n

.

So, at the end, by adding in (23) the term
∑

n

∫
a1,n, respectively

∫ ∑
n a1,n (which

coincide, too; see addendum) we see that∫ ∑
k

∑
n

=
∑
n

∑
k

∫
.

To complete the calculations, we use that for m ∈ N and k ∈ N \ {0},∫ ∞
0

xme−kxdx = m!/km+1.

Hence
∞∑
k=1

∞∑
n=1

(−1)n

(2n)!

∫ ∞
0

x2n−1 e−kx dx =
∞∑
k=1

∞∑
n=1

(−1)n

(2n)!

(2n− 1)!

k2n
=

∞∑
k=1

( ∞∑
n=1

(−1)n

2n

1

k2n

)
= −1

2

∞∑
k=1

log

(
1 +

1

k2

)
,
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where the last identity comes from the fact that for 0 ≤ y ≤ 1

h(y) :=
∞∑
n=1

(−1)n

2n
y2n = −1

2
log(1 + y2)

(note that for y = 1 there is no absolute convergence). Next we use that

sinh(πz) = πz

∞∏
n=1

(
1 +

z2

n2

)
.

So,

log sinh(π) = log π +
∞∑
n=1

log

(
1 +

1

n2

)
.

Hence

I = −1

2
log sinh(π) +

1

2
log π =

1

2
log

π

sinhπ
Addendum

(24) J :=

∫ ∞
0

e−x
cosx− 1

x
dx =

∞∑
n=1

(−1)n

2n
= −1

2
log 2.

First we note that, as above,
∑

n

∫
a1,n =

∑∞
n=1

(−1)n

2n = −1
2 log 2. To show that

J = −1
2 log 2, we interprete this as the Laplace transform L(q)(s) of the function

q(x) = (cosx−1)/x evaluated at s = 1. By a well-known formula, if L(F (t))(s) = f(s),
then

L(q)(s) = L(
F (t)

t
)(s) =

∫ ∞
s

f(u)du,

where

f(s) =

∫ ∞
0

e−st(cos t− 1) dt =
1

s3 + s
.

Hence L(q)(s) = −1
2 log(1 + s−2) and so J = L(q)(1)) = −1

2 log 2.
Another way to calculate the Laplace transform J(s) := L(q)(s) of q is to take

derivatives:

J ′(s) = −
∫ ∞

0
e−st(cos t− 1)dt = f(s).

Note that d
ds

∫
=
∫

d
ds , since both integrands are locally (in s) dominated by L1[0,∞[

functions.

Remark This integral J appears also on the web:
https://www.youtube.com/watch?v=p8ok5QNNlsc

https://www.youtube.com/watch?v=p8ok5QNNlsc
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@@
Solution to problem 12312, AMM 129 (3) (2022), p. 286 , by

Gerd Herzog, Raymond Mortini

We show that the constant function 1 is the only solution

Let y = y(x) :=
∫ x

0 f(t)dt and suppose that the continuous function f : [0,∞[→ R
satisfies on ]0,∞[

f(x)

(
f(x)− 1

x

∫ x

0
f(t)dt

)
≥ (f(x)− 1)2.

Then

(25) y′
(

2− y

x

)
≥ 1 for x > 0 and y(0) = 0.

Note that this implies that y′(0) = 1, because, by letting x→ 0,

y′(0)(2− y′(0)) ≥ 1 ⇐⇒ (y′(0)− 1)2 ≤ 0

Let the function w : [0,∞[→ R be given by

w(x) :=

{
y(x)
x if x > 0

y′(0) if x = 0.

Then w ∈ C([0,∞[) ∩ C1( ]0,∞[). We claim that

(26) w(x) = 1 for every x ≥ 0,

from which we conclude that y(x) = x and so f(x) = y′(x) = 1 for x ≥ 0.
To see this, note that by (25), w(x) 6= 2. Since w is continuous on [0,∞[, w(0) = 1,

and w does not take the value 2, we have that w(x) < 2 for each x > 0. Hence, for
x > 0,

w′(x) =
xy′(x)− y(x)

x2
≥ 1

x

(
1

2− w(x)
− w(x)

)
=

1

x
· (1− w(x))2

2− w(x)
(27)

Thus we may deduce from (27) that w′ ≥ 0; that is w is increasing 2.
Now suppose that (26) is not true.
Case 1 There is x0 > 0 with w(x0) < 1. This is not possible, though, as w is

increasing, but w(0) = 1.
Case 2 There is x0 > 0 with w(x0) > 1. As w is increasing, w > 1 for x ≥ x0. Note

that we already know that w < 2. Since the map t 7→ (1−t)2
2−t is increasing on [1, 2[, we

deduce from (27) that for x ≥ x0

w′(x) ≥ 1

x
· (1− w(x0))2

2− w(x0)
=: c

1

x
.

2 in the weak sense; or funnily called nondecreasing, a very ambiguous word.
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Hence, by integration, for x ≥ x0,

w(x) ≥ w(x0) + c log(x/x0)→∞ (x→∞).

An obvious contradiction. �
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Solution to problem 12308, AMM 129 (3) (2022), p. 285 , by
Raymond Mortini

We show that the minimal value is given by 105/2 and is obtained by the polynomial
f(x) = −105/16x4 + 105/8x2 − 33/16

Let p be any polynomial. Then, by Cauchy-Schwarz,(∫ 1

0
f ′p dx

)2

≤
(∫ 1

0
f ′2dx

) (∫ 1

0
p2dx

)
.

A primitives of f ′p is given by fp−
∫
fp′dx. Now choose p so that p(0) = p(1) = 0

and p′(x) = αx2 + β. To this end, put

p(x) = ax(x2 − 1).

Then

I :=

∫ 1

0
f ′p dx = fp

∣∣1
0
−
∫ 1

0
f(3ax2 − a)dx = −3a+ a = −2a

Moreover, ∫ 1

0
p2dx = a2

∫ 1

0
(x6 + x2 − 2x4)dx = a2

(
1

7
+

1

3
− 2

5

)
.

Hence ∫
f ′2dx ≥ 4a2

a2
(

1
7 + 1

3 −
2
5

) =
105

2
.

Equality in the Cauchy-Schwarz inequality is given whenever f ′ = p. Thus

f(x) =
a

4
x4 − a

2
x2 + c.

Now a and c have to be chosen so that
∫
f =

∫
x2f = 1. This yields the linear

system
−7a+ 60c = 60
−27a+ 140c = 420

whose solution is a = −105/4 and c = −33/16. Consequently

f(x) = −105/16x4 + 105/8x2 − 33/16.

Note that

f ′(x)2 =
(
− 105

4
x(x2 − 1)

)2
.
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Solution to problem 12326, AMM 129 (5) (2022), p. 487 , by
Raymond Mortini, Peter Pflug, Amol Sasane

By considering the symmetric function p(x, y) := f(x + y) − f(x) − f(y) we get
from the assumption that as well p(·, y) and p(x, ·) are polynomials in their variables
separately. Hence, by [1], p(x, y) is a polynomial.

Case 1 f ∈ C1(R). Write p(x, y) =
∑
ai,jx

iyj with symmetrical coefficients and
a0,0 = −f(0) (the sum being finite of course) If we take y = 0, then for all x

−f(0) = f(x+ 0)− f(x)− f(0) = a0,0 +
∑

ai,0x
i.

Hence ai,0 = 0 for all i ≥ 1. Due to symmetry, we also have a0,j = 0 for all j ≥ 1. Thus
we have only coefficients ai,j for i, j ≥ 1. Consequenlty

f(x+ y)− f(x)− (f(y)− f(0)))

y
=
∑
i,j≥1

ai,jx
iyj−1.

As f is assumed to be differentiable, we may take y → 0 and get

f ′(x)− f ′(0) =
∑
i≥1

ai,1x
i.

Integration yields

f(x)− f(0)− xf ′(0) =
∑
i≥1

ai,1
xi+1

i+ 1
.

Thus f is a polynomial.
Case 2 f ∈ C(R). Let F (x) :=

∫ x
0 f(t)dt be a primitive of f . Then with

G(x, y) := F (x+ y)− F (x)− F (y)

G(x, y) =

∫ x+y

0
f(t)dt−

∫ x

0
f(t)dt−

∫ y

0
f(t)dt

=
t=y+s

∫ x

−y
f(y + s)ds−

∫ x

0
f(t)dt−

∫ y

0
f(t)dt

=

∫ 0

−y
f(y + s)ds+

∫ x

0

(
f(y + s)− f(s)

)
ds−

∫ y

0
f(t)dt

=
t=y+s

∫ y

0
f(t)dt+

∫ x

0

(
f(y + s)− f(s)

)
ds−

∫ y

0
f(t)dt

=

∫ x

0
p(y, s)ds+ f(y)x

which is a polynomial in x. Again, by symmetry, and the Carroll argument, G is a
polynomial. Hence, by Case 1, F is a polynomial and so does f = F ′.

References

[1] F.W. Carroll A polynomial in each variable separately is a polynomial, Amer. Math. Soc. 68
(1961), 42 44
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Solution to problem 12288 in Amer. Math. Monthly 128 (2021), 946, by
Raymond Mortini and Rudolf Rupp

A change of the variable x→ 1/x yields that

J :=

∫ ∞
0

(
1− x2 sin2

(
1

x

))2

dx =

∫ ∞
0

(x2 − sin2 x)2

x6
dx.

Note that
(x2 − sin2 x)2 = x4 − 2x2 sin2 x+ sin4 x.

Now we ”linearize” the trigonometric powers: sin2 x = (1/2)(1− cos 2x) and
sin4 x = (3/8)− (1/2) cos 2x+ (1/8) cos 4x. Thus J = I/2, where

I :=

∫
R

3
8 + x4 − x2 + (x2 − 1

2) cos(2x) + 1
8 cos(4x)

x6
dx.

Next we consider the meromorphic function

f(z) :=
3
8 + z4 − z2 + (z2 − 1

2)e2iz + 1
8e

4iz

z6
.

Then we add in the numerator the polynomial

p(z) := i

(
1

2
z − 4

3
z3 +

2

5
z5

)
,

that is we consider the function

F (z) := f(z) +
p(z)

z6
.

Note that this polynomial is chosen so that F has a removable singularity at z = 0

(in other words, −p(z)
z6

is the principal part in the Laurent expansion of f around the

origin). Hence
∫

Γ F (z)dz = 0, where Γ is the boundary of the half-disk |z| ≤ R,
Im z ≥ 0, consisting of the half circle ΓR and the interval [−R,R]. Hence, by letting
R→∞ and taking real parts,

0 = Re lim
R→∞

∫
ΓR

F (z)dz + I.

By Jordan’s Lemma, lim supR→∞
∫

ΓR
|einz||dz| <∞. Hence,

lim
R→∞

∫
ΓR

F (z)dz = 0 + 0 + i lim
R→∞

∫
ΓR

2
5z

5

z6
dz = −2π

5
.

We conclude that the value of the original integral J is π/5.
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Solution to problem 12290 in Amer. Math. Monthly 128 (2021), 946, by
Raymond Mortini and Rudolf Rupp

We show that all solutions are given by az, b sin(kz) and c sinh(kz) where a, b, c ∈ C
and k ∈ R.

First we note that any solution f necessarily satisfies f(0) = 0. Now let h(z) :=
|f(z)|2 = (ff)(z). Since fx = f ′ and fy = ifx = if ′, we see that fxy = (f ′)y = i(f ′)x =

if ′′. Moreover (f)x = fx. Hence

hxy = (fxf + ffx)y = fxyf + fxfy + fyfx + ffxy

= 2Re(fxyf) + 0 = 2Re(if ′′f) = −2Im(f ′′f).

Now |f(z)|2 = |f(x)|2 + |f(iy)|2 implies that the mixed derivative of the right hand
side is 0. We conclude that Im(f ′′f) = 0 in C. Let U = C \ Z(f), where Z(f) = {z ∈
C : f(z) = 0}. Then on U , this is equivalent to

0 = Im

(
f ′′

f
|f |2

)
= Im

(
f ′′

f

)
.

Thus, a necessary condition for f 6≡ 0 being a solution is that f ′′/f is a real constant
λ. The differential equation f ′′ = λf in C has the solutions az + d if λ = 0, or

αe
√
λ z + βe−

√
λ z if λ > 0, and αei

√
|λ| z + βe−i

√
|λ| z if λ < 0. Since f(0) = 0, we have

d = 0 and β = −α. So, with k :=
√
|λ|,

f(z) = az, c sinh kz if λ > 0 and c sin kz if λ < 0.

It is now easy to check that these are solutions indeed (wlog for k = 1):

sin(x+ iy) = cos(iy) sinx+ cosx sin(iy)

=
e−y + ey

2
sinx− i cosx

e−y − ey

2
= cosh y sinx+ i cosx sinh y

| sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y

= sin2 x cosh2 y + (1− sin2 x) sinh2 y

= sin2 x(cosh2 y − sinh2 y) + sinh2 y

= sin2 x+ sinh2 y

= sin2 x+ | sin2(iy)|.
as sin(iy) = i sinh y
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Solution to problem 12256 in Amer. Math. Monthly 128 (2021), 478, by
Raymond Mortini and Rudolf Rupp

Using that 4ab = (a+ b)2 − (a− b)2, we obtain

4

∫ 1

0

log(1 + x) log(1− x)

x
dx =

∫ 1

0

log2(1− x2)

x
dx−

∫ 1

0

log2 1+x
1−x
x

dx =: I1 − I2.

For I1, we make the substitution 1− x2 = t2. Hence, due to −xdx = tdt,

I1 =

∫ 1

0

log2 t2

1− t2
t dt

Using that
∫ ∑

=
∑∫

(Lebesgue), and twice intregation by parts,

I1 = 4

∞∑
n=0

∫ 1

0
t2n+1 log2 t dt = 8

∞∑
n=0

1

(2n+ 2)3
= ξ(3).

For the second one, I2, we make the substitution t = 1+x
1−x . Then x = t−1

t+1 and dx =
2

(t+1)2
dt. Hence

I2 = 2

∫ ∞
1

log2 t

1− t2
dt

t=1/s
= 2

∫ 1

0

log2 s

1− s2
ds = 2

∞∑
n=0

∫ 1

0
s2n log2 s ds = 4

∞∑
n=0

1

(2n+ 1)3
= 4

7

8
ξ(3).

Consequently, 4I = (1− 7
2)ξ(3) = −5

2ξ(3) and so∫ 1

0

log(1 + x) log(1− x)

x
dx = −5

8
ξ(3).
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original statement

Given a, b, α, β ∈ C with |a| < 1, |b| < 1 and |α| = |β| = 1, let ϕa(z) = (a−z)/(1−az)
and ρ(a, b) = |a− b|/|1− ab| the pseudohyperbolic distance between a and b.

i) Show that whenever a, b ∈ ]− 1, 1[,

M− := max
|z|≤1

|ϕa(z)− ϕb(z)| = 2ρ(a, b)

and
M+ := max

|z|≤1
|ϕa(z) + ϕb(z)| = 2.

ii) Determine
M := max

|z|=1
|αϕa(z)− βϕb(z)|

and
m := min

|z|=1
|αϕa(z)− βϕb(z)|.

Solution to problem 11684 AMM 120 (2013), 76 by
Raymond Mortini, Rudolf Rupp

i) That M+ = 2 is easy: just take z = 1 and evaluate:

|ϕa(1) + ϕb(1)| = | − 1− 1| = 2.

Since M+ ≤ 2, we are done.

ii) We first observe that φb is its own inverse. Let c = (b − a)/(1 − ab) and λ =
−(1− ab)/(1− ab). Since φb is a bijection of the unit circle onto itself,

max
|z|=1

|αϕa(z)− βϕb(z)| = max
|z|=1

|αβϕa(ϕb(z))− z| = max
|z|=1

|αβλϕc(z)− z|.

The same identities hold when replacing the maximum with the minimum.

Put γ := αβλ and let −π < arg γ ≤ π. For |z| = 1 we obtain

H(z) := |γφc(z)− z| =
∣∣∣∣γ z(cz − 1)

1− cz
− z
∣∣∣∣

=

∣∣∣∣γ 1− cz
1− cz

+ 1

∣∣∣∣ =
∣∣∣γ w

w
+ 1
∣∣∣ ,



49

where

w = 1− cz = 1− c1

z
.

If z moves on the unit circle, then w moves on the circle |w − 1| = |c|. Let w = |w|eiθ.
Then (see figure 3) the domain of variation of θ is the interval [−θm, θm] with |θm| < π/2
and sin θm = |c| = ρ(a, b). Now

H(z) = |γe2iθ + 1| = 2| cos(arg γ
2 + θ)|.

Hence,
M = max

|z|=1
H(z) = 2 max{| cos(arg γ

2 + θ)| : |θ| ≤ arcsin(ρ(a, b))}

and
m = min

|z|=1
H(z) = 2 min{| cos(arg γ

2 + θ)| : |θ| ≤ arcsin(ρ(a, b))}.

In particular, if a, b ∈ ]−1, 1[ and α = β = 1, then γ = −1, and so (using the maximum
principle at ∗)

M−
∗
= max
|z|=1

H(z) = 2 max{| sin θ| : |θ| ≤ arcsin(ρ(a, b))} = 2ρ(a, b).

If a, b ∈ ]− 1, 1[ and α = 1, β = −1, then γ = 1, and so

M+ ∗
= max
|z|=1

H(z) = 2 max{| cos θ| : |θ| ≤ arcsin(ρ(a, b))} = 2.

We note that m = 0, that is H(z0) = 0 for some z0 with |z0| = 1, if and only if γφc
has a fixed point on the unit circle (namely z0). This is equivalent to the condition
| cos(arg γ

2 )| ≤ |c|. Moreover, M = 2 if and only if | sin(arg γ
2 )| ≤ |c|.

!

Figure 3. The domain of variation of argw
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Solution to problem 11584 AMM 118 (2011), 558 by
Raymond Mortini, Jérôme Noël

By the Schwarz-Pick inequality, (1−|z|2)|B′(z)|
1−|B(z)|2 ≤ 1 for any holomorphic self-map of

the unit disk. Then, if we let B be the Blaschke product

B(z) =

∞∏
n=1

|an|
an

an − z
1− anz

associated with the zeros (an), we get:
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|B′(0)|
1− |B(0)|2

≤ 1.

But
B′(z)

B(z)
= −

∞∑
n=1

1− |aj |2

(1− ajz)(aj − z)
.

Hence ∣∣∣∣∣∣
∞∑
j=1

1− |aj |2

aj

∣∣∣∣∣∣ =
|B′(0)|
|B(0)|

≤ 1− |B(0)|2

|B(0)|
=

1−
∏∞
j=1 |aj |2∏∞

j=1 |aj |
.

Motivation for posing this as a problem to AMM: We are interested in a direct
elementary proof.
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Solution to problem 11578 in Amer. Math. Monthly 118 (2011), 464

Lemma 1. Let 0 < ||x|| < 1 and s ∈ S. Let s′ be the (second) uniquely determined
intersection point of the half-line starting at s and passing through x with S. Then the
map Q : S → [0,∞[, s 7→ ||x− s||/||x− s′|| is a nonconstant continuous map.

Proof. Q obviously is continuous. If we suppose that Q is constant κ, then this constant
is necessarily 1 (just interchange s with s′). Now x = (1−t)s+ts′. Thus x−s = t(s′−s)
and x−s′ = (1−t)(s−s′) and so Q(s) = t/(1−t). Hence 1 = κ = t

1−t . So t = 1/2. Now

x/||x|| and −x/||x|| belong to S and with t = (1−||x||)/2 we have x = (1−t) x
||x||+t

−x
||x|| .

So t = 1/2 implies that x = 0. �

Lemma 2. The unit sphere S is connected whenever dim E ≥ 2.

Proof. Let x, y ∈ S, x 6= y. If x is linear independent of y, then the segment {tx+ (1−
t)y : 0 ≤ t ≤ 1} does not pass through the origin; hence

t 7→ tx+ (1− t)y
||tx+ (1− t)y||

is a path joining y with x on S.
If y = λx for some λ ∈ R, then we use the hypothesis that dim E ≥ 2 to guarantee

the existence of a vector u linear independent of x. Thus v := u/||u|| ∈ S. By the first
case, we may join x with v and then v with y by a path in S. �

Solution to Problem 11578

The first step is to show that f(0) = 0.
(1) Let x = 0, y = −f(0). Then f(f(−f(0))) = f(0)− f(0) = 0;
(2) Let x = y = 0. Then f(f(0)) = f(0);
(3) Let x = −f(y). Then f(0) = f(−f(y)) + y. With y = 0 this gives f(0) =

f(−f(0)).
(4) Applying f yields f(f(0)) = f(f(−f(0))) =

(1)
0. Thus, by (2), f(0) = 0.

(5) Let x = 0. Then f(f(y)) = f(0) + y = y. Hence f is an involution.
(6) f is additive since

f(x+ y) =
(5)
f(x+ f(f(y))) = f(x) + f(y).

(7) Next we show that f is Q-homogeneous by induction. Indeed, by (5),

f((n+ 1)x) = f(nx+ x) = f( nx︸︷︷︸
X

+f(f(x)︸︷︷︸
Y

)) = f(nx) + f(x).

Thus f(mx) = mf(x) for every m ∈ N.
Now

0 = f(0) = f(−x+ x) =
(5)
f(−x+ f(f(x))) = f(−x) + f(x).

Thus f(−x) = −f(x). Hence, for p ∈ Z, we have f(px) = pf(x).
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Next, if n ∈ N, then

nf(
x

n
) = f(

x

n
) + (n− 1)f(

x

n
) = f(

x

n
) + f(

n− 1

n
x)

= f

(
x

n︸︷︷︸
X

+f
(
f
(n− 1

n
x
)

︸ ︷︷ ︸
Y

))
=
(5)
f

(
x

n
+
n− 1

n
x

)
= f(x)

Hence f
(
x
n

)
= 1

nf(x). Therefore f
( p
n

)
= p

nf(x) for p ∈ Z and n ∈ N.

(8) By hypothesis, ||f(s)|| ≤ C for every s ∈ S. Let 0 < ||x|| < 1. Consider, as in
Lemma 1, the map H : S → [0,∞[, s 7→ ||x − s||/||x − s′||. H is continuous and non-
constant. Since dim E ≥ 2, S is connected by Lemma 2. Hence H(S) is an interval.
In particular, there is s ∈ S such that r := ||x − s||/||x − s′|| is rational. Thus, with
t = r/(1 + r),

x = (1− t)s+ ts′

is a rational convex-combination of two elements in the sphere.
Since f is Q-linear, we conclude that

||f(x)|| ≤ (1− t)||f(s)||+ t||f(s′)|| ≤ (1− t)C + tC = C.

Now let x ∈ E be arbitrary. Choose a null-sequence εn of positive numbers so that
qn := ||x||+ εn is rational. Then, ||x/qn|| ≤ 1. Since f is Q-linear, we obtain

||f(x)|| = qn||f(x/qn)|| ≤ qnC.
Letting n tend to infinity, we get

||f(x)|| ≤ C||x||.
Thus f is continuous at the origin. Since f is additive, we deduce that f is continuous

everywhere; just use f(x0 + x) = f(x0) + f(x)→ f(x0) if x→ 0.

(9) It easily follows now that f is homogeneous: if α ∈ R, choose a sequence (rn) of
rational numbers converging to α. Then, due to continuity,

f(αx) = lim
n
rnf(x) = αf(x).

To sum up, we have shown that f is a continuous linear involution.

Remarks
If n = 1, then the unit sphere S is just a two point set, and so every function is

automatically bounded on S. There exist, though, non-continuous linear involutions
in R. To this end, let B be a Hamel basis of the Q-vector space R, endowed with the
usual Euclidean norm. We may assume that B is dense in R. Fix two elements b0 and
b1 ∈ B. Let f be defined by f(b0) = b1, f(b1) = b0 and f(b) = b if b ∈ B \ {b0, b1}.
Linearly extend f (in a unique way). Then, obviously, f is a linear involution. But f
is not continuous at b0. In fact, let (bk)n≥2 ∈ BN converge to b0. Then f(bk) = bk →
b0 = f(b1) 6= f(b0).
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Solution to problem 11548 in Amer. Math. Monthly 118 (2011), 85, by
Raymond Mortini and Jérôme Noël

Let f ∈ C2([−1, 1]), f(0) = 0. Then(∫ 1

−1
f(x)dx

)2

≤ 1

10

∫ 1

−1
(f ′′(x))2dx.

Moreover, the constant 1/10 is best possible.

Solution We consider the auxiliary integral

I =
1

2

[∫ 1

0
(t− 1)2f ′′(t)dt+

∫ 0

−1
(1 + t)2f ′′(t)

]
.

We first show that I =
∫ 1
−1 f(t)dt. In fact, twice integration by parts yields:∫ 1

0
(t− 1)2f ′′(t)dt = −f ′(0)− 2

∫ 1

0
(t− 1)f ′(t)dt = −f ′(0) + 2

∫ 1

0
f(t)dt,

as well as∫ 0

−1
(t+ 1)2f ′′(t)dt = f ′(0)− 2

∫ 0

−1
(t+ 1)f ′(t)dt = f ′(0) + 2

∫ 0

−1
f(t)dt.

This proves the first claim. Now we use the Cauchy-Schwarz inequality to estimate I:(∫ 1

0
(t− 1)2f ′′(t)dt

)2

≤
∫ 1

0
(t− 1)4dt

∫ 1

0
(f ′′(t))2dt =

1

5

∫ 1

0
(f ′′(t))2dt,

and similarily for the second integral. Hence, by using that (A+B)2 ≤ 2(A2 +B2), we
obtain

I2 ≤ 2
1

4

(
1

5

∫ 1

0
(f ′′(t))2dt+

1

5

∫ 0

−1
(f ′′(t))2dt

)
=

1

10

∫ 1

−1
(f ′′(t))2dt.

The constant 1/10 is obtained for the function

f(t) =

{
1
12 t

4 + 1
3 t

3 + 1
2 t

2 if −1 ≤ t ≤ 0
1
12 t

4 − 1
3 t

3 + 1
2 t

2 if 0 ≤ t ≤ 1.

Indeed, this follows from the fact that in the Cauchy-Schwarz inequality we actually
have equality if the functions are colinear: p′′(t) = (1 + t)2 if −1 ≤ t ≤ 0 and p′′(t) =
(1− t)2 if 0 ≤ t ≤ 1. A computation then shows that(∫ 1

−1
p(x)dx

)2

=
1

10

∫ 1

−1
(p′′(x))2dx =

1

25
.
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Remark If f ∈ C2([−1, 1]) satisfies f(1) = f(−1) = f ′(1) = f ′(−1) = 0, then the
inequality above holds, too. In fact.∫ 1

−1
f(x)dx =

∫ 1

−1
1 · f(x)dx = xf(x)|1−1 −

∫ 1

−1
xf ′(x)dx =

= −1

2
x2f ′(x)|1−1 +

1

2

∫ 1

−1
x2f ′′(x)dx =

1

2

∫ 1

−1
x2f ′′(x)dx

Thus, by Cauchy-Schwarz,(∫ 1

−1
f(x)dx

)2

≤ 1

4

∫ 1

−1
x4dx

∫ 1

−1
(f ′′(x))2dx =

1

4
· 2

5

∫ 1

−1
(f ′′(x))2dx.
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Solution to problem 11456 AMM 116 (2009), 747

am := 1− 1

m
+

5

4

1

m2
=

1 +
(

2m−1
2

)2
m2

n∏
m=1

am =

∏n
m=1

(
1 +

(
2m−1

2

)2)∏n
m=1m

2

∏2n
m=1m

2∏n
m=1(2m− 1)2

∏n
m=1(2m)2

=

∏n
m=1

(
1

(2m−1)2
+ 1

4

)
(2n)!2

4n(n!)4
=

∏n
m=1

(
4

(2m−1)2
+ 1
)

(2n)!2

16n(n!)4
.

Now, by Stirlings formula,

(2n)!

4nn!2
∼ (2n)2ne−2n

√
4πn

(nne−n
√

2πn)222n
=

1√
πn

.

Since cos(πz) =
∏∞
n=1

(
1− 4z2

(2n−1)2

)
, we have

lim
n
n

n∏
m=1

am =
cos(πi)

π
=

coshπ

π
.

We note that√√√√ n∏
m=1

am =
1

n!

n∏
m=1

∣∣∣∣i− 2m− 1

2

∣∣∣∣ = (n+ 1)
2√
5

|f (n+1)(0)|
(n+ 1)!

,

where f(z) = (1 − z)i+
1
2 , an interesting function in the Wiener algebra (its Taylor

coefficients behave like n−3/2 by the above calculations).
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Solution to problem 11402, AMM 115 (10), (2008), p. 949.

The problem obviously is equivalent to show the existence of two points 0 < a < b < 1
with f(a) = f(b) = b− a, or in other words, find 0 < a < b < 1 with b− f(b) = a and
f(b) = f(a).

To this end, consider the function h(x) := f(x − f(x)) − f(x), where we have con-
tinuously extended f by the value 0 for x < 1 and x > 1. Then h is continuous. We
have to show that h admits a zero b in ]0, 1[ with f(b) < b. Then a := b− f(b) ∈ ]0, 1[
and b− a = f(b) = f(a).

To do this, we prove that h takes positive and negative values on [0, 1]. Since h(0) =
h(1) = 0, the continuity of h implies that h has a zero b in ]0, 1[. Our construction will
guarantee that f(b) < b.

Let ξ0 be the largest fixed point of f (note hat 0 ≤ ξ0 < 1). For later purposes, we
note that f(x) ≤ x whenever ξ0 ≤ x ≤ 1. If ξ0 = 0, we let x0 be the be the smallest point
for which f(x0) = M := maxx∈[0,1] f(x). Note that x0 ∈ ]0, 1[. Finally, let x1 ∈ [ξ0, 1[
be the largest point with f(x1) = M1 := maxx∈[ξ0,1] f(x). Then 0 < x0 ≤ x1 < 1.
Since the function x − f(x) is 0 at ξ0 and 1 at 1, the intermediate value theorem for
continuous functions implies that there exists y1 ∈ ]ξ0, 1[ such that y1 − f(y1) = x1.
Since f > 0, y1 > x1. Thus

h(y1) = f(y1 − f(y1))− f(y1) = f(x1)− f(y1) = M1 − f(y1) > 0.

On the other hand, h(ξ0) = f(ξ0 − f(ξ0)) − f(ξ0) = 0 − f(ξ0) < 0 if ξ0 > 0, and
if ξ0 = 0, then, h(x0) = f(x0 − f(x0)) − f(x0) < 0 (since x0 − f(x0) is left from the
smallest maximal point x0 of f .)

In both cases, there exists b such that h(b) = 0. Since ξ0 < b < y1 if ξ0 > 0 and
0 < x0 < b < y1 if ξ0 = 0, we see that f(b) < b.
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Solution to problem 11333, AMM 114 (10), (2007), p. 926.

Let

PN =

N∏
n=2

((
n2 − 1

n2

)2(n2−1)(
n+ 1

n− 1

)n)
.

a) We have the following equalities:

N∏
n=2

(
n2 − 1

n2

)n2−1

=
(N + 1)N

2−1

NN(N+2)
(N !)2,

b)
N∏
n=2

(
n+ 1

n− 1

)n
=

(N + 1)NNN+1

2(N !)2
.

Hence √
PN =

(N + 1)N
2−1

NN(N+2)
(N !)2 (N + 1)N/2N (N+1)/2

√
2N !

=(
N + 1

N

)N2−1 NN2−1

NN(N+2)
N !

(N + 1)N/2N (N+1)/2

√
2

=(
N + 1

N

)N2−1

N !
(N + 1)N/2

NN/2
√

2

N (N+1)/2NN/2

N2N+1
=(

N + 1

N

)N2−1

N !

(
1 + 1

N

)N/2
√

2

√
N

NN+1
.

We are now using Stirling’s formula telling us that n! ∼ e−nnn
√

2πn. Hence√
PN ∼

√
e√
2
NNe−N

√
2πN

(
N + 1

N

)N2−1 √N
NN+1

=

√
e
√
πe−N

(
N + 1

N

)N2−1

.

But aN := e−N
(
N + 1

N

)N2−1

→ 1√
e

as N → ∞; in fact, by taking logarithms we

obtain
log an = (N2−1) log(1+ 1

N )−N ∼ N2 log(1+ 1
N )−N = N2( 1

N −
1

2N ±· · · )−N ∼ −
1
2 .

Hence
√
PN →

√
π and so PN → π.
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Solution to problem 11226, AMM 113 (5), (2006), p. 460.

Let h(x) =
∏n
j=1(1 − xaj ). Then h′(x)/h(x) = −

∑n
j=1

ajx
aj−1

1−xaj and hence h′(x) =

−
∑n

j=1 ajx
aj−1

∏
k 6=j(1− xak). Clearly h′(0) = h′(1) = 0. Let

f(x) = (1− x)−1
n∏
j=1

(1− xaj )

if 0 ≤ x < 1. Note that f(0) = 1 and limx→1 f(x) = −h′(1) = 0. Thus, if we show that
f ′(0) > 0 and that the derivative of f has a unique zero in the open interval ]0, 1[, we
are done (that is we can then conclude by the intermediate value theorem that there
is a unique x0 with 0 < x0 < 1 so that f(x0) = 1, and hence h(x0) = 1− x0.)

Now, f ′(x)/f(x) = 1
1−x + h′(x)/h(x). In particular, f ′(0) = 1. Thus we have to

look for x ∈]0, 1[ so that g(x) :=
∑n

j=1 ajx
aj−1 1−x

1−xaj = 1. But g(0) = 0, and, by de

l’Hopital’s rule, limx→1 g(x) = n. The intermediate value theorem yields the existence
of x. The uniqueness of such an x follows from the fact that g is strictly increasing.

This is due to the fact that the function xa−1−xa
1−xa is strictly increasing on ]0, 1[ whenever

a > 1.
The latter follows from the fact that

d

dx

xa−1 − xa

1− xa
=
xa−2

(
(a− 1) + xa − ax

)
(1− xa)2

and that k(x) := a − 1 + xa − ax ≥ 0 for 0 ≤ x ≤ 1, because k(0) = a − 1 > 0,
k(1) = 0 and k′(x) = a(xa−1 − 1) ≤ 0.
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Solution to problem 11210, AMM 113 (3), (2006), p. 267.

We note that

pn :=
(2n+ 1)4 − (2/π)4

(2n+ 1)4
=

(
1−

[
2

π(2n+ 1)

]4
)

=(
1− 4

π2(2n+ 1)2

) (
1 +

4

π2(2n+ 1)2

)
.

Multiplying in the numerator and denominator (which is 1) with the ”missing” fac-
tors (

1− 4

π2(2n)2

) (
1 +

4

π2(2n)2

)
we obtain

P :=
∞∏
n=0

pn =
∞∏
k=1

(
1− 4

π2k2

) (
1 + 4

π2k2

)(
1− 1

π2k2

) (
1 + 1

π2k2

) .
Using the standard infinite product representation of the sinus

sin z

z
=
∞∏
k=1

(
1− z2

π2k2

)
,

we obtain

P =
sin 2

2
sin(2i)

2i
sin 1

1
sin i
i

= cos 1 cosh 1 = (cos 1)
e2 + 1

2
.
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Solution to problem 11202, AMM 113 (2), (2006), p. 179.

The assertion is an immediate consequence of Hölder’s inequality: Wlog let 0 ≤ aj ≤
1 and let q ∈]0, 1[ be such that p+ q = 1 (note that p ∈ ]0, 1[.)

np−1
n∑
j=1

apj = np−1

 N∑
j=1

apj +
n∑

j=N+1

apj · 1

 ≤
N

n1−p +

 n∑
j=N+1

(apj )
1/p

p n∑
j=N+1

11/q

q

1

n1−p ≤

N

n1−p +

 ∞∑
j=N+1

aj

p

nq

n1−p =
N

n1−p +

 ∞∑
j=N+1

aj

p

≤ ε

if N and n > N is sufficiently big.
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Solution to problem 11185 AMM 112 (2005), 840 by
Rainer Brück, Raymond Mortini

We claim that

I(α, p) converges if and only if (α, p) ∈ ]1,∞[× N or (α, p) ∈
]

1
2 , 1
]
× (2N + 1).

First we discuss the behaviour of the integrand at the origin. For α > 0 we have∣∣log
(
1 + sinp x

xα

)∣∣ ≤ log (1 + x−α). Substituting 1
x by t, we obtain∫ 1

0
log
(
1 + x−α

)
dx =

∫ ∞
1

log (1 + tα)

t2
dt ,

and this integral is convergent. Hence, our integral I(α, p) converges at 0 for every
α > 0 and p ∈ N.

Now we discuss the behaviour at infinity. Since lim
t→0

log (1+t)
t = 1, we see that at

infinity

A(x) := log

(
1 +

sinp x

xα

)
∼ sinp x

xα
=: B(x) .

Hence
∫∞

1 A(x) dx converges absolutely if and only if
∫∞

1 B(x) dx does. Note that by

Riemann’s convergence test
∫∞

1 |B(x)| dx ≤
∫∞

1
dx
xα < ∞ whenever α > 1. Hence,∫∞

1 A(x) dx is absolutely convergent for α > 1.

Now suppose that 0 < α ≤ 1. On the intervals Jk :=
[
π
6 + 2kπ, π2 + 2kπ

]
, k ≥ 1, we

have | sinx| ≥ 1
2 and x ≥ 1. Hence sinp x

xα ≥ 2−p

x ≥
2−p

2π(k+1) . Therefore,∫
Jk

|B(x)| dx ≥ 1

3
· 2−p−1

k + 1
.

Since
∫∞

1 |B(x)| dx ≥
∑∞

k=1

∫
Jk
|B(x)| dx, we see that

∫∞
1 |B(x)| dx and hence

∫∞
1 |A(x)| dx

diverges (absolutely) for 0 < α ≤ 1. In particular,
∫∞

1 A(x) dx diverges whenever p is
even, since in that case |A(x)| = A(x).

To continue, we may thus assume that p = 2n + 1 is odd. We use that for every

α > 0 and n ∈ N the integral
∫∞

1
sin2n+1 x

xα dx converges. Indeed, let Im(x) :=
∫ x

1
sinm t
tα dt

and let Fm be a primitive of sinm t with Fm(1) = 0. For m odd, Fm is periodic, hence
bounded. By partial integration we obtain

I2n+1(x) =
F2n+1(x)

xα
+ α

∫ x

1

F2n+1(t)

tα+1
dt ,

and we conclude that I2n+1(x) converges as x→∞.
Now we use the Taylor development

log (1 + u) =

m−1∑
k=1

(−1)k−1

k
uk +

(−1)m−1

m
um (1 + ε(u)) ,
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where ε is a continuous function of u and ε(0) = 0. In particular, |ε(u)| < 1 whenever

|u| ≤ δ with δ > 0 sufficiently small. Now, we set u = u(x) = sin2n+1 x
xα , where x > 0 is

so large that |u| ≤ δ. Then for sufficiently large real numbers M > N , we have

I :=

∫ M

N
log

(
1 +

sin2n+1 x

xα

)
dx =

m−1∑
k=1

(−1)k−1

k

∫ M

N

(
sin2n+1 x

xα

)k
dx

+
(−1)m−1

m

∫ M

N

(
sin2n+1 x

xα

)m
(1 + ε(u(x))) dx =:

m−1∑
k=1

Ik + Ĩm .

Choosing m ∈ N such that mα > 1 and (m− 1)α ≤ 1, the boundedness of ε(u) yields

the absolute convergence of the last integral Ĩm. If 1
2 < α ≤ 1, then m = 2 and hence

I = I1 + Ĩ2. But I1 and Ĩ2 converge, and hence I converges. If 0 < α ≤ 1
2 , then m ≥ 3

and at least a third integral I2 above appears. That integral is divergent, since the
exponent of the sin is an even one (note that by the choice of m, the exponent of x is
still at most 1). Since all those divergent integrals I2q come up with the same sign, we
finally get the divergence of I1 + I2 + · · ·+ Im−1, and thus I diverges.

Finally, we note that the example p = 1 and α = 1
2 yields examples of functions f

and g such that at infinity, f ∼ g, but for which
∫∞

0 f(x) dx diverges and
∫∞

0 g(x) dx

converges, namely f(x) = log
(

1 + sinx√
x

)
and g(x) = sinx√

x
.
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Solution to problem 11147 AMM 112 (2005), 366 by
Pamela Gorkin, Raymond Mortini

Let S(z) = exp
(
−1+z

1−z

)
be the atomic inner function. Put

f =
1/e− S

1− (1/e)S
.

Then f is an inner function (that is it has radial limts of modulus one almost every-
where). Since f does not have radial limit zero, it must be a pure Blaschke product
(see Garnett, p.76), that is

f(z) = eiθz
∏

n∈Z\{0}

|an|
an

an − z
1− anz

.

Its zeros are exactly the numbers an for n ∈ Z \ {0}, including the the origin. Since
the derivative of S is S′(z) = −S(z) 2

(1−z)2 , it follows that the derivative of f does not

vanish either. But

S′(z)

S(z)
=

1

z
+

∑
n∈Z\{0}

(
1

z − an
− 1

z − a∗n

)
.
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Solution to problem 11136 AMM 112 (2005), 181

Let Dn = D(λn, rn) be a sequence of pqirwisw disjoint, closed disks contained in the
open unit disk D such that the area measure of D \

⋃
Dn is zero. Noticing that by the

mean-value area theorem for harmonic functions∫ ∫
D(λ,r)

u(z)dA(z) = πr2u(λ),

we obtain the assertion

0 = u(0) =

∫ ∫
D
u(z)dA(z) =

∑
n

∫ ∫
Dn

u(z)dA(z) = π
∑
n

r2
nu(λ).

Remark The problem was motivated by the question, circulating in England, and
communicated to me by Joel F. Feinstein, whether the set of exponentials {eiλz : λ ∈ C}
is countably linear independent! The method for the proof above presumably appeared
for the first time in a paper of J. Wolff [Comptes Rendus Acad. Sci. Paris 173 (1921),
1056-1058].
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solution of problem 11070, AMM 111 (2004), p. 258

Let N = {1, 2, · · · } and f, g ∈ Cn(Ω). Then the result follows from the following
formula:

(f ◦ g)(n)(z) =
n∑
j=1

f (j)(g(z))

(∑
k∈Nj
|k|=n

Cnk g
(k)(z)

)
, (Mon)

where k = (k1, k2, . . . , kj) ∈ Nj is an ordered multi-index with k1 ≤ k2 ≤ · · · ≤ kj ,

|k| =
∑j

i=1 ki, g(k) = g(k1)g(k2) . . . g(kj) and Cnk =
1∏

i[Ak(i)!]

(
n

k

)
. Here Ak(i)

denotes the cardinal of how often i appears within the ordered index k and
(
n
k

)
=

n!
k1!k2!...kj !

.

This formula has many advantages vis-̊a-vis the Faa di Bruno formula

(f ◦ g)(n) =
∑(

n

p

)
(f (p) ◦ g)

n∏
j=1

(
g(j)

j!

)pj
,

where pj ∈ {0, 1, 2, · · · }, p = p1 + p2 + · · · + pn and p1 + 2p2 + · · · + npn = n, since
one immediately can write down all the factors that occur without solving the above
equations for pj .

Case 1: Let f(z0) = g(z0) = z0, A := f ′(z0) = g′(z0) 6= 0, Ap 6= 1 ∀p ∈ N and
f ◦ g = g ◦ f .

In order to show that f ≡ g it is enough to prove that f (n)(z0) = g(n)(z0) for all n.
The proof is done inductively:
n = 2: Since (f ◦ g)′′ = (f ′′ ◦ g)g′2 + (f ′ ◦ g)g′′ and f ◦ g = g ◦ f we get: f ′′(z0)A2 +

Ag′′(z0) = g′′(z0)A2 +Af ′′(z0). Hence f ′′(z0)(A− 1) = g′′(z0)(A− 1). Since A 6= 1 we
obtain that f ′′(z0) = g′′(z0).
n→ n+ 1:

(f ◦ g)(n+1) = (f ′ ◦ g)g(n+1) +
n∑
j=2

(f (j) ◦ g)
∑
k∈Nj
|k|=n+1

Cn+1
k g(k) + (f (n+1) ◦ g)(g′)n+1

Evaluating at z0 and noticing that, by induction hypotheses, all derivatives appearing
in the middle term coincide at z0 with those when f is replaced by g, we get that

Ag(n+1)(z0) + f (n+1)(z0)An+1 = Af (n+1)(z0) + g(n+1)(z0)An+1.

Hence f (n+1)(z0)(An−1) = g(n+1)(z0)(An−1), from which we conclude that f (n+1)(z0) =

f (n+1)(z0), because An 6= 1.

Case 2: f(z0) = g(z0) = z0, f (j)(z0) = g(j)(z0) = 0 for 1 ≤ j < n0, but f (n0)(z0) =

g(n0)(z0) 6= 0 and f ◦ g = g ◦ f .
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Suppose that f (j)(z0) = g(j)(z0) has been shown to be true for j < n, where n =
pn0 + q, with 0 ≤ q < n0 and p ≥ 1. We show that this holds then for j = n.

Let N = n2
0 + (p− 1)n0 + q and consider (f ◦ g)(N)(x0). All the terms in (Mo)N with

j < n0 disappear, since f (j)(g(z0)) = f (j)(z0) = 0. Moreover, as we are going to show,
all other terms, excepted the term for j = n0 and the index k = (n0, · · · , n0, pn0 +
q) ∈ Nn0 , coincide for f and g; hence can be thrown off when regarding the equality

(f ◦ g)(N) = (g ◦ f)(N). Thus that equality is equivalent to

f (n0)(g(z0))(g(n0))n0−1(z0)g(pn0+q)(z0) = g(n0)(f(z0))(f (n0))n0−1(z0)f (pn0+q)(z0)

But this implies of course that f (pn0+q)(z0) = g(pn0+q)(z0), which is what we were
after.

That one can restrict to this single index k = (n0, · · · , n0, pn0 + q) ∈ Nn0 is seen as
follows: Let k′ ∈ Nn0 , be an ordered index with |k′| = |k| = (n0 − 1)n0 + pn0 + q = N .
Suppose that the last coordinate of k′ (which is the maximum) is strictly bigger than
the last coordinate of k. Then at least one of the previous coordinates of k′ must be
strictly smaller than n0. But the associated derivatives of g (resp f) vanish at z0. Thus

this term does not appear in the formula for (f ◦ g)(N)(z0). On the other hand, if the
last coordinate of k′ is strictly less than pn0 + q (hence all of the coordinates of k′),

then by induction all the associated derivatives of g (in (f ◦ g)(N)) coincide with those

for f (in (g ◦ f)(N)) at z0. Thus these terms can be thrown away.
Now let k′ ∈ Nj with n0 < j ≤ N and |k′| = N . Then the maximum of the

coordinates of k′ is strictly less than pn0 +q, since otherwise |k′| ≥ (j−1)n0 +pn0 +q ≥
n2

0 + pn0 + q > N , a contradiction. Thus, as above, also these terms can be thrown
away.
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No own solution of problem 10991, AMM 110 (2003), p. 155
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solution of problem 10890, AMM 108 (2001), p. 668

Let d denote the Euclidean metric on R and let f be an injective real-valued function
on R. It is easy to see that the function ρ(x, y) = |f(x)− f(y)| defines a second metric
on R, i.e. satisfies the axioms

(D1) ρ(x, y) ≥ 0, ρ(x, y) = 0⇐⇒ x = y,
(D2) ρ(x, y) = ρ(y, x)
(D3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ R.

Let Bd(x0, ε) resp. Bρ(x0, ε) denote the open balls of radius ε and center x0 with
respect to the distances d and ρ.

Let us now additionally assume that f is increasing, one-sided continuous but not
continuous, and has only a finite number of discontinuities. This guarantees that I :=
f(R) is a union of non-degenerated intervals, with pairwise disjoint closures. The
inverse function f−1 : I → R then is continuous on I. Fix x0. Hence for every ε > 0
there exists δ > 0 such that Bρ(x0, δ) ⊆ Bd(x0, ε).

Let x0 be a point at which f is, say, left-continuous. Then for every ε > 0 there
exists δ > 0 such that for all x < x0, d(x, x0) < δ implies ρ(x, x0) = |f(x)− f(x0)| < ε.
Let x1 = x0 − 1

2δ. Then Bd(x1, δ/2) ⊆ Bρ(x0, ε).
Thus each ball in the d-metric contains a ball in the ρ-metric, and vice-versa.
It is clear that the identity map id: (R, ρ)→ (R, d), although being continuous, has

no continuous inverse. Note that id : (R, d) → (R, ρ) is continuous at x0 if and only if
f is continuous at x0. Thus the two topologies are distinct.

Remark If we additionally assume that (X, dj) are topological vector spaces, then
the answer is yes. This is due to the fact that these topologies can be generated
by translation invariant metrics d′1 and d′2. In fcat, ∀ε > 0 ∃δ > 0 : Bd′1(x0, δ) ⊆
Bd′2(0, ε/2). In particular, x0 and −x0 are in Bd′2(0, ε/2). Hence

Bd′1(0, δ) = −x0 +Bd′1(x0, δ) ⊆ Bd′2(0, ε/2) +Bd′2(0, ε/2) ⊆ Bd′2(0, ε).

The problem was alspo solved by Matthias Bueger and Dietmar Voigt (Germany).
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solution of problem 10857 (a), AMM 108 (2001), p. 172

Let C2n =

n∑
j=0

x2j

(2j)!
and S2n+1 =

n∑
j=0

x2j+1

(2j + 1)!
. We show that, for every x > 0, the

sequence (S2n+1

C2n
) is strictly decreasing, whereas (S2n−1

C2n
) is stricly increasing. Since both

sequences converge to tanhx we get that S2n−1

C2n
< tanh < S2n+1

C2n
.

i) We have the following equivalences:

(
S2n+1

C2n
)↘⇐⇒ S2n+1

S2n−1
<

C2n

C2n−2
⇐⇒

S2n−1 + x2n+1

(2n+1)!

S2n−1
<
C2n−2 + x2n

(2n)!

C2n−2
⇐⇒

⇐⇒ 1 +

x2n+1

(2n+1)!

S2n−1
< 1 +

x2n

(2n)!

C2n−2
⇐⇒ xC2n−2 < (2n+ 1)S2n−1 ⇐⇒

n−1∑
j=0

x2j+1

(2j)!
< (2n+ 1)

n−1∑
j=0

x2j+1

(2j + 1)!
(1)

But 1
(2j)! < (2n + 1) 1

(2j+1)! ⇐⇒ 2j + 1 < 2n + 1, which is true. Since x > 0 we get

(1).

ii) That (S2n−1

C2n
) is stricly increasing, is shown in exactly the same way.

To sum up, we get

C2n+2

C2n
<
S2n+1

S2n−1
<

C2n

C2n−2
.
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solution of problem 10854 AMM 108 (2001), p. 171

Suppose that f : R→ R is a function, continuous at the origin, and satisfying

f(x+ 2f(y)) = f(x) + f(y) + y (1)

for all x, y ∈ R. First, we shall show that f is continuous everywhere. In fact,

f
(
x+ 2f(x+ 2f(y))

)
= f(x+ 2[f(x) + f(y) + y]) = f

(
[x+ 2y + 2f(y)] + 2f(x)

)
=

= f
(
(x+ 2y) + 2f(y)

)
+ f(x) + x = f(x+ 2y) + f(y) + y + f(x) + x. (2)

On the other hand:

f
(
x+ 2f(x+ 2f(y))

)
= f(x) + f(x+ 2f(y)) + x+ 2f(y) =

= f(x) + [f(x) + f(y) + y] + x+ 2f(y) = 2f(x) + 3f(y) + y + x. (3)

By (2) and (3) we get that f(x+ 2y) = f(x) + 2f(y) ∀(x, y) ∈ R2.

In particular, by setting x = y = 0, we see that f(0) = 0.
It easily follows that f is continuous at every point x ∈ R.

So, in order to continue, we may assume that f is a continuous solution of (1).
Let x = y. Then

f(y + 2f(y)) = y + 2f(y). (4)

First we shall determine all continuous solutions of (4). Let g(y) = y + 2f(y).
Since g is continuous, g(R) is either a singleton or a nondegenerate interval I. If g
is constant, say g ≡ c, then f(y) = c−y

2 and so c = f(y + 2f(y)) = f(c), from which
we conclude that c = 0. Hence f(y) = −y

2 . If g is not constant, take z ∈ I; that is
y + 2f(y) = g(y) = z for some y. Then f(z) = z. Hence f is the identity on I. It
follows that 3z = z+2f(z) = f(z+2f(z)) = g(z). Therefore 3z ∈ I and so I =

〈
m,∞[

for some m ∈ R ∪ {−∞}. Thus f(x) = x for every x > m. Since g ≥ m, we have that
f ≥ m−y

2 on ] −∞,m].

To prove the converse, choose m ∈ R. Let f∗ be any continuous function on ]−∞,m]
such that f∗(y) ≥ m−y

2 for y ≤ m and so that f∗(m) = m. Then

f̃(y) =

{
f∗(y) if y ≤ m
y if y ≥ m

(5)

is a continuous solution of (4).

We deduce that any continuous solution of (1) necessarily has the form (5) or equals
−1

2y. We shall now show that only for f∗ = id, we really get a solution of (1).



72

So let f be a continuous solution of (1). Then f = f̃ for some f∗. Fix x < m. Take
y > m so that x+ 2y > m. Then
f(x + 2f(y)) = f(x + 2y) = x + 2y and f(x) + y + f(y) = f∗(x) + 2y. Hence (1)

implies that f∗(x) = x.

We conclude that f is a continuous solution of (1) if and only if f(x) = x or f(x) =
−x

2 on R.
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solution of problem 10768 AMM 106 (1999), 963

a) Let f(x) =
√
|x| sin 1

x
for x 6= 0 and f(0) = 0. Then f is continuous on R. Let

g be a differentiable function on R. Then, in every neigborhood of 0, h := f + g− g(0)

takes negative and positive values. In fact, suppose that h ≥ 0 on [0, ε]. Then h(x)
x ≥ 0

on [0, ε]. But lim infx→0+
h(x)
x = g′(0) + lim infx→0+

1√
x

sin 1
x = −∞, a contradiction.

Thus f + g is not monotone on any interval centered at 0.

b) Let f(x) = x2 sin
1

x2
for x 6= 0 and f(0) = 0. Then f is differentiable on R,

f ′(0) = 0, but f ′(x) = 2x sin 1
x2
− 2

x cos 1
x2

takes arbitrarily large negative and positive

values in any neighborhood U of 0. Let g be any C1(R) function. In particular, g′ is
bounded on every compact interval centered at 0. Hence f ′ + g′ takes arbitrary large
negative and positive values in U . Thus f +g is not monotone on any interval centered
at 0.

c) We show that for every function f ∈ C1(R) there exists an entire function g (that
is a function holomorphic on the whole plane), real-valued on R, such that f + g is
increasing on R. In fact, f ′ + 2|f ′| + 2ε ≥ 2ε > 0 on R. Let q = 2|f ′| + 2ε. Then q
is continuous on R. By Carleman’s theorem (see [C] and [G], p. 125), there exists an
entire function Q such that q−Q∞ ≤ ε, where · ∞ denotes the supremum norm on R.

Let G(x) = Re Q(x). Then q−G ≤ ε. Moreover, the function H(z) = 1
2

(
Q(z) +Q(z)

)
is analytic in C, and H coincides on R with G.

Now it is easy to check that f ′ + G ≥ ε > 0. Let g be a primitive of G. Then g is
the trace of an entire function and f + g is (strictly) increasing, since its derivative is
strictly positive.
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solution of problem 10747 AMM 106 (1999), p. 685

We claim that all differentiable solutions f of f ′(f(t)) = 2f(t), t ∈ R, f(1) = 1, and
having only one real root, have the form f(t) = t2 for t ≥ 0 and f(t) = g(t) for t < 0,
where g is an arbitrary differentiable function, defined on ] −∞, 0] satisfying g(t) > 0
for t < 0 and g(0) = g′(0) = 0. The assumption, that f should be twice differentiable
in a neighboorhood of 0, is not important.

Proof Let f be a solution of the problem. Put h = f ◦ f − f2. Then h′ = (f ′ ◦
f)f ′ − 2f ′f = f ′(f ′ ◦ f − 2f) ≡ 0. Hence h is a constant, say C. Because h(1) = 0,
we see that C = 0 and so f ◦ f = f2. Let y ∈ f(R). Then f(x) = y for some
x ∈ R. Therefore f(y) = f(f(x)) = f2(x) = y2. By hypothesis, {0, 1} ⊆ f(R). By
continuity we conclude that [0, 1] ⊆ f(R). Since the left derivative at x = 1 is 2, the
differentiability of f now implies that there exists points x0 greater than 1 for which
f(x0) > f(1) = 1. Since fn+1 = f2n , we obtain that fn+1(x0) = [f(x0)]2

n →∞. Hence
f is unbounded. By the intermediate value theorem, we then get that [0,∞] ⊆ f(R).
Hence f(x) = x2 for x ≥ 0.

To determine the behaviour of f for negative values, we use the hypothesis that
f should have only one zero. Since f(0) = 0, by continuity, we conclude that either
f(x) < 0 for all x < 0 or f(x) > 0 for all x < 0. But f(x0) < 0 for some (all) x0 < 0
implies that f(f(x0)) = f2(x0) > 0, a contradiction. Thus f(x) > 0 for x > 0.

It is easy to check that every function of the form f(x) = x2 for x ≥ 0 and f(x) = g(x)
for x < 0, where g > 0 is differentiable and satisfies g(0) = g′(0) = 0, is a solution
of f ◦ f = f2. Hence, by differentiating, f ′(f(x))f ′(x) = 2f ′(x)f(x). If f ′(x) 6= 0,
then we are done. If f ′(x0) = g′(x0) = 0 for some x0 < 0, then we use the fact that
y := f(x0) > 0 and that for these positive values f(y) = y2. Hence, f ′(f(x0)) = 2f(x0).
So we obtain a solution of our functional equation.
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solution of problem 10739 AMM 106 (1999), p. 586

Let H(x) = f(x)−f(0)
x−0 = f(x)

x . Since f ′′(x) > 0, the function f is strictly convex

and both its derivative and the quotient H are strictly increasing (see e.g. W. Walter,
Analysis 1, Springer-Verlag, p. 303). Moreover, H is continuous on ]0, 1]. Note that
H(1) = f(1) and that H(0) := limx→0 f

′(x) exists in [−∞, f(1)]. Hence, by the
intermediate value theorem, there exists for every value w with H(0) < w < H(1) a
point b ∈]0, 1[ with H(b) = w. Now choose a ∈]0, 1[ such that w := f ′(a) satisfies
H(0) < w < H(1) (such a choice obviously is possible). Thus there exists b ∈]0, 1[

so that f(b)
b = H(b) = f ′(a). Choose xa ∈]0, a[ so that H(a) = f ′(xa). Due to the

monotonicity of f ′ we obtain: H(a) = f ′(xa) < f ′(a) = H(b). Since H is monotone, b
is unique and satisfies a < b < 1.
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solution of problem 10697 AMM 105 (1998), p. 955

This is nothing but a Lagrange interpolatory argument:

In fact let w1, · · · , wn ∈ C. Then

p(z) =
n∑
k=1

wk

∏n
j=1,j 6=k(z − zj)∏n
j=1,j 6=k(zk − zj)

is the unique polynomial of degree at most n−1 satisfying p(zk) = wk, k = 1, · · · , n.
Now choose wk = 1 for every k. Since q(z) ≡ 1 satisfies the interpolation q(zk) = wk,
we obtain from uniqueness that q = p. Let z = 0. Then

1 = q(0) =
n∑
k=1

n∏
j=1
j 6=k

(−zj)
zk − zj

= (−1)n−1
n∑
k=1

∏n
j=1,j 6=k zj∏n

j=1,j 6=k(zk − zj)
.

Dividing by
∏n
j=1 zj , yields the assertion

n∑
k=1

1

zk

n∏
j=1
j 6=k

1

zk − zj
=

(−1)n−1∏n
j=1 zj

.
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solution of problem 10651 AMM 105 (1998), p. 271

We prove a stronger version than in the formulated problem.

Proposition 1 Let u and v be two non constant harmonic functions on a domain
D ⊆ C. Suppose that uv is harmonic. Then u has an harmonic conjugate ũ on D and
there are constants a, b ∈ R such that

v = aũ+ b. (1)

Remarks. (1) If u is a constant, then (1) is not true (because v may be chosen to
be any harmonic function).

(2) If v is a constant then (1) is true for a = 0, provided a harmonic conjugate exists.
A well known sufficient condition for the existence of a harmonic conjugate being that
D is simply connected.

(3) Of course, if v is any harmonic function satisfying (1), then uv is harmonic.

Solution Let ∆ be the Laplace operator. Because ∆u = ∆v = 0 we obtain:

0 = ∆(uv) =
(
uxxv + 2uxvx + vxx

)
+
(
uyyv + 2uyvy + vyy

)
= 2
(
uxvx + uyvy

)
.

Let f = ux − iuy and g = vx − ivy. The harmonicity of u and v imply that f and g
satisfy the Cauchy-Riemann differential equations; hence f and g are holomorphic. It
is easy to see that Re fg = uxvx + uyvy. Thus Re fg ≡ 0 on D.

Let Z(g) = {z ∈ D : g(z) = 0} denote the zero set of g. It is a discrete subset of D
provided that g 6≡ 0. Since v is assumed not to be a constant, we see that g 6≡ 0. Then

on D\Z(g) we have Re
f

g
= Re

fg

|g|2
. Thus Re

f

g
≡ 0 on D\Z(g). This implies, in view

of the analyticity, that f
g is a pure imaginary constant, say f

g ≡ iλ on D \Z(g). Hence

f = iλg on D. The definitions of f and g now yield that ux = λvy and uy = −λvx.
Consequently, by the Cauchy-Riemann equations, the function u+ iλv is holomorphic
on D. In particular, u has an harmonic conjugate on D. (Note that we do not have
assumed that D is simply connected.) Thus, for any other harmonic conjugate ũ of u,
we have λv = ũ + c for some constant c ∈ R. Note that u not constant implies that
λ 6= 0. Thus v has the desired form (1).

A natural question now is the following. Let u and v be two harmonic functions on
a domain D ⊆ C. Then (u+ iv)2 = u2 − v2 + 2iuv. Assume that u2 − v2 is harmonic.
What can be said for v? We have the following result:
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Proposition 2 Assume that u, v and u2 − v2 are harmonic in a simply connected
domain D ⊆ C. Then there exists a ∈ R and θ ∈ [0, 2π[ such that

v = cos θ u− sin θ ũ+ a. (2)

Conversely, every function v satisfying (2) for a harmonic function u has the property
that u2 − v2 is harmonic.

Proof Because ∆u = ∆v = 0 we obtain:

0 = ∆(u2 − v2) = 2
(
u2
x + u2

y − (v2
x + v2

y)
)
.

Hence u2
x + u2

y = v2
x + v2

y . Again, let f = ux− iuy and g = vx− ivy. As above, f and

g are holomorphic on D. Moreover |f |2 = |g|2. Thus g is a rotation of f , say g = eiθf .

Let z0 ∈ D. Since D is simply connected, u and v have harmonic conjugates ũ and
ṽ respectively, satisfying ũ(z0) = ṽ(z0) = 0. Let F = u+ iũ and G = v + iṽ. Then, by
Cauchy-Rieman, F ′ = ux + iũx = ux − iuy = f . Similiarly G′ = g. Thus G = eiθF + c
for some constant c ∈ C. Taking real parts yields

v = cos θ u− sin θ ũ+ a

for some real constant a. The converse is easy to check.
The above results are related to the following more general result:

Proposition 3. Let h be an entire function and let u : D → R and v : D → R
be two nonconstant harmonic functions in a simply connected domain D. Let ũ be a
harmonic conjugate of u in D. Then h(u + iv) : D → C is harmonic if and only if
v = ±ũ+ a for a constant a ∈ R.

Proof Since h is holomorphic, we have, by Cauchy-Riemann, hy = ihx and hx = h′.
Hence hxx = h′′, hxy = hyx = ih′′ and hyy = −h′′. As above, let f = ux − iuy and
g = vx − ivy.Then

∆[h ◦ (u+ iv)] = h′′ ◦ (u+ iv) · [(|f |2 − |g|2) + 2iRe fg].

Obviously h′′ ◦ q 6≡ 0 for any nonconstant continuous function q. Hence h(u+ iv) is
harmonic if and only if |f | = |g| and Re fg = 0. By the paragraphs above we conclude
that f = iλg for some λ ∈ R. Hence |λ| = 1. Thus ux = ±vy and −uy = ±vx. So v or
−v is a harmonic conjugate of u in D. Therefore v = ±ũ+ a.

To prove the converse, we have simply to note that the composition of a holomorphic
function with a holomorphic or anti-holomorphic function is harmonic.
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solution of problem 10638 AMM 105 (1998), p. 69

In the following we present a solution to problem number 10638. We shall not only
compute the functions S0, · · · , S3, but we will give an explicit value for all m ∈ N. To
this end we need the following Lemma.

Lemma Let f(z) = zez. Then f is invertible in a neighborhood of the origin in C
and the inverse function has the Taylor representation

f−1(w) =

∞∑
n=1

nn−1

n!
(−1)n−1wn,

which converges for |w| < 1
e .

Proof By the residue theorem it is easy to see that whenever f is holomorphic and
injective in a disque D ⊆ C (or even a simply connected domain), then

f−1(w)n(Γ, f−1(w)) =
1

2πi

∫
Γ

z
f ′(z)

f(z)− w
dz,

where Γ is an arbitrary cycle (=finite union of closed, piecewise C1-curves) in D.
Applying this formula for f(z) = zez and the disk |z| < 2δ, δ small enough, we

obtain :

dn

(dw)n
f−1(w) =

n!

2πi

∫
|z|=δ

z
(z + 1)ez

(zez − w)n+1
dz.

Thus, for the power series f−1(w) =
∑∞

n=0 anw
n we have a0 = 0 and for n ≥ 1:

an =
1

2πi

∫
|z|=δ

z + 1

zn
e−nz dz =

1

2πi

∞∑
k=0

(−1)k
∫
|z|=δ

z(nz)k + (nz)k

znk!
dz = (−1)n−1n

n−1

n!
.

By d’Alembert’s rule it is easy to check that the radius of convergence is 1/e. ©

Proposition For 0 < λ < 1 and m ∈ Z, let gm(λ) = λmSm(λ), where

Sm(λ) =

∞∑
n=1

e−λn(λn)n−m/n!. (1)

Then, for m ∈ {1, 2, · · · }, gm is a polynomial of degree m vanishing at the origin,
say gm(λ) = −

∑m
n=1 bn,m(−λ)n, and the coefficients bn,m are given by the recurrence

relation

bn,m =
1

n
(bn,m−1 + bn−1,m−1), b1,1 = 1. (3)

Solving these difference equations yields
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bn,m =
n∑
j=1

1

n!

(
n

j

)
(−1)j−1

(
1

j

)m−n
. (4)

Proof We note that, by Stirling’s formula, the series gm(l) converges locally uni-
formly in 0 ≤ l < 1, but does not converge whenever λ = 1 and m = 0. Note that
gm(0) = 0. Due to local uniform convergence, it is easy to see that, in order to obtain
g′m(l), one can differentiate the series for gm term by term. This yields that for m ∈ Z

g′m(λ) =
1− λ
λ

gm−1. (5)

Later we shall show that g1(λ) = λ. Hence, by induction on (5), it is clear that
for m = 1, 2, · · · the function gm is a polynomial vanishing at the origin, say gm(λ) =
−
∑m

n=1 bn,m(−λ)n. If we let x = −λ, then we obtain
∑m

n=1 nbn,mx
n = (1+x)

∑m
n=1 bn,m−1x

n.
Comparing coefficients, finally yields (3).

This difference equation can be solved by the usual methods. May be Maple or
Mathematica gives the solution. In any case, by the uniqueness of the solution, it
suffices to show that (4) verifies the difference equation. Note also, that for n > m,
the bn,m in (4) are 0. This follows from the fact that the p-th difference operator
Dp(an) =

∑p
j=0

(
n
j

)
(−1)jan−j vanishes identically whenever an is a polynomial (in n)

of degree strictly less than p.

For the readers convenience, here are the coefficients for m = 1, · · · , 5:

1
1 1

2

1 3
4

1
6

1 7
8

11
36

1
24

1 15
16

85
216

25
288

1
120

The case m=1 In that case we have

g1(λ) = λ
∞∑
n=1

e−λn(λn)n−1/n! =
∞∑
n=1

nn−1

n!
(λe−λ)n.

Let w = −λe−λ. Now, for w ∈ C, |w| < 1
e , the function h(w) =

∑∞
n=1

nn−1

n! (−1)n−1wn

is, by Lemma 1, nothing but the inverse function of the holomorphic function f(z) = zez

, |z| < δ for sufficiently small δ > 0. Thus g1(λ) = λ.

The case m=0 By (5) we see that 1 = g′1(λ) = 1−λ
λ g0(λ). Hence, g0(λ) = λ

1−λ .

Using (5) it is also easy to derive, inductively, the values of gm for negative integers
m. For example we get:

g−1(λ) =
λ

(1− λ)3
, g−2(λ) =

λ

(1− λ)5
(1+2λ), g−3(λ) =

λ

(1− λ)7
(1+8λ+6λ2).

In general, one can convince oneself that for m ∈ Z,m < 0, gm(λ) has the form
gm(λ) = λ

(1−λ)−2m+1 Qm(λ), where Q is a polynomial of degree −m− 1 with value 1 at

the origin and satisfying the differential equations

Qm−1(λ) = λ(1− λ)Q′m(λ) + (1− 2mλ)Qm(λ).
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Due to lack of time we were not able to solve this explicitely. May be Maple and
Mathematica will be helpfull.
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solution of problem 10624 AMM 104 (1997), p. 871

By Leibniz’s criteria, we know that Sn actually converges and that Sn ≥ 0 for every
n ∈ N. Since Sn = an − Sn+1, we see that Sn ≤ an and so

∑
anSn ≤

∑
a2
n. Thus the

convergence of
∑
a2
n implies the convergence of

∑
anSn.

Now assume that
∑
anSn =

∑
(Sn + Sn+1)Sn (1) converges. Since all the terms

are positive, we deduce the convergence of the sums
∑
S2
n and

∑
Sn+1Sn. A shift

of the variable yields that
∑
S2
n+1 converges. Hence

∑
Sn+1(Sn+1 + Sn) (2) con-

verges. Summing (1) and (2) yields that
∑
a2
n =

∑
(Sn+1 +Sn)2 =

∑
(Sn +Sn+1)Sn +∑

Sn+1(Sn+1 + Sn) is convergent.



83

solution of problem 10605 (b) AMM 104 (1997), p. 567

Write
n2s −m2s

n2s +m2s
=

1− (m/n)2s

1 + (m/n)2s
. Let y =

(m
n

)2
. Then

1− ys

1 + ys
=

∏s−1
j=0

(
1− y exp(−i2πj

s )

)
∏s−1
j=0

(
1− y exp(−iπ+2πj

s )

) .
Since ε ∈ C is an s-root of 1 [resp. (-1)] if and only if ε is an s-root, we obtain:

1− ys

1 + ys
=

(1− y)(1 + y)
∏p−1
j=1

∣∣∣1− y exp(−i2πj
s )
∣∣∣2∏p−1

j=1

∣∣∣1− y exp(−iπ(2j+1)
s )

∣∣∣2
if s = 2p and

1− ys

1 + ys
=

(1− y)
∏p
j=1

∣∣∣1− y exp(−i2πj
s )
∣∣∣2

(1 + y)
∏p−1
j=1

∣∣∣1− y exp(−iπ(2j+1)
s )

∣∣∣2
if s = 2p+ 1.

This can be written by a single formula:

1− ys

1 + ys
= (1− y)(1 + y)(−1)s

s−1∏
k=1

∣∣∣∣1− y exp(−iπk
s

)

∣∣∣∣2(−1)k

. (1)

In particular

s−1∏
k=1

∣∣∣∣1− exp(−iπks )

∣∣∣∣2(−1)k

= lim
y→1

1− ys

1 + ys

(1− y)(1 + y)(−1)s
=

s

2 · 2(−1)s
. (2)

It is easy to check that
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P :=

s−1∏
k=1

(2π2m2)(−1)k =

{
1, if s is odd

1
2π2m2 , if s is even.

(3)

Now use the infinite product representation of the function sinπz. This gives:

sinπz

πz
=

∞∏
n=1

(
1− z2

n2

)
,

and

∞∏
n=1

(
1 +

z2

n2

)
=

sin iπz

iπz
=

sinhπz

πz
.

Moreover we have by de l’Hôpital’s rule that

∞∏
n6=m

(
1− m2

n2

)
= lim

z→m

sinπz

πz

/
1−

( z
m

)2
=

(−1)m+1

2
.

Finally we need that | sin z|2 = 1
2(cosh 2y − cos 2x) for z = x+ iy.

Put all this together to get from (1)

2(−1)s
∏
n6=m

n2s −m2s

n2s +m2s
=

(−1)m+1

2

(
sinhπm

πm

)(−1)s

·
s−1∏
k=1

∣∣∣∣∣∣
∏
n6=m

(
1−

(
m

n
exp(−iπk

2s
)

)2
)∣∣∣∣∣∣

2(−1)k

=

=
(−1)m+1

2

(
sinhπm

πm

)(−1)s s−1∏
k=1

∣∣∣∣∣ sin
(
πm exp(−iπk2s )

)
πm

(
1− exp(−iπks )

)∣∣∣∣∣
2(−1)k

=

=
(−1)m+1

2

(
sinhπm

πm

)(−1)s
∏s−1
k=1

[
1
2

(
cosh

(
2πm sin πk

2s

)
− cos

(
2πm cos πk2s

))](−1)k

∏s−1
k=1

∣∣1− exp(−iπks )
∣∣2(−1)k ·

∏s−1
k=1(πm)2(−1)k

=

=
(−1)m+1

2

(
sinhπm

πm

)(−1)s
∏s−1
k=1

[
cosh

(
2πm sin πk

2s

)
− cos

(
2πm cos πk2s

)](−1)k

∏s−1
k=1

∣∣1− exp(−iπks )
∣∣2(−1)k ·

∏s−1
k=1(2π2m2)(−1)k

=

=

(−1)m+1(sinhπm)(−1)s
∏s−1
k=1

[
cosh

(
2πm sin πk

2s

)
− cos

(
2πm cos πk2s

)](−1)k

(πm)(−1)s
s

2(−1)s
· P
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Clearly
1

(πm)(−1)s s · P
= 2(1+(−1)s)/2

(πm
s

)
.

Putting ε = (1 + (−1)s)/2, we get the final equality:

P2s =
∏
n 6=m

n2s −m2s

n2s +m2s
=

= (−1)m+1 2εmπ

s
(sinhπm)(−1)s

s−1∏
k=1

[
cosh

(
2πm sin

πk

2s

)
− cos

(
2πm cos

πk

2s

)](−1)k

.

If s = 1 we interpret the empty product as 1. This gives

P2(m) = (−1)m+1πm/ sinh(πm).
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solution of problem 10588/10595 AMM 104 (1997), p. 456

We show that

P =
∞∏
n=1

e−
1
n

(
1 +

1

n
+

1

2n2

)
=
eπ/2 + e−π/2

πeγ
.

Let

Γ(z) =

[
eγzz

∞∏
n=1

(
1 +

z

n

)
ez/n

]−1

be the Gamma function and let ε = 1
2(1 + i). Then ε = 1 − ε. Hence, as is well

known,

Γ(ε)Γ(ε) = Γ(ε)Γ(1− ε) =
π

sinπε
.

Therefore

sinπε

π
= eγεε

∞∏
n=1

(
1 +

ε

n

)
e−ε/n × eγεε

∞∏
n=1

(
1 +

ε

n

)
e−ε/n =

= eγ
1

2

∞∏
n=1

(
1 +

ε

n

)(
1 +

ε

n

)
e−1/n =

= eγ
1

2

∞∏
n=1

(
1 +

1

n
+

1

2n2

)
e−1/n.

Hence P =
2 sinπε

πeγ
=

2 coshπ/2

πeγ
, which is the assertion.
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2. Mathematics Magazine

Problem 2187 Math. Mag. 97 (1) 2024, p. 81 by
Raymond Mortini, Rudolf Rupp

We claim that for r > s ≥ 0,�
�

�
�P :=

∞∏
n=0

(
1 +

cosh(2ns)

cosh(2nr)

)
=

sinh r

cosh r − cosh s
.

To this end we first show via induction that

(28)
k∏

n=0

cosh(2nx) =
sinh(2k+1x)

2k+1 sinhx
.

In fact, let k = 0. Then sinh 2x
2 sinhx = coshx. If (28) is correct for some k, then

k+1∏
n=0

cosh(2nx) =

(
k∏

n=0

cosh(2nx)

)
· cosh(2k+1x) =

sinh(2k+1x)

2k+1 sinhx
· cosh(2k+1x)

=
sinh(2k+2x)

2k+2 sinhx
.

A way to come up with such a formula, is to use the well-known funny formula

k∏
n=0

(1 + w2n) =
1− w2k+1

1− w

for w = e−x and by writing coshx = ex(1 + e−2x)/2.

Now

1 +
coshu

cosh v
=

coshu+ cosh v

cosh v
= 2

cosh(u+v
2 ) cosh(u−v2 )

cosh v
.
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Hence, with u = 2ns and v = 2nr,

Pk :=

k∏
n=0

(
1 +

cosh 2ns

cosh 2nr

)
= 2k+1

k∏
n=0

cosh(2n−1(r + s)) cosh(2n−1(r − s))
cosh 2nr

= 2k+1
cosh( r+s

2
) cosh( r−s

2
)
∏k−1
j=0 cosh 2j(r + s)

∏k−1
j=0 cosh 2j(r − s)∏k

n=0 cosh 2nr

= 2k+1 cosh
(r + s

2

)
cosh

(r − s
2

) sinh 2k(r + s)

2k sinh(r + s)

sinh 2k(r − s)
2k sinh(r − s)

2k+1 sinh r

sinh 2k+1r

= 4 cosh
(r + s

2

)
cosh

(r − s
2

) sinh r

sinh(r + s) sinh(r − s)
sinh 2k(r + s) sinh 2k(r − s)

sinh 2k+1r

Next we claim that for r > s,

lim
k→∞

sinh 2k(r + s) sinh 2k(r − s)
sinh 2k+1r

=
1

2
.

In fact, using that sinhx = ex

2 (1− e−2x) we obain

sinh 2k(r + s) sinh 2k(r − s)
sinh 2k+1r

=
1
4e

2k(r+s)e2k(r−s)(1− e−2k+1(r+s))(1− e−2k+1(r−s))

e2k+1r

2 (1− e2k+2r)

=
1

2

(1− e−2k+1(r+s))(1− e−2k+1(r−s))

(1− e2k+2r)
→ 1

2
.

Now note that cosh2 r − sinh2 s = sinh(r + s) sinh(r − s), and so

4 cosh

(
r + s

2

)
cosh

(
r − s

2

)
sinh r

sinh(r + s) sinh(r − s)
= 2

cosh r + cosh s

sinh(r + s) sinh(r − s)
sinh r

=
2 sinh r

cosh r − cosh s
.

Thus

lim
k→∞

Pk =
sinh r

cosh r − cosh s
.
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Problem 2186 Math. Mag. 97 (1) 2024, p. 81 by
Raymond Mortini, Rudolf Rupp

A function “arctanh x” does not exist in the terminology we have learned (see R.
Burckel, Classical Analysis in the plane, 2021, p. 135). It is either arctanx or artanhx.
Not knowing whether the letter c or the letter h in your statement is superfluous, we
consider both cases. So we will prove the following:

(1)

∫ 1

0

artanh(x
√

2− x2)

x
dx =

3

16
π2 ∼ 1.850550825204 · · · ,

(2)

∫ 1

0

arctan(x
√

2− x2)

x
dx =

1

2
C +

π

4
log(
√

2 + 1) ∼ 1.15021199360 · · · .

where C is the Catalan constant.

We need the following well-known integral:

Lemma 3. Let In :=
∫ π/2

0 (sinx)ndx. Then I0 = π/2 and I1 = 1. For n ∈ N∗ :=
{1, 2, 3 · · · } we have

I2n =
1

2
· 3

4
· 5

6
· · · 2n− 1

2n

π

2
=

(2n)!

4n(n!)2
· π

2
=

(
2n
n

)
4n
· π

2
.

Proof. I2n = 2n−1
2n I2n−2 for n ∈ N∗ and I0 = π

2 , because

2nI2n − (2n− 1)I2n−2 =

∫ π/2

0
(sinx)2n−2

(
2n sin2 x− (2n− 1)

)
dx

= −
∫ π/2

0
(sinx)2n−2

(
(2n− 1) cos2 x− sin2 x

)
dx

= −
[
(sinx)2n−1 cosx

]π/2
0

= 0.

�

Moreover, we will use that
∞∑
n=0

1

(2n+ 1)2
=
π2

8
as well as

∞∑
n=0

(−1)n

(2n+ 1)2
= C. Finally

we need that for |x| ≤ 1

arcsinx =

∞∑
n=0

(
2n
n

)
4n

x2n+1

2n+ 1
and arsinhx =

∞∑
n=0

(−1)n
(

2n
n

)
4n

x2n+1

2n+ 1
.
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Note that in view of Stirling’s formula
(2nn )
4n ∼

1√
π
√
n

, so the series converge absolutely

for x = ±1.
(1) We make the substitution x =

√
2 sin t, dx =

√
2 cos t dt. Then, by using

∫ ∑
=∑∫

(all terms are positive),∫ 1

0

artanh(x
√

2− x2)

x
dx =

∫ π/4

0

artanh(sin(2t))

sin t
cos t dt

=

∫ π/4

0

∞∑
n=0

1

2n+ 1

(sin(2t))2n+1

sin t
cos t dt

sin(2t)=2 sin t cos t
=

∫ π/4

0

∞∑
n=0

1

2n+ 1
(sin(2t))2n 2 cos2 t︸ ︷︷ ︸

=1+cos(2t)

dt

=

∞∑
n=0

1

2n+ 1

(∫ π/4

0
(sin(2t))2ndt+

∫ π/4

0
(sin(2t))2n cos(2t)dt

)
2t=u
=

1

2

∞∑
n=0

1

2n+ 1

(∫ π/2

0
(sinu)2ndu+

∫ π/2

0
(sinu)2n cosudu

)

=
1

2

∞∑
n=0

1

2n+ 1

((
2n
n

)
4n
· π

2
+

1

2n+ 1

)

=
π

4
arcsin 1 +

π2

16
=

3

16
π2.

(2) In this case case, the factor 1
2n+1 is replaced by (−1)n

2n+1 . Moreover,
∫ ∑

=
∑∫

,
since ∣∣∣∣∣

N∑
n=0

(−1)n

2n+ 1
(sinu)2n(1 + cosu)

∣∣∣∣∣ ≤
∞∑
n=0

1

2n+ 1
(sinu)2n(1 + cosu),

which is an integrable majorant by (1). Hence∫ 1

0

arctan(x
√

2− x2)

x
dx =

π

4
arsinh 1 +

1

2
C.

Since arsinhx = log(x+
√

1 + x2), we are done.
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Problem 2184 Math. Mag. 96 (5) 2023, p. 567 by
Raymond Mortini, Peter Pflug and Rudolf Rupp

We give two proofs (one geometric/intuitive informal one and one analytic one) of
the following result:

Proposition Let f(x) = x
1+x2

. Then the set of all those (a, b) ∈ R2 for which the

line y = ax + b cuts the graph G := {(x, f(x)) : x ∈ R} of f in exactly one point is
given by the ”exterior” E 3 of the closed Jordan curve (displayed in red below)

(29) Γ(t) =

(
a(t)

b(t)

)
=

( 1−t2
(1+t2)2

2t3

(1+t2)2

)
, for t ∈ R, and Γ(±∞) =

(
0

0

)
,

together with {(0, 0)} ∪ {(1, 0)} ∪ {(0,±1
2)} ∪ {(−1

8 ,±
3
√

3
8 )} and deleted by the half

lines

{0}× ]1/2,∞[ and {0}×]−∞,−1/2[.

Proof. We first discuss the geometry of the graph of f .

• Note that f ′(x) =
1− x2

(1 + x2)2
. Hence the red curve Γ, excepted the point (0, 0), is

the set of (a, b) = (a(x), b(x)) such that s 7→ as + b is a tangent to the graph of f at
the point (x, f(x)) (since a(x)x+ b(x) = f(x) and a(x) = f ′(x)).

Next, f ′′(x) =
2x(x2 − 3)

(1 + x2)3
. Since f ′′(0) = f ′′(±

√
3) = 0,

(30) max f ′ = f(0) = 1 and min f ′ = f ′(±
√

3) = −1
8 .

Moreover f(±
√

3) = ±
√

3
4 ∼ ±0.433013 . . . and 0 and ±

√
3 are inflection points for f

and max f = f(1) = 1
2 , respectively min f = f(−1) = −1

2 . If in (29) t = ±
√

3, then

a(t) = −1
8 and b(t) = ±3

√
3

8 ∼ ±0.64951 . . . .

3 This is the unbounded component of the complement of the curve.
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Figure 4. The red curve

Figure 5. Graph of f and one tangent

Figure 6. f and f ′
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• Observe that if s 7→ as+ b cuts the graph of f in at least two different points, then
a ∈ [−1/8, 1]. In fact, by the mean value theorem, if xj are two intersection points,
then

a =
(ax1 + b)− (ax2 + b)

x1 − x2
=
f(x1)− f(x2)

x1 − x2
= f ′(η).

Now (30) yields the assertion. Consequently, if a /∈ [−1/8, 1], then the line s 7→ as+ b
is either disjoint from the graph of f or cuts it in a single point.
• The only lines s 7→ as + b which do not intersect the graph of f are those that

are parallel to the real axis (that is a = 0) and for which |b| > 1/2 (obviously clear by
having a glimpse at the figure 6 of the graph G of f). In fact, any ”oblique” line L (and
any vertical line) has points in both domains determined by G and so the connectedness
of the line implies that L ∩G 6= ∅.
Moreover, if a = 0, then b = 0 · x + b = x

1+x2
is equivalent to bx2 − x + b = 0. So no

solution exists if and only if the discriminant 1− 4b2 is negative; that is if |b| > 1/2.
• We will see below that the only tangents meeting the graph of f at a single point

are the lines y = ±1/2 and y = x and y = −1
8 x±

3
√

3
8 (those tangents associated with

the extrema and the inflection points of f ). All other tangents have another point of
intersection: this is seen ”geometrically” by looking at the graph and by considering
the three cases (and of course the associated opposites) : 0 ≤ x0 ≤ 1, 1 < x0 ≤

√
3 and

x0 >
√

3, and by noticing that on the interior Ij of these three intervals the tangents
are on one side of the graph {(x, f(x) : x ∈ Ij}, as we have no change of curvature (f
is either convex or concave on Ij .) See figure 7.
• The behavior of the lines of the form s 7→ as+ b with a ∈ [−1/8, 1] and b > b(x) or

b < b(x) can be intuitively guessed by looking at the graph of f (for a precise analytic
proof, see next section). �

Figure 7. The a(x) and b(x)’s for x ∈ Ij

3. An analytic proof

The intersection condition is equivalent to solving, for a 6= 0, the cubic polynomial
equation

ax+ b =
x

1 + x2
⇐⇒ ax3 + bx2 + (a− 1)x+ b = 0
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and for a = 0 the quadratic equation

b =
x

1 + x2
⇐⇒ bx2 − x+ b = 0.

Put

p(z) := pa,b(z) := az3 + bz2 + (a− 1)z + b.

Then several cases occur when discussing the equation pa,b(z) = 0, a 6= 0:

i) one real solution and two complex ones (which are conjugated),
ii) three distinct real solutions,
iii) one double real solution and a second real solution,
iv) a triple real solution.

A way to deal with this, is to use the discriminant. For
�� ��a 6= 0 , let

D := a4(z1 − z2)2(z2 − z3)2(z1 − z3)2

be the discriminant of this cubic equation. Here z1, z2, z3 are the zeros. Then,

D = −4a4 − 8a2b2 − 4b4 + 12a3 − 20ab2 − 12a2 + b2 + 4a.

A lenghthier calculation (a posteriori verified by Maple and wolframalpha) gives

D = D(a, b) = −4

[(
b2 + a2 +

5

2
a− 1

8

)2

− 8

(
a+

1

8

)3
]
.

It is well-known that the cubic equation has a multiple zero if and only if the dis-
criminant is zero. In other words, if and only if(

b2 + a2 +
5

2
a− 1

8

)2

= 8

(
a+

1

8

)3

.

Also, D > 0 if and only if the cubic equation (with real coefficients) has three distinct
real zeros, and D < 0 if and only if there is a unique real zero. In our situation here,
D < 0 if and only if

−4

[(
b2 + a2 +

5

2
a− 1

8

)2

− 8

(
a+

1

8

)3
]
< 0,

equivalently (
b2 + a2 +

5

2
a− 1

8

)2

> 8

(
a+

1

8

)3

.

Now we have the following result:

Lemma 4. Let (a, b) ∈ R2. The following assertions are equivalent:

(1) D(a, b) = 0 if a 6= 0 or (a, b) = (0,±1/2) if a = 0.
(2) pa,b(z) = az3 + bz2 + (a− 1)z + b has a multiple zero.
(3) The line L : s 7→ as+ b is tangent to the graph G of f at the point (x, f(x)) for

some 4 x ∈ R, and

a = a(x) =
1− x2

(1 + x2)2
and b = b(x) =

2x3

(1 + x2)2
.

4 Later we shall see that x is uniquely determined; so a line L can be tangent to G at at most one
point.
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Proof. (1) ⇐⇒ (2): Discussed above for the case a 6= 0. The case a = 0 follows since
the discriminant of the quadratic bz2 − z + b is 1− 4b2.

(2) =⇒ (3): Suppose that x ∈ R is a multiple zero of p. Recall that p′(z) =
3az2 + 2bz + (a− 1). Then p(x) = p′(x) = 0 imply that ax+ b = x

1+x2
and

3ax2 + 2x

(
x

1 + x2
− ax

)
+ (a− 1) = 0.

Thus

a =
1− x2

(1 + x2)2
.

(In case a = 0, x = ±1). Consequently, s 7→ as+ b is a tangent to the graph of f at x
(since ax+ b = f(x) and a = a(x) = f ′(x)). Moreover,

b =
x

1 + x2
− 1− x2

(1 + x2)2
x =

2x3

(1 + x2)2
.

(In case a = 0, b = ±1/2).
(3) =⇒ (1): Suppose that s 7→ as + b is a tangent at (x, f(x)) and that a and b

have the form given in the assumption (3). If a = a(x) /∈ {0, 1}, then x is (at least !)
a double zero of pa,b, since pa,b(x) = 0 (equivalently ax + b = f(x)), and p′a,b(x) = 0
because

3
1− x2

(1 + x2)2
x2 + 2

2x3

(1 + x2)2
x+

1− x2

(1 + x2)2
− 1 ≡ 0.

Moreover, if a = a(x) = 1, then x is a triple zero of pa,b and b = b(x) = 0. Hence, as
(2) =⇒ (1), D(a(x), b(x)) = 0. If a = a(x) = 0, then x = ±1 and b = ±1/2 . Thus (1)
holds. �

Conclusion: The set (a, b) ∈ R2 of points where pa,b has a multiple zero is in a one
to one correspondance with those lines s 7→ as + b which are tangent to the graph of
f . It coincides with

{(a, b) ∈ R2 \
(
{0} × R

)
: D(a, b) = 0} ∪

{
(0,−1

2
), (0,

1

2
)
}
,

and is the Jordan arc parametrized by

Γ(t) =

(
a(t)

b(t)

)
=

( 1−t2
(1+t2)2

2t3

(1+t2)2

)
, t ∈ R.

To see that Γ is injective, suppose that there exists (a, b) ∈ R2 such that a = a(t) =
a(t′) and b = b(t) = b(t′) for t 6= t′. By Lemma 4 (and its proof), the line s 7→ as+ b is
tangent to the graph of f at the points (t, f(t)) and (t′, f(t′)), and so t and t′ are (at
least ) double zeros of pa,b. This would imply that the degree of pa,b is bigger than 4.
A contradiction.

The two components determined by the closure J := Γ(R) ∪ {(0, 0)} of this Jordan
arc (which is a closed Jordan curve) coincide with 5

D̃(a, b)−1( ]0,∞[ ) and D̃(a, b)−1( ]−∞, 0[ ),

5 Take e.g. two points in the exterior complemented component of J , denoted by Ω. Join those
with an arc inside Ω. Then D̃ must have the same sign at both points; otherwise this arc would meet
the set where D̃ is zero. As this set coincides with the boundary of Ω, that is the Jordan curve J , we
get a contradiction.
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respectively, where 6

D̃(a, b) =

{
D(a, b) if a 6= 0

b2(1− 4b2) if a = 0.

The following observations now will show that the exterior of this Jordan domain is
the set where D̃(a, b) < 0. Always have in mind figure 7. But attention: this is not yet
the final set the problem is asking for.

Consider a tangent at x with 0 < a(x) ≤ 1. Since a(x) = f ′(x) we deduce that
|x| < 1 <

√
3. This implies that

b(x)2 + a(x)2 +
5

2
a(x)− 1

8
=

1

8

(3− x2)3

(x2 + 1)3
> 0.

Hence, if b > b(x), we get

8

(
a(x) +

1

8

)3

=

(
b(x)2 + a(x)2 +

5

2
a(x)− 1

8

)2

<

(
b2 + a(x)2 +

5

2
a(x)− 1

8

)2

,

and so D(a(x), b) < 0. This implies that there is a unique real zero of p and so the line
s 7→ a(x)s+ b cuts the graph of f at a single point.

Next, if b = 0 and if a→ −∞, then D(a, b)→ −∞. So again D̃ < 0 in that part of
the exterior of J that is contained in the left-hand plane.

Finally, if a = 0, the discriminant 1− 4b2 of bz2 − z+ b is negative if and only if p0,b

has no real zeros; so no intersection points of ax+b exist whenever a = 0 and |b| > 1/2,
but two if 0 < |b| < 1/2 and one if b = 0. Consequently, the exterior of the Jordan

curve is the set where D̃ < 0.

To achieve the solution to the problem, a last case has to be investigated: for which
(a, b) the polynomial pa,b has triple zero (as this yields tangents which cut the graph G
of f at a single point).

So let pa,b(x) = p′a,b(x) = p′′a,b(x) = 0. By Lemma 4, s 7→ as + b is tangent to the

graph G of f . Hence a = a(x) = 1−x2
(1+x2)2

and b = b(x) = 2x
(1+x2)2

.

Now p′′a,b(z) = 6az + 2b. Hence

x = − b

3a
=

2x

(1 + x2)2

/
3

1− x2

(1 + x2)2
= −2

3

x3

1− x2
.

Consequently, either x = 0 or x = ±
√

3. This yields the values (a, b) = (1, 0) and

(a, b) = (−1
8 ,±

3
√

3
8 ).

•We are now able to answer the question, which lines s 7→ as+ b intersect the graph
G of f(x) = x/(1 + x2) in a single point:

i) All points (a, b) ∈ R2 for which a 6= 0 and D(a, b) < 0.

ii) The 6 points (a, b) ∈ {(0, 0), (1, 0), (0,±1
2), (−1

8 ,±
3
√

3
8 )}, which induce via the

map s 7→ as+ b tangents to G whenever (a, b) 6= (0, 0).

6 In order to have continuity of D̃, we need to add the factor b2.
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Quicky 1140 Math. Mag. 97 (2024) by
Raymond Mortini and Rudolf Rupp

Submitted statement:

(a) Let m,n ∈ N = {0, 1, 2, . . . }. Determine the value of

B(n,m) :=
n∑
k=0

(−1)k
(
m+ k

k

) (
m+ n+ 1

n− k

)
.

(b) Let z, w ∈ C \ {−1,−2,−3 . . . }. Suppose that z − w /∈ {−1 − 2,−3 . . . }. Using

that for these parameters
(
z
w

)
:= Γ(z+1)

Γ(w+1)Γ(z−w+1) is well defined, show that for a, b ∈ C
with Re a > 0, Re b > 1, and b /∈ Z, the series

S(a, b) :=

∞∑
k=0

(−1)k
(
a+ k − 1

k

) (
a+ b− 1

b− k − 1

)
.

converges absolutely and that S(a, b) = 1.

Solution (a) Note that(
m+ k

k

) (
m+ n+ 1

n− k

)
=

(m+ k)!

m!k!

(m+ n+ 1)!

(m+ k + 1)!(n− k)!

=
(m+ n+ 1)!

m!

1

k!(m+ k + 1)(n− k)!
=

(m+ n+ 1)!

m!n!

(
n

k

)
1

m+ k + 1
.

Hence
n∑
k=0

(−1)k
(
m+ k

k

) (
m+ n+ 1

n− k

)
=

(m+ n+ 1)!

m!n!

n∑
k=0

(−1)k
(
n

k

)
1

m+ k + 1
.

Put

f(x) :=
n∑
k=0

(−1)k
(
n

k

)
1

m+ k + 1
xm+k+1.

Then

f ′(x) =
n∑
k=0

(−1)k
(
n

k

)
xm+k = xm(1− x)n.

Consequently, as
∫ 1

0 f
′(x)dx = f(1)− f(0) and f(0) = 0,
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B(n,m) =
(m+ n+ 1)!

m!n!

∫ 1

0
xm(1− x)n dx.

The value of the integral is given by Euler’s β function

β(m+ 1, n+ 1) =
Γ(m+ 1) Γ(n+ 1)

Γ(m+ n+ 2)
=

m!n!

(m+ n+ 1)!
.

Hence

B(n,m) =
(m+ n+ 1)!

m!n!

m!n!

(m+ n+ 1)!
= 1.

(b) First we note that under the conditions on a and b, the complex binomial co-
efficients are well defined. Since Γ(z + 1) = zΓ(z) for z ∈ C \ (−N), and since the
Γ-function has no zeros, we have(

a+ k − 1

k

) (
a+ b− 1

b− k − 1

)
=

Γ(a+ k)

Γ(a) Γ(k + 1)

Γ(a+ b)

Γ(a+ k + 1)Γ(b− k)

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(b)

(a+ k)Γ(k + 1)Γ(b− k)

=
Γ(a+ b)

Γ(a)Γ(b)

(
b− 1

k

)
1

a+ k
.

Hence

S(a, b) =

∞∑
k=0

(−1)k
(
a+ k − 1

k

) (
a+ b− 1

b− k − 1

)
=

Γ(a+ b)

Γ(a)Γ(b)

∞∑
k=0

(−1)k
(
b− 1

k

)
1

a+ k
.

It is known that the binomial series

∞∑
k=0

(
b− 1

k

)
converges absolutely for Re b > 1

(see [1, p. 140]). Hence S(a, b) converges. Now consider for c ∈ C and 0 < x ≤ 1 the
functions xc := exp(c log x), and

f(x) :=

x
a
∞∑
k=0

(−1)k
(
b− 1

k

)
1

a+ k
xk if 0 < x ≤ 1

0 if x = 0,

which is continuous 7 on [0, 1]. Using for 0 < x < 1 the Newton-Abel formula for the
binomial series with complex powers (see [1, p. 158]), we obtain

f ′(x) =

∞∑
k=0

(−1)k
(
b− 1

k

)
xa+k−1 = xa−1

∞∑
k=0

(
b− 1

k

)
(−x)k = xa−1(1− x)b−1.

Consequently, as
∫ 1

0 f
′(x)dx = f(1)− f(0) and f(0) = 0,

S(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
xa−1(1− x)b−1 dx.

This integral is the β-function. Note that Re a > 0 and Re b > 0. Hence this integral

is well defined and β(a, b) = Γ(a)Γ(b)
Γ(a+b) (see [2, p. 67 ff]. Consequently, S(a, b) = 1.

7 Note that Re a > 0 and so 0a := 0 is the correct value if one wants continuity: |xa| ≤
exp(Re a log x)→ exp(−∞) = 0 as x→ 0+. Also, as usual in the realm of power series, 00 := 1.
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For this proposal, we were motivated by Problem 4862 Crux Math. 49 (7) 2023, 375.
We hope that this sum has not been considered earlier.
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Problem 2185 Math. Mag. 96 (5) 2023, p. 567 by
Raymond Mortini and Rudolf Rupp

We show that the value of the integral In :=
∫ 1
−1 Pn(x)dx is�

�
�

(−1)n in

n+ 2

(
1 + (−1)n

)
2
n+2
2 cos

(
n
π

4

)
.

Another representation is

In = εn
2
n+4
2

n+ 2
,

where

εn =



1 if n ≡ 0 mod 8

0 if n ≡ 1 mod 8

0 if n ≡ 2 mod 8

0 if n ≡ 3 mod 8

−1 if n ≡ 4 mod 8

0 if n ≡ 5 mod 8

0 if n ≡ 6 mod 8

0 if n ≡ 7 mod 8.

A very strange result! In fact,

dn

dxn

(
1

1 + ix

)
=

in(−1)nn!

(1 + ix)n+1
and

dn

dxn

(
1

1− ix

)
=

inn!

(1− ix)n+1
.

Hence

dn

dxn

(
1

1 + x2

)
=

1

2

dn

dxn

(
1

1 + ix
+

1

1− ix

)
=

in

2
n!

(1 + ix)n+1 + (−1)n(1− ix)n+1

(1 + x2)n+1
.

From this we get that Pn is a polynomial of degree n with n+ 1 as leading coefficient.
We are now ready to calculate the integral:
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In =

∫ 1

−1
Pn(x)dx =

(−1)n

2
in
∫ 1

−1

(
(1 + ix)n+1 + (−1)n(1− ix)n+1

)
dx

=
(−1)n

2
in
(

(1 + i)n+2 − (1− i)n+2

i(n+ 2)
+ (−1)n

(1− i)n+2 − (1 + i)n+2

(−i)(n+ 2)

)
=

(−1)nin−1

2(n+ 2)
(1 + (−1)n)

(
(1 + i)n+2 − (1− i)n+2

)
.

Since

(1 + i)n+2 − (1− i)n+2 =
√

2
n+1

((
1 + i√

2

)n+2

−
(

1− i√
2

)n+2
)

= 2
n+1
2

(
e(n+2)iπ/4 − e−(n+2)iπ/4

)
= 2i 2

n+1
2 sin

(
(n+ 2)

π

4

)
,

we conclude that

In =
(−1)n in

n+ 2

(
1 + (−1)n

)
2
n+2
2 sin

(
(n+ 2)

π

4

)
=

(−1)n in

n+ 2

(
1 + (−1)n

)
2
n+2
2 cos

(
n
π

4

)
.
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Problem 2181 Math. Mag. 96 (5) 2023, p. 566 by
Raymond Mortini, Peter Pflug and Rudolf Rupp

a) The double series

S(x) :=
∞∑
k=0

∞∑
m=0

1

k!

1

[2(m+ 1)]!

1

2m+ 2 + k
x2m+2+k

converges since for every j ∈ N the partial sums can be estimated as follows:

j∑
n=0

j∑
m=0

1

k!

1

[2(m+ 1)]!

1

2m+ 2 + k
x2m+2+k ≤

j∑
n=0

j∑
m=0

1

k!

1

[2(m+ 1)]!
xkx2m+2

=

(
j∑

n=0

1

k!
xk

) (
j∑

m=0

1

[2(m+ 1)]!
x2m+2

)
Hence the series P converges absolutely (and so does any re-arrangement) locally uni-
formly to some finite value P (x).

b) By the same reason the formal derivated series

H(x) :=

∞∑
k=0

∞∑
m=0

(−1)k

k!

(−1)m+1

[2(m+ 1)]!
x2m+1+k

converges absolutely and locally uniformly for x ≥ 0. Hence P ′ = H. Thus

H(x) =

( ∞∑
k=0

(−1)k

k!
xk

) ( ∞∑
m=0

(−1)m+1

[2(m+ 1)]!
x2m+1

)
= e−x

cosx− 1

x
.

Consequently P is a primitive of e−x cosx−1
x which vanishes at 0. Hence

J := lim
x→∞

P (x) =

∫ ∞
0

e−x
cosx− 1

x
dx.

Next we show that J = −1
2 log 2 by interpreting this integral as the Laplace transform

L(q)(s) of the function q(x) = (cosx − 1)/x evaluated at s = 1. By a well-known
formula, if L(F (t))(s) = f(s), then

L(q)(s) = L(
F (t)

t
)(s) =

∫ ∞
s

f(u)du,

where

f(s) =

∫ ∞
0

e−st(cos t− 1) dt =
1

s3 + s
.
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Hence L(q)(s) = −1
2 log(1 + s−2) and so J = L(q)(1) = −1

2 log 2.

Remark A formal (but probably unjustifiable) way to calculate the value of J would
be the following:

J :=

∫ ∞
0

e−x
cosx− 1

x
dx =

∫ ∞
0

e−x
∞∑
n=1

(−1)n

(2n)!
x2n−1dx

!
=
∞∑
n=1

(−1)n

(2n)!

∫ ∞
0

x2n−1e−xdx

Since for m ∈ N and k ∈ N \ {0},∫ ∞
0

xme−kxdx = m!/km+1,

we would obtain

J =
∞∑
n=1

(−1)n

(2n)!
(2n− 1)! =

∞∑
n=1

(−1)n

2n
= −1

2
log 2.

Note also that the softwares Wolframalpha/mathematica give the exact value of the
integral, too.

The problem itself come to our mind when solving Problem number 12338 in Amer.
Math. Soc..
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Solution to problem 2176 Math. Mag. 96 (3) 2023, p. 468 by
Raymond Mortini and Rudolf Rupp

Let I :=

∫ 1

0

log(1 + x+ x2)

1 + x2
dx. We make the substitution x = tanu, dx/du =

1 + tan2 u = 1
cos2 u

, x = 0→ u = 0 and x = 1→ u = π/4. Then

I =

∫ π/4

0

log(tan2 u+ tanu+ 1)

1 + tan2 u
(1 + tan2 u)du =

∫ π/4

0
log

(
1 + cosu sinu

cos2 u

)
du

=

∫ π/4

0
log

(
1 +

1

2
sin(2u)

)
du− 2

∫ π/4

0
log(cosu)du

=
Lem. 5

1

2

∫ π/2

0
log

(
1 +

1

2
sin(v)

)
dv − 2

(
C

2
− π

4
log 2

)
=

1

2

∫ π/2

0

∞∑
k=1

(−1)k+1

k

1

2k
(sinx)kdx +

π

2
log 2− C

Lem.6
=

unif.abs.conv.∫ ∑
=
∑∫

1

2

∞∑
n=0

1

2n+ 1

1

22n+1

4n

(2n+ 1)
(

2n
n

) − 1

2

∞∑
n=1

1

2n

1

22n

(
2n
n

)
4n

π

2
+
π

2
log 2− C

=
1

4

∞∑
n=0

1

(2n+ 1)2
(

2n
n

) − π

8

∞∑
n=1

1

n

(
2n

n

)
16−n +

π

2
log 2− C

Lemm. 7
=

Lemm. 8

1

4

(
C − 1

8
π log(2 +

√
3)

)
8

3
− π

8
2 log

(
1−

√
1− 4(1/16)

2(1/16)

)
+
π

2
log 2− C

= −1

3
C +

π

6
log(2 +

√
3).

4. Appendix

Here we present for completeness the proofs of all those known results used above to
derive the value of the integral.

Lemma 5. [1, formula (8)]

C = 2

∫ π/4

0
log(2 cosx)dx.

Proof. Since on ]0, 1] the integrable function | log x| dominates the modulus of the

partial sums
∑N

n=0(−1)nx2n log x, we have
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∫ 1

0

log x

1 + x2
dx =

∞∑
n=0

∫ 1

0
(−1)nx2n log x dx =

∞∑
n=0

(−1)n
−1

(n+ 1)2
= −C.

Hence, with x = tanu and dx = (1 + tan2 u)du,

(31) C = −
∫ π/4

0
log(tanu) du =

∫ π/4

0
log(cosu) du−

∫ π/4

0
log(sinu) du =: Lc − Ls.

Now, using the standard result that
∫ π/2

0 log sinx dx = −π
2 log 2, we obtain

(32) Lc + Ls +
π

4
log 4 =

∫ π/4

0
log(2 sin(2u)) du =

∫ π/2

0
log(2 sinx) dx = 0.

Adding (31) and (32), yields

C − π

4
log 4 = 2Lc.

In other words,

2

∫ π/4

0
log(2 cosx)dx = C.

�

Lemma 6. Let In :=
∫ π/2

0 (sinx)ndx. Then I0 = π/2, I1 = 1 and for n ∈ N∗,

(1) I2n = 1
2 ·

3
4 ·

5
6 · · ·

2n−1
2n

π
2 = (2n)!

4n(n!)2
· π2 =

(2nn )
4n ·

π
2 .

(2) I2n+1 = 2
3 ·

4
5 ·

6
7 · · ·

2n
2n+1 = 4n(n!)2

(2n+1)! = 4n

(2n+1)(2nn )
.

Proof. (1) I2n = 2n−1
2n I2n−2 for n ∈ N∗ and I0 = π

2 , because

2nI2n − (2n− 1)I2n−2 =

∫ π/2

0
(sinx)2n−2

(
2n sin2 x− (2n− 1)

)
dx

= −
∫ π/2

0
(sinx)2n−2

(
(2n− 1) cos2 x− sin2 x

)
dx

= −
[
(sinx)2n−1 cosx

]π/2
0

= 0.

(2) I2n+1 = 2n
2n+1I2n−1 for n ∈ N∗ and I1 = 1, because

(2n+ 1)I2n+1 − 2nI2n−1 =

∫ π/2

0
(sinx)2n−1

(
(2n+ 1) sin2 x− 2n

)
dx

= −
∫ π/2

0
(sinx)2n−1

(
2n cos2 x− sin2 x

)
dx

= −
[
(sinx)2n cosx

]π/2
0

= 0.

�
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Lemma 7. [2]

(1)
∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

for |x| < 1/4.

(2)

∞∑
n=1

1

n

(
2n

n

)
xn = 2 log

(
1−
√

1− 4x

2x

)
for |x| < 1/4.

Proof. (1) Note that(
−1/2

n

)
=

(−1
2) · (−3

2) · · · · (−1
2 − n+ 1)

n!
= (−1)n

1 · 3 · 5 · · · (2n− 1)

2nn!

= (−1)n
(2n)!

(2nn!)2
= (−1)n

(
2n
n

)
4n

.

Hence, by Newton’s binomial theorem

∞∑
n=0

(
2n

n

)
xn =

∞∑
n=0

(−1)n
(
−1/2

n

)
(4x)n = (1− 4x)−1/2.

(2) Let f(x) :=
∞∑
n=1

1

n

(
2n

n

)
xn. Then, for 0 < x < 1/4,

f ′(x) =
1

x

∞∑
n=1

(
2n

n

)
xn =

1

x
√

1− 4x
− 1

x
.

To calculate the primitive, we make the transformation u :=
√

1− 4x, or equivalently

x = 1−u2
4 . Since ∫

4

1− u2

1

u

(
−u

2

)
du = log

(
1− u
1 + u

)
,

we deduce that

f(x) = log

(
1−
√

1− 4x

1 +
√

1− 4x

)
− log x = log

(
(1−

√
1− 4x)2

4x

)
− log x

= log

(
(1−

√
1− 4x)2

(2x)2

)
= 2 log

(
1−
√

1− 4x

2x

)
.

The following formula is due to Ramanujan.

Lemma 8. [1, formula (62)]

C =
1

8
π log(2 +

√
3) +

3

8

∞∑
n=0

1

(2n+ 1)2
(

2n
n

) ,
equivalently

∞∑
n=0

1

(2n+ 1)2
(

2n
n

) =
8

3
C +

1

3
π log(2−

√
3).

Proof. First we note that

(33) artanh z =
1

2
log

1 + z

1− z
=
∞∑
n=0

1

2n+ 1
z2n+1, |z| < 1.
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Hence, by Lemma 6

J :=

∫ π/2

0
log

(
1 + 1

2 sinx

1− 1
2 sinx

)
dx =

∫ π/2

0
2

∞∑
n=0

1

22n+1

(sinx)2n+1

2n+ 1
dx

unif.abs.conv.
=∫ ∑
=
∑∫

∞∑
n=0

1

22n

4n

(2n+ 1)2
(

2n
n

)
=

∞∑
n=0

1

(2n+ 1)2
(

2n
n

) .
To calculate this integral we combine calculations done in [4] and [8], where it is also
shown that

J =

∫ 1

0

artanh
√
u(1− u)√

u(1− u)
du

(just put u = sin2 x). See [7], too. Let us introduce the parametric integral

I(a) :=

∫ π/2

0
log

(
1 + sin a sinx

1− sin a sinx

)
dx.

Now d
da

∫
=
∫

d
da (as all functions considered here are continuously differentiable).

Hence

I ′(a) =

∫ π/2

0

(
cos a sinx

1 + sin a sinx
+

cos a sinx

1− sin a sinx

)
dx =

∫ π/2

0

2 cos a sinx

1− sin2 a sin2 x
dx

=
2 cos a

sin2 a

∫ π/2

0

sinx
1

sin2 a
+ cos2 x− 1

dx =
2 cos a

sin2 a

∫ π/2

0

sinx

cot2 a+ cos2 x
dx

= − 2

sin a
arctan(cosx tan a)

∣∣∣π/2
0

=
2a

sin a
.

Thus, using partial integration, and the fact that tan(x/2) = sinx
1+cosx ,

J = I(π/6) = I(π/6)− I(0) =

∫ π/6

0
I ′(a)da =

∫ π/6

0

2a

sin a
da

= 2

∫ π/6

0
x
(

log
(

tan
x

2

))′
dx = 2x log

(
tan

x

2

)∣∣∣π/6
0
− 2

∫ π/6

0
log
(

tan
x

2

)
dx

=
x
2

=t

π

3
log(2−

√
3)− 4

∫ π/12

0
log(tan t)dt.

Now we follow [8] 8. Recall that on ]0, π[ the Fourier series for − log tan(t/2) is

2
∞∑
n=0

1

2n+ 1
cos(2n+ 1)t.

Since the Fourier series converges in the L2-norm, hence L1-norm on ]0, π[, we have∑∫
=
∫ ∑

. Hence

−
∫ π/12

0
log(tanx)dx =

x=t/2

∫ π/6

0

∞∑
n=0

1

2n+ 1
cos(2n+ 1)t dt =

∞∑
n=0

1

2n+ 1

∫ π/6

0
cos(2n+ 1)t dt

=
∞∑
n=0

1

(2n+ 1)2
sin
(π

6
(2n+ 1)

)
︸ ︷︷ ︸

:=S

!
=

2

3

∞∑
n=0

1

(2n+ 1)2
(−1)n =

2

3
C.

8 We thank Roberto Tauraso for providing us this link.
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To show the penultimate identity, we follow [6]. To this end we first note that

sin
(π

6
(2k + 1)

)
=



1
2 if k ≡ 0 mod 6

1 if k ≡ 1 mod 6
1
2 if k ≡ 2 mod 6

−1
2 if k ≡ 3 mod 6

−1 if k ≡ 4 mod 6

−1
2 if k ≡ 5 mod 6.

Hence

S =
1

2

∞∑
n=0

1

(12n+ 1)2
+

∞∑
n=0

1

(12n+ 3)2
+

1

2

∞∑
n=0

1

(12n+ 5)2

−1

2

∞∑
n=0

1

(12n+ 7)2
−
∞∑
n=0

1

(12n+ 9)2
− 1

2

∞∑
n=0

1

(12n+ 11)2

=
1

9

∞∑
n=0

(
1

(4n+ 1)2
− 1

(4n+ 3)2

)
+

1

2

(
1

12
+

1

52
− 1

72
− 1

112
+ · · ·

)
=

1

9
C +

1

2

(
1

12
− 1

32
+

1

52
− 1

72
+

1

92
− 1

112
+ · · ·

)
+

1

2

(
1

32
− 1

92
+

1

152
− · · ·

)
=

1

9
C +

1

2
C +

1

2
· 1

32

(
1

12
− 1

32
+

1

52
− · · ·

)
=

1

9
C +

1

2
C +

1

18
C =

12

18
C =

2

3
C.

We conclude that

J =
π

3
log(2−

√
3) +

8

3
C =

8

3
C − π

3
log(2 +

√
3).

�

Here is a second proof to calculate the value of
∫ π/12

0 log(tan t)dt.

Proof. We follow [6]. Consider for a > 0 the integral

Q(a) = −
∫ π/12

0
artanh

(
2 cos 2x

a+ a−1

)
dx = −

∫ π/12

0
artanh

(
2a cos 2x

a2 + 1

)
dx.

(Note that a + 1/a ≥ 2, so this is well defined). Again d
da

∫
=
∫

d
da . Using that

(artanh z)′ =
1

1− z2
, and that

d

da

(
1

a+ a−1

)
=

1− a2

(a2 + 1)2
,

Q′(a) = −
∫ π/12

0

1−a2
(1+a2)2

2 cos 2x

1− 4 cos2(2x)
(a+a−1)2

dx =

∫ π/12

0

(a2 − 1) 2 cos 2x

(a2 + 1)2 − 4a2 cos2 2x
dx

= − 1

2a
arctan

(
2a sin 2x

1− a2

) ∣∣∣π/12

0
=

arctan a
a2−1

2a
.

Hence, by using that Q(0) = 0, and that arctanu+ arctan v = arctan( u+v
1−uv ),

log(tanx) = −1

2
log

(
1 + cos 2x

1− cos 2x

)
= − artanh(cos 2x).
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Consequently, as C = −
∫ 1

0
arctanx

x dx (use the power series for arctanx)∫ π/12

0
log(tanx)dx = Q(1) =

∫ 1

0
Q′(a)da =

∫ 1

0

arctan a
a2−1

2a
da

= −
∫ 1

0

(
arctan a

2a
+

arctan a3

2a

)
da

= =
a3→b

−
(

1

2
+

1

6

)∫ 1

0

arctan a

a
da = −2

3
C.

We conclude that

J =
π

3
log(2−

√
3) +

8

3
C =

8

3
C − π

3
log(2 +

√
3).

�

5. Remarks

(1) The integral L :=
∫∞

0
log(1+x+x2)

1+x2
dx is mentioned on wikipedia [3] (without a

source) under the form

C =
3

4
L− π

4
arcosh 2.

We notice that L = 2I + 2C. In fact,

I =
u=1/x

∫ ∞
1

log(u2 + u+ 1)− log(u2)

1 + u2
du

=

∫ ∞
1

log(u2 + u+ 1)

u2 + 1
− 2C.

Hence

2I = I + I =

∫ ∞
0

log(u2 + u+ 1)

u2 + 1
− 2C.

Using the assertion of the problem dealt with here,

L = 2

(
π

6
log(
√

3 + 2)− C

3

)
+ 2C,

and so

C =
3

4
L− π

4
log(
√

3 + 2).

Now just note that arcosh 2 = log(
√

3 + 2). �

This integral L is also calculated in [5].
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Solution to problem 2171 Math. Mag. 96 (3) 2023, p. 359 by
Raymond Mortini and Rudolf Rupp

For logical reasons, we think that the exponent of (−1) in the two statements above
has to be n+ 1, since one starts with −(−1)n, where n = 0. Since the double series is
absolutely convergent, we may arrange as we wish.

(a) Let

C(x) :=
∞∑
n=0

(
cosx− 1 +

x2

2!
− x4

4!
+ · · ·+ (−1)n+1 x2n

(2n)!

)
and let Tn be the 2n-th Taylor polynomial for cosx, which is given by

Tn(x) =
n∑
j=0

(−1)j
x2j

(2j)!
.

Then

C(x) =
∞∑
n=0

(cosx− Tn(x)).

Hence

C(x) =
∞∑
n=0

∞∑
k=n+1

(−1)k
x2k

(2k)!
=
∞∑
k=1

k−1∑
n=0

(−1)k
x2k

(2k)!

=
∞∑
k=1

k(−1)k+1 x2k

(2k)!
=

1

2

∞∑
k=1

2k(−1)k
x2k

(2k)!

=
x

2

∞∑
k=1

(−1)
x2k−1

(2k − 1)!

= −1

2
x sinx.

For (b) we give two solutions.
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Similarily to (a) , let

S(x) :=
∞∑
n=0

(
sinx− x+

x3

3!
− x5

5!
+ · · ·+ (−1)n+1 x2n+1

(2n+ 1)!

)
.

Then

S(x) =

∞∑
n=0

∞∑
k=n+1

(−1)k
x2k+1

(2k + 1)!
=

∞∑
k=1

k−1∑
n=0

(−1)k
x2k+1

(2k + 1)!

=
∞∑
k=1

k(−1)k
x2k+1

(2k + 1)!
=

1

2

∞∑
k=1

2k(−1)k
x2k+1

(2k + 1)!

=
1

2

∞∑
k=1

(2k + 1)(−1)k
x2k+1

(2k + 1)!
− 1

2

∞∑
k=1

(−1)k
x2k+1

(2k + 1)!

=
x

2

∞∑
k=1

(−1)k
x2k

(2k)!
− 1

2
(sinx− x)

=
x

2
(cosx− 1)− 1

2
(sinx− x)

=
x cosx− sinx

2
The second method is to integrate termwise and then to interchange the sum with

the integral (uniform convergence on compacta).

S(x) =

∞∑
n=0

∫ x

0

(
cos t− 1 +

t2

2!
− t4

4!
+ · · ·+ (−1)n+1 t2n

(2n)!

)
dt

=

∫ x

0

∞∑
n=0

(
cos t− 1 +

t2

2!
− t4

4!
+ · · ·+ (−1)n+1 t2n

(2n)!

)
dt

=
(a)
−1

2

∫ x

0
(t sin t) dt

=
x cosx− sinx

2
.
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Solution to problem 2167 Math. Mag. 96 (2) 2023, p. 190 by
Raymond Mortini and Rudolf Rupp

Let

L := en/2
n∏
j=2

ej
2

n∏
j=2

(
1− 1

j2

)j4
.

Then, by using that for |x| < 1, − log(1− x) =

∞∑
k=1

1

k
xk,

logL =
n

2
+

n∑
j=2

j2 +
n∑
j=2

j4 log

(
1− 1

j2

)

=
n

2
+

n∑
j=2

j2 −
n∑
j=2

∞∑
k=1

j4

k

1

j2k

=
n

2
+

n∑
j=2

j2 −
n∑
j=2

j2 − 1

2

n∑
j=2

1−
∞∑
k=3

1

k

n∑
j=2

1

(j2)k−2

m:=k−2−→
n→∞

1

2
−
∞∑
m=1

ζ(2m)− 1

m+ 2
.

So we need to show that

(34)

�
�

�
�

∞∑
m=1

ζ(2m)− 1

m+ 2
=

7

4
− log π − 3

π2
ζ(3) ∼ 0.239888629 · · · ,

from which we conclude that

L = π exp

(
3

π2
ζ(3)− 5

4

)
∼ 1.2970745345 · · ·

To achieve our goal we use the partial fraction decomposition of

πz cot(πz) = 1 +

∞∑
n=1

2z2

z2 − n2
, z ∈ C \ Z,

a formula which implies (see [1, p. 182]) that

∞∑
n=1

(ζ(2n)− 1)x2n =
1

2

(
1− πx cot(πx)

)
− x2

1− x2
= −

∞∑
n=2

x2

x2 − n2
.
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Since z = 0 and z = ±1 are removable singularities for 1
2

(
1−πz cot(πz)

)
− z2

1−z2 , the

holomorphy in |z| < 2 implies that we have uniform convergence of
∑∞

n=1(ζ(2n)−1)x2n

on [0, 1]. Also, for x ∈ ]0, 1[,
∞∑
n=1

(ζ(2n)− 1)xn+1 =
x

2
− π

2
x3/2 cot(π

√
x)− x2

1− x
.

A primitive on ]0, 1[ is then given by
∞∑
n=1

ζ(2n)− 1

n+ 2
xn+2 =

x2

4
−
∫ (

π

2
x3/2 cot(π

√
x) +

x2

1− x

)
dx.

Using again uniform convergence on [0, 1], the substitution s =
√
x and integration

between 0 and 1 yields
∞∑
n=1

ζ(2n)− 1

n+ 2
=

1

4
−
∫ 1

0

(
π

2
s3 cot(πs) +

s4

1− s2

)
2sds

=
1

4
−
∫ 1

0

(
πs4 cot(πs) +

2s5

1− s2

)
ds

Let �
�

�

I :=

∫ 1

0

(
π t4 cot(πt) +

2t5

1− t2

)
dt.

We claim that

(35) I =
3

π2
ζ(3)− 3

2
+ log π ∼ 0.0101113705 · · ·

To determine the value of I, we first calculate a primitive of

f(x) := π x4 cot(πx)

on ]0, 1[. This is done by using partial integration and the 1-periodic Fourier series
∞∑
k=1

cos(2kπx)

k
= − log(2 sin(πx)) = − log 2− log(sin(πx)),

where the convergence is considered in the L2-norm on ]0, 1[, which also guarantees
that

∫ ∑
=
∑∫

below.∫
f(x)dx = x4 log(sin(πx))− 4

∫
x3 log(sin(πx)) dx

= x4 log(sin(πx)) + 4

∫ ∞∑
k=1

x3 cos(2kπx)

k
dx+ 4

∫
x3 log 2 dx

= x4 log(sin(πx)) + 4

∞∑
k=1

∫
x3 cos(2kπx)

k
dx+ 4

∫
x3 log 2 dx

Before evaluating at the boundary points, we need to add

2x5

1− x2
= −2x3 − 2x− 1

1 + x
+

1

1− x
,

since the integral
∫ 1

0 f(x)dx is divergent (at 1). Defining the symbol [h(x)]10 below as

[h(x)]10 := lim
x→1−

h(x)− lim
x→0

h(x),
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we obtain

I =

∫ 1

0

(
π x4 cot(πx) +

2x5

1− x2

)
dx =

[
x4 log(sin(πx))− log(1− x)− x4

2
− x2 − log(1 + x)

]1

0

+4

∞∑
k=1

∫ 1

0
x3 cos(2kπx)

k
dx+ log 2.

Note that

x4 log(sin(πx))− log(1− x) = x4 log
sin(πx)

1− x
+ (x4 − 1) log(1− x)→ log π as x→ 1.

Also, three times partial integration yields∫ 1

0
x3 cos(2kπx)

k
dx =

3

4k3π2
.

Hence

I = log π − 3

2
− log 2 + 4

∞∑
k=1

3

4k3π2
+ log 2

= log π − 3

2
+

3

π2
ζ(3),

yielding (35). We conclude that (34) is satisfied, that is
∞∑
n=1

ζ(2n)− 1

n+ 2
=

1

4
− I =

7

4
− log π − 3

π2
ζ(3) ∼ 0.23988862 · · ·

Remarks (1) The value for I is also given directly by Maple

(2) Using Wolframalpha’s representation below of a primitive of π t4 cot(πt) + 2t5

1−t2
and evaluating at the boundary points, we also obtain the value of I. Just note that
ζ(2) = π2/6 and ζ(4) = π4/90:

I = 2i
ζ(2)

π
+ 3

ζ(3)

π2
− 3i

ζ(4)

π3
− 3

ζ(5)

2π4
+
iπ

5
− 1

2
− 1 + lim

s→1

(
s4 log(1− e−2πis)− log(1− s2)

)
+3

ζ(5)

2π4
− lim
s→0

(
s4 log(1− e−2πis)− log(1− s2)

)
= 3

ζ(3)

π2
+ i

(
1

3
− 1

30

)
π +

iπ

5
− 3

2
+ (−iπ

2
+ log π)− (0)

= 3
ζ(3)

π2
− 3

2
+ log π.
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Solution to problem 2147 Math. Mag. 95 (2) 2022, p. 242 by
Raymond Mortini and Rudolf Rupp

We show that, in accordance with WolframAlpha,

P :=
∞∏
n=2

n4 + 4

n4 − 1
=

2 sinhπ

5π
.

Due to sin(iz) = i sinh z, we have

P (z) :=
∞∏
n=1

(
1− z4

n4

)
=
∞∏
n=1

(
1− z2

n2

) ∞∏
n=1

(
1 +

z2

n2

)
=

sinπz sinhπz

π2z2

and so

Q(z) :=
∞∏
n=2

(
1− z4

n4

)
=

P (z)

1− z4

Note that

P =
∞∏
n=2

1 + 4
n4

1− 1
n4

.

We put either z = 1 or z = 1 + i. Note that (1 + i)4 = −4 and that

lim
z→1

Q(z) = lim
z→1

sinπz

1− z
lim
z→1

1

(1 + z)(1 + z2)

sinhπ

π2
=

1

4

sinhπ

π
.
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Hence

P =
1

1− (1 + i)4

sin(π(1 + i)) sinh(π(1 + i))

π2(1 + i)2

/
1

4

sinhπ

π
=

2

5

sinhπ

π
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Solution to problem 2141 Math. Mag. 95 (2) 2022, p. 157 by
Raymond Mortini and Rudolf Rupp

The value of the integral I is 2π cos(ϕ/2).

First we note that (u+ eiϕ)(u+ e−iϕ) = 1 + 2u cosϕ+ u2.
Case 1 cosϕ 6= 0 (or equivantly ϕ /∈ {π + 2kπ : k ∈ Z}).
Let log z = log |z| + i arg z be the main branch of the complex logarithm (that is

−π < arg z < π). Put H := C\ ] −∞, 0]. Note that for z ∈ S := C \ {it : |t| > 1} we
have

(36) arctan z =:
1

2i
log

1 + iz

1− iz
is a primitive of 1/(1 + z2).

Now for x ∈ R, 1/x2 + e±iϕ ∈ H and so f(x) := log(1/x2 + e±iϕ) is well defined. A
primitive is given by

F (x) = x log(1/x2+e±iϕ)−
∫
x
d

dx
log(1/x2+e±iϕ) = x log(1/x2+e±iϕ)+

∫
2

1 + x2e±iϕ
dx.

Since ϕ 6= ±π, z := xe±iϕ/2 ∈ S and so, by using (36) and the fact that 1+iz
1−iz maps the

right-half plane onto the upper-half-plane,∫
2

1 + x2eiϕ
dx = 2e−iϕ/2 arctan(eiϕ/2x) −→

x→∞
2e−iϕ/2π/2

Now arg z + arg z = 0 and so log z + log z = log |z|2, z ∈ H. Hence, with z =
1/x2 + eiϕ ∈ H,

x log(1/x2 + eiϕ) + x log(1/x2 + e−iϕ) = x log(1 + 2x−2 cosϕ+ x−4)
x→∞−→
x→0

0

Hence limx→∞ I(x) = 0 + π(e−iϕ/2 + eiϕ/2) = 2π cosϕ/2.
Case 2 cosϕ = 0. In other words I =

∫∞
0 log((1− 1/x2)2)dx, which is improper at

0 and 1. In this case I = 0. In fact, for x > 0 and x 6= 1,

h1(x) := x log

(
1

x2
− 1

)2

+ log

(
1 + x

1− x

)2

= (x− 1) log(x− 1)2 + 2(x+ 1) log(1 + x)− 4x log x

is a primitive of log((1− 1/x2)2). Hence∫ 1

0
log((1− 1/x2)2)dx = log 16
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and ∫ ∞
1

log((1− 1/x2)2)dx = log(1/16).

A related method (for cosϕ 6= 0) is to apply partial integration directly to B(x) :=
log(1 + 2x−2 cosϕ+ x−4) and which gives∫

B(x)dx = xB(x)−
∫
xB′(x)dx

with

xB′(x) = 4
1 + cosϕ x2

x4 + 2 cosϕ x2 + 1
=: 4R(x).

This rational function writes as

R(x) =
A

x2 + eiϕ
+

B

x2 + e−iϕ

with

A =
eiϕ cosϕ− 1

2i sinϕ
, B = A.

By using (36), we obtain∫ ∞
0

dx

x2 + b2
= lim

x→∞

1

b
arctan(x/b) =

{
π
2b if Re b > 0

− π
2b if Re b < 0.

Since lim
x→0
x→∞

xB(x) = 0, we deduce (with b := eiϕ/2) that
∫∞

0 B(x)dx = 2π cos(ϕ/2).
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solution of problem 2128 Math. Mag. 94 (2021), p. 308

We first show that

lim
m→∞

(1− bm)
1

mam = 0 and lim
m→∞

(1− am)
1

mam = 1.

In fact, taking logartithms, this is equivalent to show that

L := lim
m→∞

log(1− bm)

mam
= −∞ and R := lim

m→∞

log(1− am)

mam
= 0.

Since
∑

mma
m converges for |a| < 1, mam → 0. Hence we have an indeterminate

form 0/0 and may use l’Hospital’s rule. Using that for x > 1, we have limxm/m =∞,
we obtain

L = lim
m→∞

1

1− bm
(−bm) log b

am(1 +m log a)
= − log b lim

m→∞

(
b

a

)m 1

1 +m log a

= − log b

log a
lim
m→∞

(
b

a

)m 1

m
= −∞.

Moreover

R = lim
m→∞

1

1− am
(−am) log a

am(1 +m log a)
= − log a lim

m→∞

1

m log a
= 0.

Next we use that for sm := 1
mam and xm := log(1− bm)→ 0 the inequalities

(sm − 1)xm < bsmcxm ≤ smxm
imply that the limits R and L do not change if we replace sm by bsmc.

Consequently,

lim
m→∞

(1− bm)b
1

mam c = 0 and lim
m→∞

(1− am)b
1

mam c = 1

Hence, for each ε ∈]0, 1[ we obtain m,n ∈ N such that

(1− bm)n < ε and (1− am)n > 1− ε.
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solution of problem 2118 Math. Mag. 94 (2021), p. 150.

The series converges. This is an immediate consequence to Abel’s theorem telling
us that if (an) is a sequence of positive numbers with an ↘ 0, then the trigonometric
series S(t) :=

∑∞
n=0 ane

int converges for all t 6∈ {2kπ : k ∈ Z} (see i.e. Appendix 4
in my encyclopedic monograph: R. Mortini, R. Rupp, Extension Problems and Stable
Ranks, A Space Odyssey, Birkhäuser 2021, ca 2150 pages):

Just take an = e−blognc, t = 1, and the imaginary part of S(t). The proof is based
on the Abel-Dirichlet rule, telling us that with bn = eint, and

|b0 + b1 + · · ·+ bm| = |1 + eit + · · ·+ eimt| =

=

∣∣∣∣∣1− e(m+1)it

1− eit

∣∣∣∣∣ if eit 6= 1.

we obtain for t /∈ 2πZ that

(37) |b0 + b1 + · · ·+ bm| ≤
2

|1− eit|
=: M.

Hence the series
∑∞

n=0 anbn is convergent.
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Solution to problem 2117 in Math. Mag. 94 (2021), p. 150 by
Raymond Mortini, Rudolf Rupp and Amol Sasane

There are only the three solutions (n,m) ∈ {(1, 1), (1, 2), (2, 4)}.
It is easy to check that these are solutions.
Now suppose that n ≥ m ≥ 2. Then (n,m) cannot be a solution since

(m+ 1)n ≥ (m+ 1)m > mm > m!, so (m+ 1)n > m! + 1.

Now, if 2 = n < m, then

(m+ 1)2 = m! + 1 ⇐⇒ m+ 2 = (m− 1)!

which is obviously only satisfied for m = 4.
Next let 2 < n < m. Then we see that if (n,m) is a solution to (m+ 1)n = m! + 1,

then m must be even. (Actually, by Wilson’s theorem, m+ 1 divides m! + 1 if and only
m + 1 is prime; but we do not need this result). In particular, m ≥ 4. Note that the
equation (m+ 1)n − 1 = m! under discussion is equivalent to

(38)
n−1∑
k=0

(m+ 1)k = (m− 1)!.

1◦ m = 4. Then, due to (38), 6 = 3! = 1 + 5 + · · · implying that n = 2. A
contradiction to the assumption 2 < n < m..

2◦ m ≥ 6. Then 2 < m/2 < m − 1. Hence the integer m/2 divides (m − 1)!. Since
m/2 > 2, additionally the number 2 divides (m − 1)!. Thus m = 2 · (m/2) divides
(m− 1)!.

Now, (38) yields n ≡ 0, mod m. That is, m divides n and so m ≤ n. This is again
a contradiction to the assumption 2 < n < m.
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Solution to problem 2116 Math. Mag. 94 (2021), 150 by
Raymond Mortini, Rudolf Rupp



127

Solution to Quicky 1075 in Math. Mag. 90 (2017), 384

Figure 8. Intersecting curves

Yes. We have to show that for every d ∈ R, there is x0 ∈ R such that f(x0) =
f(x0 − d).

1) Non-elementary geometric approach.
Put g(x) := f(x − d) and choose a, b ∈ R such that m = f(a), M = f(b) and

m < f(x) < M for x ∈ ]a, b[. We may assume that a < b. Of course, m ≤ g(x) ≤ M .
Let a′ < a and b > b′. Then x 7→ (x, g(x)), a′ ≤ x ≤ b′ is a curve in the rectangle
R := [a′, b′]× [m,M ] starting at the left of the graph F := {(x, f(x)) : a ≤ x ≤ b} of f
and ending at the right (here we need that the Jordan arc F is a cross-cut of R). Thus
this curve meets the graph: that is there is a′ ≤ x0 ≤ b′ such that (x0, g(x0)) ∈ F .
Hence, there is a ≤ x1 ≤ b such that (x0, g(x0)) = (x1, f(x1)). Consequently, x0 = x1

and so f(x0) = f(x0 − d).

2) Analytic approach. Let H := f − g. Then H(a) = m − g(a) ≤ 0 and
H(b) = M − g(b) ≥ 0. If g(a) = m or g(b) = M , then we are done. So we may
assume that H(a) < 0 and H(b) > 0. Hence, by the intermediate value theorem, there
is x0 ∈ ]a, b[ such that H(x0) = 0. We conclude that f(x0) = g(x0) = f(x0 − d).

Let us point out that the assertion does not hold whenever merely infR f and supR f exist:

just look at f(x) = arctanx. Motivation for the problem came from the paper: Peter Horak,

Partitioning Rn into connected components. Am. Math. Mon. 122, No. 3, 280-283 (2015),

where periodic functions were considered.
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Solution to problem 1947 Math. Mag. 87 (2014), 230 by
Raymond Mortini, Jérôme Noël

n∑
k=0

| cos k| ≥ 1 +

n∑
k=1

(cos k)2 = 1 +

n∑
k=1

cos(2k) + 1

2
= 1 +

n

2
+

1

2
Re

(
n∑
k=1

e2ik

)
.

Now
n∑
k=1

e2ik = e2i 1− e2in

1− e2i
= e2i e

in

ei
sinn

sin 1
= ei(n+1) sin(n)

sin 1
.

Hence
n∑
k=0

| cos k| ≥ 1 +
n

2
+

cos(n+ 1) sinn

2 sin 1
≥ 1 +

n

2
− 1

2 sin 1

=
n

2
+

(
1− 1

2 sin 1

)
︸ ︷︷ ︸

>0

≥ n

2
,

because 2 sin 1 > 1 (note that π/4 < 1 < π/3 implies 1 <
√

2 < 2 sin 1 <
√

3).
Let us remark that in the very first step it was important to begin the sum at k = 1

in order to have the summand 1. Otherwise we would have obtained
n∑
k=0

| cos k| ≥ n+ 1

2
+

cosn sin(n+ 1)

2 sin 1
≥ n+ 1

2
− 1

2 sin 1

=
n

2
+

1

2

(
1− 1

sin 1

)
,

an estimate that is less than n/2.
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solution of problem 1871 Math. Mag. 84 (2011), p. 229.

The solution is a based on the following Lemma:

Lemma 9. Let F be a continuous, real-valued function on R × R. Suppose that F is
not zero outside the diagonal D and not constant 0 on D. Then either F ≥ 0 or F ≤ 0
everywhere.

Proof. Let P+ = {(x, y) ∈ R2;x < y} and P− = {(x, y) ∈ R2;x > y}.
Case 1: if F (x0, y0) < 0 and F (x1, y1) > 0 for some points P0 = (x0, y0) and P1 =
(x1, y1) in P+, then F must have a zero on the segment S joining P0 and P1 in P+

(since the image of S under F is an interval).
Case 2: if F (P0) < 0 and F (P1) > 0 for some P0 ∈ P+ and P1 ∈ P−, then we may

choose an arc A (piecewise parallel to the axis) such that F 6= 0 on A ∩D, which is a
singleton. By the the intermediate value theorem, there is a zero of F on the arc A,
but outside D.

Case 3: if F (Q0) < 0 and F (Q1) > 0 for some Q0, Q1 ∈ D, then there are P0 ∈ P+

and P1 ∈ P− such that F (P0) < 0 and F (P1) > 0. Hence we are in the second case.
Thus, all cases yield a contradiction to the assumption. Hence, in the image space,

0 is a global extremum. �

Solution to the problem Without loss of generality, we may assume that g > 0.
Let

H(a, b) =



∫ b
a f(x)dx∫ b
a g(x)dx

if a 6= b

f(a)

g(a)
if a = b.

We claim that H is continuous on R × R. In fact, it suffices to prove continuity at
the diagonal. So let (a0, a0) ∈ D. Then, for (a, b) ∈ R2 \D, there is ξ ∈ ]a, b[ such that∫ b
a f(x)dx/(b− a) = f(ξ)→ f(a0) if (a, b)→ (a0, a0). Thus limH(a, b) = H(a0).

By assumption, H(a, b) 6= f(c)/g(c) whenever (a, b) is outside the diagonal in R2.
Case 1: H ≡ f(c)/g(c) on the diagonal D. Then the function x 7→ f(x)/g(x) has

derivative 0 everywhere, and so satisfies the assertion of the problem.
Case 2: H not constant f(c)/g(c) on D. Then, by Lemma 9 applied to F = H −

f(c)/g(c), we see that H ≥ f(c)/g(c) on R×R or H ≤ f(c)/g(c) on R×R. In particular,
c is an extrema of the function x 7→ f(x)/g(x) and so the differentiability of f/g implies
that (f/g)′(c) = 0.
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solution of problem 1867 Math. Mag. 84 (2011), 150

If f ≡ 1, then the assertions are trivially true (just take any n points in ]0, 1[ ). If f 6≡ 1, then
there exist points at which f is strictly less than 1 and points where f is strictly bigger than

one (note that this is the only occasion where we have used the hypothesis that
∫ 1

0
f(t)dt = 1).

Hence, due to intermediate value theorem, there is at least one point at which f takes the value
1. In particular, if h = f or h = 1/f , and noticing that the image of [0, 1] under f is an interval
containing the point 1 in its interior, there exist b ∈ [0, 1] with M := h(b) > 1 and a sequence
(ai) with h(ai) < 1 and limh(ai) = 1. By compactness, we may assume that (ai) is converging
to some a ∈ [0, 1]. Hence h(a) = 1 and

m(δ) := min{h(x) : x ∈ [a− δ, a+ δ] ∩ [0, 1]} → 1 if δ → 0.

For later purposes, we note that m(δ) < 1. Choose δ so small that

(n− 1)(1−m(δ)) ≤M − 1.

Then
n−M = (n− 1)− (M − 1) ≤ (n− 1)m(δ).

Now choose n− 1 distinct points x1, . . . , xn−1 in [a− δ, a+ δ] ∩ ]0, 1[ such that

m(δ) < h(xj) < 1.

Then A :=
∑n−1
j=1 h(xj) satisfies

(n− 1)m(δ) ≤ A < n− 1.

Thus n −M ≤ A and so 1 < n − A ≤ M . Again, by the intermediate value theorem, there is
xn ∈]0, 1[ such that h(xn) = n−A. Hence

n∑
j=1

h(xj) = n.

Note that xn /∈ {x1, . . . , xn−1}.

Alternate proof concerning the existence of the cj

Let F (x) =
∫ x
0
f(t)dt be the primitive of f vanishing at the origin. Let xj = j/n, j =

0, 1, . . . , n. Then, by the mean-value theorem of differential calculus, there exist cj ∈ ]xj−1, xj [ ⊆
]0, 1[ such that

1 = F (1)− F (0) =

n∑
j=1

(F (xj)− F (xj−1)) =

n∑
j=1

F ′(cj)(xj − xj−1) =
1

n

n∑
j=1

f(cj).
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solution of problem 1863, Math. Mag. 84 (2011), 64.

We use Carathéodory’s definition of differentiability: A function f : I → R is differ-
entiable at a point x0 ∈ I, I ⊆ R an interval, if there exists a function g = gx0 : I → R
continuous at x0 such that

f(x) = f(x0) + (x− x0)g(x);

just define gx0(x) =

{
f(x)−f(x0)

x−x0 if x 6= x0

f ′(x0) if x 6= x0

.

Now if f ∈ C1[a, b], then gx0 is continuous and, by Rolle’s theorem, gx0(x) = f ′(ξ)
for some ξ ∈ ]a, b[, ξ depending on x0 and x. Hence

sup
a≤s≤b

|gx0(s)| ≤ max
a≤t≤b

|f ′(t)| =: M.

Let c = (a+ b)/2. Then, using the hypotheses that
∫ b
a f(x)dx = 0 and the fact that∫ b

a (x− c)dx = 0 we obtain the following equalities:

J :=

∫ b

a
xf(x)dx =

∫ b

a
(x− c)f(x)dx =∫ b

a
(x− c)(f(x)− f(c))dx =

∫ b

a
(x− c)2gc(x)dx.

Thus

|J | ≤
∫ b

a
(x− c)2Mdx =

1

3

[
(x− c)3

]b
a
M =

2

3

(
b− a

2

)3

M =
1

12
(b− a)3M.

If f(x) = x and a = −1, b = 1 then
∫ 1
−1 f(x)dx = 0 and

∫ 1
−1 xf(x)dx = 1/3 =

(b− a)3/12.
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solution of problem1860, Math. Mag. 83 (2010), 392.

We use the Schwarz-Pick Lemma telling us that holomorphic selfmaps of the unit disk
are contractions with respect to the (pseudo)-hyperbolic metric ρ and that ρ(f(z), f(w)) =
ρ(z, w) for some pair (z, w) ∈ D2, z 6= w implies that f is a conformal selfmap of D
(hence of the form eiθ b−z

1−bz ) and so a (pseudo)-hyperbolic isometry.

Note that zn +αzn−1 + az+ 1 = 0 for some z ∈ D if and only if zn−1 = −az+1
a+z . Now

suppose that there are two solutions z, w in D. Let f(z) = −az+1
a+z . Then

ρ(z, w) = ρ(f(z), f(w)) = ρ(zn−1, wn−1).

But this would imply that zn−1 is a bijection of D onto itself; a contradiction since
n ≥ 3.

Thus the equation zn +αzn−1 +αz+ 1 = 0 has at most one solution in D. Since z is
a solution if and only if 1

z is a solution, we see that this polynomial of degree n must
have at least n− 2 solutions (multiplicities counting) on the unit circle.

Next we note that u ∈ T s a solution of modulus one of zn + αzn−1 + αz + 1 = 0
if and only if u is a fixed point on T of the selfmap ϕ(z) = f−1(zn−1) of D. Since the
derivative of ϕ does not vanish at boundary fixed points, we conclude that there are at
least n− 2 distinct solutions of unit modulus.
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6. Crux Mathematicorum

Solution to problem 4924 Crux Math. 50 (3) 2024, 148

Raymond Mortini, Rudolf Rupp

We claim that for all B > 0 and n ≥ 2�
�

�
�1 +

n

B
≤

n−1∏
j=0

(
1 +

1

B + jx

)
if 0 ≤ x ≤ 1

and �
�

�
�1 +

n

B
≥

n−1∏
j=0

(
1 +

1

B + jx

)
if x ≥ 1.

In particular, we have equality for x = 1. Moreover, equality holds for all B > 0 and
all x ≥ 0 if n = 1.

Let Ln be the left hand side and Rn the right hand side.
• n = 1. Then

L1 −R1 = 1 +
1

B
− (1 +

1

B
) = 0.

• n ≥ 2. We show the assertion above via induction on n. So let n = 2.

L2 −R2 = 1 +
2

B
−
(

1 +
1

B

)(
1 +

1

B + x

)
=

x− 1

B(B + x)
.

Hence the assertion is true for n = 2.
• n→ n+ 1. Assume that the assertion is correct for some n ∈ N. Then, for x ≥ 1,

Ln ≥ Rn, and so

Ln+1 −Rn+1 = 1 +
n+ 1

B
−

n∏
j=0

(
1 +

1

B + jx

)

≥ 1 +
n+ 1

B
−
(

1 +
n

B

)(
1 +

1

B + nx

)
=

1

B

(
1− B + n

B + nx

)
=

1

B

n(x− 1)

B + nx
≥ 0.

The same estimates replacing ≥ by ≤ show that we also get the assertion for 0 ≤ x ≤ 1.
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Solution to problem 4930 Crux Math. 50 (3) 2024, 149

Raymond Mortini, Rudolf Rupp

First we note that for x, y ≥ 0, xy ≤ 1
2(x2 + y2). Hence

ab+ bc+ ca ≤ 1

2
(a2 + b2) +

1

2
(b2 + c2) +

1

2
(c2 + a2) = a2 + b2 + c2.

As log x is concave, we know that log(
∑n

j=1 εjxj) ≥
∑n

j=1 εj log xj whenever
∑n

j=1 εj =
1, εj ≥ 0. Hence

b

a+ b+ c
log a+

c

a+ b+ c
log b+

a

a+ b+ c
log c ≤ log

(
b

a+ b+ c
a+

c

a+ b+ c
b+

a

a+ b+ c
c

)
≤ log

(
a2 + b2 + c2

a+ b+ c

)
.

Hence

abbcca ≤
(
a2 + b2 + c2

a+ b+ c

)a+b+c

.
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Solution to problem 4925 Crux Math. 50 (3) 2024, 148

Raymond Mortini, Rudolf Rupp

We show that the functional equation

(39) f(x+ y) + xf(f(y)) = f(f(x)) + f(y) + axy

admits a solution if and only if a ∈ {0, 1}. If a = 1, then the identity is the only
solution and if a = 0, then the zero function is the only solution.

Put x = y = 0. Then f(0) + 0 = f(f(0)) + f(0) implies that f(f(0)) = 0. Now put
y = 0 in (39). Then

(40) f(x) = f(f(x)) + f(0).

This yields the new equation

(41) f(x+ y) + x
(
f(y)− f(0)

)
= f(x)− f(0) + f(y) + axy.

Now put x = 1. Then

(42) f(1 + y) + f(y)− f(0) = f(1)− f(0) + f(y) + ay,

from which we conclude that f(y + 1) = f(1) + ay, or in other words,

(43) f(u) = f(1) + a(u− 1) =: au+ b,

that is, f is linear-affine.
Since f(f(0)) = 0, we have a(a · 0 + b) + b = 0, and so ab + b = 0. Thus b = 0 or

a = −1. Due to (40),
ax+ b = a(ax+ b) + b+ b.

That is
ax = a2x+ (ab+ b) = a2x,

from which we deduce a ∈ {0, 1}. Hence, as a 6= −1, b = 0. Consequently, f(x) = x (if
a = 1) or f ≡ 0 if a = 0. It is straightforward to check that these are actually solutions.
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Solution to problem 4929 Crux Math. 50 (3) 2024, 149

Raymond Mortini, Rudolf Rupp

We show that�
�

�

I :=

∫ 1

0

log(1 +
√

1− u2)

1 + u
du =

π2

24
∼ 0.4112335167 · · · .

In fact,

I =

∫ 1

0
log
(

1 +
√

1− u2
) ∞∑
n=0

(−1)nun du =

∞∑
n=0

(−1)n
∫ 1

0
log
(

1 +
√

1− u2
)
un du,

where the interchanging limn

∫
Sn =

∫
limSn is allowed as the partial sums

Sn =
n∑
j=0

log
(

1 +
√

1− u2
)

(−1)juj

are bounded by the L1[0, 1]-function
log(1+

√
1−u2)

1+u . Now put

In :=

∫ 1

0
log
(

1 +
√

1− u2
)
un du,

and use partial integration with f(u) = log
(

1 +
√

1− u2
)

and g′(u) = un. Note that

g(u) = un+1

n+1 and

f ′(u) =

−u√
1−u2

1 +
√

1− u2
= −u(1−

√
1− u2)√

1− u2 u2
= − 1

u
√

1− u2
+

1

u
.

Hence

In = − 1

n+ 1

∫ 1

0

(
un − un√

1− u2

)
du

=
u=sin t

− 1

(n+ 1)2
+

1

n+ 1

∫ π/2

0
sinn t dt := − 1

(n+ 1)2
+ Jn.

Method 1.
By Lemma 10 below,
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I = −
∞∑
n=0

(−1)n
1

(n+ 1)2
+

∞∑
n=0

(−1)nJn = −π
2

12
+

∞∑
m=0

J2m −
∞∑
m=0

J2m+1

= −π
2

12
+
∞∑
m=0

(
2m
m

)
(2m+ 1)4m

· π
2
−
∞∑
m=0

4m

(2m+ 1)(2m+ 2)
(

2m
m

)
= −π

2

12
+
π2

4
− π2

8
=
π2

24
.

Here we have used the Taylor series (see e.g. [3] and [2]):

arcsinx =

∞∑
n=0

(
2n
n

)
4n

x2n+1

2n+ 1

arcsin2 x = 2
∞∑
n=0

4nx2n+2

(2n+ 1)(2n+ 2)
(

2n
n

)
=

∞∑
n=0

22n+1(n!)2

(2n+ 2)!
x2n+2 =

∞∑
n=1

22n−1

n2
(

2n
n

)x2n.

evaluated at x = 1.

Lemma 10. Let In :=
∫ π/2

0 (sinx)ndx. Then I0 = π/2, I1 = 1 and for n ∈ N∗,

(1) I2n = 1
2 ·

3
4 ·

5
6 · · ·

2n−1
2n

π
2 = (2n)!

4n(n!)2
· π2 =

(2nn )
4n ·

π
2 .

(2) I2n+1 = 2
3 ·

4
5 ·

6
7 · · ·

2n
2n+1 = 4n(n!)2

(2n+1)! = 4n

(2n+1)(2nn )
.

Proof. (1) I2n = 2n−1
2n I2n−2 for n ∈ N∗ and I0 = π

2 , because

2nI2n − (2n− 1)I2n−2 =

∫ π/2

0
(sinx)2n−2

(
2n sin2 x− (2n− 1)

)
dx

= −
∫ π/2

0
(sinx)2n−2

(
(2n− 1) cos2 x− sin2 x

)
dx

= −
[
(sinx)2n−1 cosx

]π/2
0

= 0.

(2) I2n+1 = 2n
2n+1I2n−1 for n ∈ N∗ and I1 = 1, because

(2n+ 1)I2n+1 − 2nI2n−1 =

∫ π/2

0
(sinx)2n−1

(
(2n+ 1) sin2 x− 2n

)
dx

= −
∫ π/2

0
(sinx)2n−1

(
2n cos2 x− sin2 x

)
dx

= −
[
(sinx)2n cosx

]π/2
0

= 0.

�

Next we note that for 0 ≤ x < 1, arcsinx = arctan
(

x√
1−x2

)
. In fact

Lemma 11. For 0 ≤ x < 1 we have

(1) arcsinx = arctan

(
x√

1− x2

)
.
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(2)
arcsinx√

1− x2
=

∞∑
n=0

x2n+1

∫ π/2

0
(sin t)2n+1 dt.

(3) (arcsinx)2 =
∞∑
n=0

(∫ π/2
0 (sin t)2n+1dt

n+ 1

)
x2n+2.

Proof. (1) Obvious, as tan(arcsinx) = sin(arcsinx)/(cos arcsinx).
(2) As in [3]): we shall use that for 0 ≤ y < 1

y

1− y2
=

1

2

(
1

1− y
− 1

1 + y

)
=

1

2

∞∑
n=0

(yn − (−1)nyn) =

∞∑
n=0

y2n+1.

Now let

I(t) :=
1√

1− x2
arctan

x sin t√
1− x2

.

Then, with 0 < x < 1,

arcsinx√
1− x2

= I
(π

2

)
− I(0) =

∫ π
2

0

∂I

∂t
dt =

∫ π
2

0

x cos t

1− x2 cos2 t
dt

=

∫ π
2

0

∞∑
n=0

(x cos t)2n+1 dt =

∞∑
n=0

x2n+1

∫ π
2

0
(cos t)2n+1 dt.

Here
∑∫

=
∫ ∑

, as all the terms are positive.

(3) Just use that
d

dx
(arcsinx)2 = 2

arcsinx√
1− x2

. �

Method 2
Note that

I = −
∞∑
n=0

(−1)n
1

(n+ 1)2
+

∞∑
n=0

(−1)nJn.

Consider the auxiliary function

h(x) =

∞∑
n=0

(∫ π
2

0

(sin t)n

n+ 1
dt

)
(−1)nxn+1.

Then

h′(x) =
∞∑
n=0

(∫ π
2

0
(sin t)n dt

)
(−1)nxn

=

∫ π
2

0

∞∑
n=0

(−x sin t)n dt =

∫ π
2

0

1

1 + x sin t
dt

(∗)
=

arccosx√
1− x2

Hence,

h(1) = h(1)− h(0) =

∫ 1

0

arccosx√
1− x2

dx =

[
−1

2
arccos2 x

]1

0

=
π2

8
.

We conclude that I = −π
2

12
+
π2

8
=
π2

24
.

To prove (*), just use the transformation tan(t/2) = y to get
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∫ π
2

0

1

1 + x sin t
dt = 2

∫ 1

0

1

1 + y2 + 2xy
dy =

2

1− x2

∫ 1

0

1

1 + (y+x)2

1−x2
dy

= 2

[
arctan x+y√

1−x2√
1− x2

]1

0

= 2
arctan x+1√

1−x2 − arctan x√
1−x2√

1− x2

=
arccosx√

1− x2
.

The latter is verified by calculating the derivatives of the numerators and by using
that for x = 0, 2 arctan 1 = π/2 = arccos 0.

Method 3

f(1) =

∫ 1

0

∫ π
2

0

1

1 + ξ sin t
dtdξ =

∫ π
2

0

∫ 1

0

1

1 + ξ sin t
dξdt

=

∫ π
2

0

log(1 + sin t)

sin t
dt

=

∫ 1

0

log(1 + y)

y
√

1− y2
dy

=
π2

8
.

From [3]
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Solution to problem 4920 Crux Math. 50 (2) 2024, 84

Raymond Mortini, Rudolf Rupp

Let

I :=

∫ 1

0

log(1 + xk + x2k + · · ·+ xnk)

x
dx.

We show that �
�

�

I =

π2

6

n

k(n+ 1)
.

For the proof, we use the power series representation

log(1− x) = −
∞∑
j=1

xj

j
, |x| < 1.

So, if 0 < x < 1 we have

f(x) :=
log(1 + xk + x2k + · · ·+ xnk)

x
=

1

x
log

(
1− xk(n+1)

1− xk

)

= −
∞∑
j=1

xk(n+1)j−1

j
+
∞∑
j=1

xkj−1

j
.

Hence, a primitive is given by

−
∞∑
j=1

xk(n+1)j

j2k(n+ 1)
+
∞∑
j=1

xkj

j2k
.

We conclude that

I =

∫ 1

0
f(x)dx =

∞∑
j=1

(
− 1

k(n+ 1)

1

j2
+

1

k

1

j2

)

=
π2

6

(
1

k
− 1

k(n+ 1)

)
=

π2

6

n

k(n+ 1)
.
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Solution to problem 4918 Crux Math. 50 (2) 2024, 83

Raymond Mortini, Rudolf Rupp

Let 0 ≤ a < b.
a) Suppose that a ≤ x < b. Then for a ≤ t ≤ b we have 1 ≥ t/b, and so, for λ > 1,

0 ≤ I(l) :=
lx

2∫ b
a l

t2dt
≤ blx

2∫ b
a tl

t2dt
=

2b(log l) lx
2

lb2 − la2
=

2b(log l) lx
2−b2

1− la2−b2
.

Since

(log l)e(log l)(x2−b2) =
log l

e(log l)(b2−x2)
→ 0 as l→∞,

we have that liml→∞ I(l) = 0.

b) Suppose that x = b. Then for a ≤ t ≤ b we have 1 ≤ t/a and so

I(l) =
lb

2∫ b
a l

t2dt
≥ alb

2∫ b
a tl

t2dt
=

2a(log l) lb
2

lb2 − la2

≥ 2a(log l) lb
2

lb2
= 2a log l

→ ∞ as l→∞.
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Solution to problem 4915 Crux Math. 50 (2) 2024, 82

Raymond Mortini, Rudolf Rupp

We claim that a = log 2, b = −1
2 − log 2 and c = log 2 + 5

4 ; that is�
�

�

lim

n→∞

(
n3Sn −

(
(log 2)n2 +

(
− 1

2
− log 2

)
n+ log 2 +

5

4

))
= 0.

Sn :=
∞∑
k=1

(−1)k+1

k(k + n+ 1)
=

1

n+ 1

∞∑
k=1

(−1)k+1n+ 1 + k − k
k(k + n+ 1)

=
1

n+ 1

∞∑
k=1

(−1)k+1

(
1

k
− 1

n+ k + 1

)

=
1

n+ 1

∞∑
k=1

(−1)k+1

1∫
0

xk−1dx− (−1)k+1

1∫
0

xn+kdx


(∗)
=

1

n+ 1

1∫
0

( ∞∑
k=1

(−1)k+1xk−1−
∞∑
k=1

(−1)k+1xn+k
)
dx

=
1

n+ 1

1∫
0

(
1

1 + x
− xn+1

∞∑
k=1

(−1)k+1xk−1

)
dx =

1

n+ 1

1∫
0

1− xn+1

1 + x
dx

=
log(2)

n+ 1
− 1

n+ 1

1∫
0

xn+1

1 + x
dx

=
log(2)

n+ 1
− 1

n+ 1

 xn+2

n+ 2

1

1 + x

∣∣∣∣1
0

+
1

n+ 2

1∫
0

xn+2

(1 + x)2dx


=

log(2)

n+ 1
− 1

2(n+ 1)(n+ 2)
− 1

(n+ 2)(n+ 1)

1∫
0

xn+2

(1 + x)2dx

=
log(2)

n+ 1
− 1

2(n+ 1)(n+ 2)
− 1

(n+ 2)(n+ 1)

 xn+3

n+ 3

1

(1 + x)2

∣∣∣∣1
0

+
2

n+ 3

1∫
0

xn+2

(1 + x)3dx


=

log(2)

n+ 1
− 2n+ 7

4(n+ 1)(n+ 2)(n+ 3)
− 2

(n+ 1)(n+ 2)(n+ 3)

1∫
0

xn+2

(1 + x)3dx.
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Here the interchanging of
∫ ∑

=
∑∫

in (∗) is possible since the partial sums

N∑
k=1

(−1)k+1(xk−1 − xn+k)

are bounded. Hence 9

n3Sn =
n3

n+ 1
log(2)− n3(2n+ 7)

4(n+ 1)(n+ 2)(n+ 3)
− 2n3

(n+ 1)(n+ 2)(n+ 3)︸ ︷︷ ︸
≤2

1∫
0

xn+2

(1 + x)3dx︸ ︷︷ ︸
≤1/(n+3)

= (n2 − n+ 1 +O(1/n)) log(2)− n

2
+

5

4
+O(1/n) +O(1/n)

= n2 log(2) + n

(
−1

2
− log(2)

)
+ log(2) +

5

4
+O(1/n)

= an2 + bn+ c+ O(1),

where the asymptotics are obtained by calculating the partial fraction decomposition
of the rational functions in n.

9 Here O and O denote the Landau symbols: O(1/n) is a function n 7→ h(n) satisfying |h(n)|
1/n

≤ C

and O(1) is a function n 7→ g(n) with limn→∞ g(n) = 0. In particular, O(1/n) implies O(1).
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Solution to problem 4914 Crux Math. 50 (2) 2024, 82

Raymond Mortini, Rudolf Rupp�� ��We show that the identity is the only monotonically increasing solution on [0,∞[.

First we note that f(x) = x trivially satisfies the functional equation on [0,∞[. Now
suppose that f is a solution and that f is increasing on [0,∞[.

• Put y = 0, respectively x = 0. Then

f(x2 + 1) = xf(x) + f(0) + 1 and f(y + 1) = f(y) + 1.

Hence, with y = x2, respectively y = 0,

f(x2 + 1) = f(x2) + 1 and f(1) = f(0) + 1

and so

(44) f(x2) + 1 = f(x2 + 1) = xf(x) + f(1).

This implies that, with x = 1,

f(1) + 1 = 1 · f(1) + f(1) = 2f(1).

Hence f(1) = 1 and so f(0) = 0. Consequently

(45) f(x2) = f(x2 + 1)− 1 = xf(x) + f(1)− 1 = xf(x).

• Next we note that f is right-continuous at x1 = 1. In fact, since f is increasing,
f is bounded in a right-neighborhood of x0 = 0 10. Hence, if x → 0, we have that
xf(x)→ 0. Consequently, by the second identity in (44)

lim
x→0

f(x2 + 1) = f(1) = 1.

• Via induction we obtain from f(x2) = xf(x), or equivalently f(x) =
√
x f(
√
x)

(just replace x2 by x), that
f( 2n
√
x)

2n
√
x

=
f(x)

x
.

Now 2n
√
x → 1 for x > 0 and 2n

√
x ≥ 1 for x ≥ 1. Thus, the right-continuity of f at

x1 = 1 yields that
f(1)

1
=
f(x)

x
,

from which we conclude that f(x) = x for x ≥ 1.
Now let 0 ≤ x ≤ 1. Then x+ 1 ≥ 1 and so, due to f(y + 1) = f(y) + 1,

x+ 1 = f(x+ 1) = f(x) + 1.

10For this, it is important that f is defined at 0.
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Consequently f(x) = x, too.

Remark 1 Our proof shows that instead of f being increasing, we may have as-
sumed merely that f is bounded in a right neighborhood of the origin.

Remark 2 A small modification of the proof (see below) shows that any solution to
the functional equation

(E) f(x2 + y + 1) = xf(x) + f(y) + 1, (x, y ≥ 0)

actually is additive on [0,∞[; that is satisfies f(u+ v) = f(u) + f(v) with f(0) = 0 and
f(1) = 1. Thus we obtain from the well known fact on the Cauchy functional equation
(restricted to the non-negative reals) that actually every measurable solution of (E)
coincides with the identity.

In fact, f(x2)
(45)
= xf(x) and f(y + 1) = f(y) + 1 imply that (E) becomes

(46) f(x2 + y + 1) = f(x2) + f(y) + 1 = f(x2) + f(y + 1), (x, y ≥ 0),

and so
f(u+ v) = f(u) + f(v) for u, v ≥ 0,

due to the following reason: since for y ≥ 1, f(y − 1) = f(y)− 1,

f(u) + f(v) = f(u) + f
(
(v + 1)− 1

)
= f(u) + f(v + 1)− 1

=
(46)

f(u+ (v + 1))− 1 = f(u+ v) + 1− 1

= f(u+ v).
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Solution to problem 4913 Crux Math. 50 (2) 2024, 82

Raymond Mortini, Rudolf Rupp

Let a ∈ R and, for f ∈ C(R), let

If (x, a) :=

∫ xa

0

f(tx2a−1)dt.

We show that
�� ��f(7) = 42 whenever If (x, a) = 3ax4.

Proof. Using for x 6= 0 the linear substitution t→ u with u := tx2a−1 and dt = ax−2du, we obtain

If (x, a) = ax−2

∫ x3

0

f(u)du.

Now If (x, a) = 3ax4 if and only if ∫ x3

0

f(u)du = 3x6.

Differentiating yields
3x2 f(x3) = 18x5,

equivalently
f(x3) = 6x3.

As x 7→ x3 is a bijection from R onto R, we obtain f(u) = 6u. Conversely, it is straightforward to check
that this f satisfies for every a the given integral equation. So f(7) = 42 independently of a.
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Solution to problem 4910 Crux Math. 50 (1) 2024, 38

Raymond Mortini, Rudolf Rupp

It is sufficient to consider the case n = 0, otherwise write∫
Sm − Sn

x2
dx =

∫
Sm − 1

x2
dx+

∫
1− Sn

x2
dx,

where S =
sinx

x
. Since |S| ≤ 1, we see that

∫∞
1

Sm−1
x2

dx converges. Now use that

1− S =
x2

3!
− x4

5!
± · · · = x2

(
1

6
+ O(x)

)
as x→ 0,

and

|Sm − 1| = |S − 1|
∣∣∣m−1∑
j=0

Sj
∣∣∣ ≤ m|S − 1|,

to conclude that

∫ 1

0

Sm − 1

x2
dx converges, too. Hence

I(m) :=

∫ ∞
0

Sm − 1

x2
dx

converges. Next we write

J :=
Sm − 1

x2
=

(sinx)m − xm

xm+2
=:

f(x)

xm+2
.

Now we apply Apostol’s method (see [1]). Integration by parts
∫
uv′ = uv −

∫
u′v with u = f and

v′ = x−m−2 yields:

I(m) =
1

m+ 1

∫ ∞
0

f ′(x)

xm+1
dx,

since lim
x→0

f(x)

xm+1
= 0 (and lim

x→∞

f(x)

xm+1
= 0) because∣∣∣ f(x)

xm+1

∣∣∣ ≤ m
|S − 1|
x

= mx

(
1

6
+ O(x)

)
as x→ 0.

Similarily, since 0 is a zero of order 1 of the analytic 11 function J(z) :=
(sin z)m − zm

zm+1
, we have

that for all j = 0, 1, . . . ,m

lim
x→0

f (j)(x)

xm+1−j = 0.

Hence, by repeating this procedure another m-times, we obtain

I(m) =
1

(m+ 1)!

∫ ∞
0

f (m+1)(x)

x
dx.

Now f (m+1)(x) = dm+1

dx
(sinx)m − 0. Next we ”linearize” the sinus-power:

11 Note that J(z) = z
( sin z

z )m−1

z2
= z

(
− 1

3!
+ z2

5!
+ · · ·

)
R(z), where lim

z→0
R(z) = lim

z→0

m−1∑
j=0

(
sin z

z

)j
=

m.
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(sinx)m =

(
eix − e−ix

2i

)m
=

(
1

2i

)m m∑
j=0

(−1)m−j
(
m

j

)
eijxe−i(m−j)x

= (−1)m
1

(2i)m

m∑
j=0

(−1)−j
(
m

j

)
eix(2j−m).

Since the ”constant” term (appearing for j = m/2 when m is even) is annihilated by the derivative, we
find

dm+1

dx
(sinx)m = (−1)m(−i)m+1 1

(2i)m

∑
0≤j<m

2

(m− 2j)m+1(−1)j
(
m

j

)
e−ix(m−2j)

+(−1)mim+1 1

(2i)m

∑
m
2
<j≤m

(2j −m)m+1(−1)j
(
m

j

)
eix(2j−m).

As the left hand side is real, we may take the real part on the right hand side and get (by observing
Re iz = −Im z)

dm+1

dx
(sinx)m = − 1

2m

∑
0≤j<m

2

(m− 2j)m+1(−1)j
(
m

j

)
sin((m− 2j)x)

+(−1)m+1 1

2m

∑
m
2
<j≤m

(2j −m)m+1(−1)j
(
m

j

)
sin((2j −m)x).

Finally, as ∫ ∞
0

sin(px)

x
dx =

∫ ∞
0

sin(x)

x
dx =

π

2

whenever p > 0, we deduce that

I(m) =
1

(m+ 1)!

∫ ∞
0

f (m+1)(x)

x
dx =

π

2

1

(m+ 1)!

[
− 1

2m

∑
0≤j<m

2

(m− 2j)m+1(−1)j
(
m

j

)

+(−1)m+1 1

2m

∑
m
2
<j≤m

(2j −m)m+1(−1)j
(
m

j

)]

which surely is a rational multiple of π. Making in the second summand the substitution k = m − j,
then we obtain

I(m) = − π

2m(m+ 1)!

∑
0≤j<m

2

(m− 2j)m+1(−1)j
(
m

j

)
.

For instance I(1) = −π
4
, I(2) = −π

3
, I(3) = − 13π

32
.
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Solution to problem 4909 Crux Math. 50 (1) 2024, 38

Raymond Mortini, Rudolf Rupp

First we note that Pn is continuous on [0,∞[, Pn(0) = 1 and that limn→∞ Pn(x) =∞. Now

P ′n(x) = x(x− 1)2n
(

(2n+ 3)x− (4n2 + 6n+ 4)
)

= x(x− 1)2n(2n+ 3)
(
x−

(
2n+

4

2n+ 3

))
.

Hence Pn is strictly decreasing on

[
0, 2n+

4

2n+ 3

]
and strictly increasing on

[
2n+

4

2n+ 3
,∞
]
. Com-

bining all this, and thanks to the intermediate value theorem, we deduce there exists a unique xn ∈]0,∞[
with Pn(xn) = 1. Next we discuss the assymptotics of the sequence (xn). Since xn > 2n + 4

2n+3
, we

see that xn →∞.
• As

1 = Pn(xn) = (xn − 1)2n+1(x2n − (2n+ 1)xn − 1)

= xn(xn − 1)2n+1(xn − 2n− 1− x−1
n )

we get

(47)
1

xn(xn − 1)2n+1
+

1

xn
= xn − 2n− 1.

But xn →∞. Thus xn − 2n− 1→ 0, from which we conclude that
�� ��xn − 2n→ 1 . In particular,

xn
n
− 2 =

xn − 2n

n
→ 0.

• By (47),

n (xn − 2n− 1) =
n

xn
+

n

xn(xn − 1)2n+1

=
n

xn

(
1 +

1

(xn − 1)2n+1

)
→ 1

2
(1 + 0) =

1

2
.



151

Solution to problem 4905 Crux Math. 50 (1) 2024, 37

Raymond Mortini, Rudolf Rupp

We show that

�



�
	(x, y) =

(
π

12
,

5π

12

)
, or in terms of degrees

�� ��15◦ and 75◦ .

We may assume that 0 ≤ x ≤ y ≤ π/2 and x+ y = π/2. Now

tan y = tan
(π

2
− x
)

= cot(x) =
1

tanx
.

So we have to solve for t = tanx the equation

(48) t+ t2 + t3 +
1

t
+

1

t2
+

1

t3
= 70

(or equivalently 1 + t + t2 − 70t3 + t4 + t5 + t6 = 0). Such symmetric equations are solved using the
substitution s := t+ 1/t. Now s2 = (t+ 1

t
)2 = t2 + 1

t2
+ 2; hence t2 + 1

t2
= s2 − 2. Moreover,

s3 =

(
t+

1

t

)3

= t3 + 3t+
3

t
+

1

t3

and so t3 + 1
t3

= s3 − 3s. This yields the equation s + s2 − 2 + s3 − 3s = 70, or equivalently

s3 + s2 − 2s− 72 = 0. As s = 4 is a solution, we obtain the factorization

0 = (s− 4)(s2 + 5s+ 18) = (s− 4)

((
s+

5

2

)2
+

47

4

)
.

So s = 4 is the only real solution. The equation 4 = t+ 1
t

now is equivalent to t2 − 4t+ 1 = 0, which

has 2 ±
√

3 as solutions. Now we have to calculate the values x for which tanx = 2 ±
√

3. As is well
known, arctan(2−

√
3) = π/12 and arctan(2+

√
3) = 5π/12. This can be verified by using the formulas

sinx =

√
1− cos 2x

2
and cosx =

√
1 + cos 2x

2
.
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Solution to problem 4904 Crux Math. 50 (1) 2024, 37

Raymond Mortini, Rudolf Rupp

This problem has no solution 12. In fact, suppose that x+ y is prime whenever x and y are prime,
y ≤ x. Since the sum of two odd prime numbers is even, it cannot be prime. Hence y = 2. Let n := x
13. Then we have to discuss the property 4 + nn is divisible by 2 + n.

4 + nn

2 + n
=

4 + ((n+ 2)− 2)n

2 + n
=

4 +

n∑
j=0

(n+ 2)j
(
n

j

)
(−1)n−j2n−j

n+ 2

=

4 + (−1)n2n +

n∑
j=1

(n+ 2)j
(
n

j

)
(−1)n−j2n−j

n+ 2

=
4 + (−1)n2n

n+ 2
+

n∑
j=1

(n+ 2)j−1

(
n

j

)
(−1)n−j2n−j

=:
4 + (−1)n2n

n+ 2
+m,

where m ∈ Z (note that the binomial coefficients belong to N). If n ≥ 3 is odd, then 2 + n is odd and
therefore 2 + n cannot divide (in Z) the even number 4 + (−1)n2n. Hence the primeness of n implies
that n = 2. Since x+ y = 2 + 2 = 4 is not prime, the pair (2, 2) is not a solution either.

12 Under the usual assumption that the number 1 is not considered as a prime number.
13 The symbol x for a natural number hurts my eyes ©.
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Solution to problem 4903 Crux Math. 50 (1) 2024, 37

Raymond Mortini, Rudolf Rupp

Let

S :=

∞∑
n=1

(
− 1

4n
+

∞∑
k=0

(−1)k

2n+ 2k − 1

)
which is the concise form of the sum in the problem. We claim that�



�
	S =

log 2

2
+
π

8
.

Solution

For n ≥ 1, let

Fn(x) :=

∞∑
k=0

(−1)k

2n+ 2k − 1
x2n+2k−1

be the generating function. Then Fn(x) converges for 0 ≤ x ≤ 1 (Leibniz rule for the alternating series
at x = 1), and by Abel’s rule, Fn is continuous on [0, 1]. Now

F ′n(x) =

∞∑
k=0

(−1)kx2n+2k−2 =
x2n−2

1 + x2
.

Since Fn(0) = 0, we obtain

Fn(1) =

∞∑
k=0

(−1)k

2n+ 2k − 1
=

∫ 1

0

x2n−2

1 + x2
dx.

Note that S =
∑∞
n=1

(
Fn(1)− 1

4n

)
. Partial integration

∫
u′v = uv −

∫
uv′with

u′ = x2n−2 and v = (1 + x2)−1

yields ∫ 1

0

x2n−2

1 + x2
dx =

x2n−1

2n− 1

1

1 + x2

∣∣∣1
0

+
1

2n− 1

∫ 1

0

x2n−1 2x

(1 + x2)2
dx

=
1

2(2n− 1)
+

2

2n− 1

∫ 1

0

x2n

(1 + x2)2
dx.

Hence, by using that
∑∫

=
∫ ∑

as all factors are positive, and the fact that

∞∑
n=1

(
1

2(2n− 1)
− 1

4n

)
= lim
N→∞

N∑
n=1

(
1

2(2n− 1)
− 1

4n

)
=

1

2
lim
N→∞

2N∑
j=1

(−1)j−1

j
=

log 2

2
,

we obtain

S =

∞∑
n=1

(
1

2(2n− 1)
− 1

4n

)
+ 2

∫ 1

0

(
∞∑
n=1

x2n−1

2n− 1

)
x

(1 + x2)2
dx

=
log 2

2
+

∫ 1

0

(
log

(
1 + x

1− x

)
x

(1 + x2)2

)
dx

=:
log 2

2
+

∫ 1

0

I(x)dx.

To calculate a primitive of I(x), we use partial integration with u = log
(

1+x
1−x

)
and v′ = x

(1+x2)2
.

Hence
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∫
I(x)dx = −1

2

1

1 + x2
log

(
1 + x

1− x

)
+

∫
1

1− x4 dx

= −1

2

1

1 + x2
log

(
1 + x

1− x

)
+

1

4
log

(
1 + x

1− x

)
+

1

2
arctanx

=
1

4

x2 − 1

x2 + 1
log

(
1 + x

1− x

)
+

1

2
arctanx

=: R(x).

Hence ∫ 1

0

I(x)dx = lim
x→1

R(x)−R(0) =
π

8
.
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Solution to problem 4900 Crux Math. 49 (10) 2023, 541

Raymond Mortini, Rudolf Rupp

We first show that

(49) Hp +Hq ≤ 1 +Hpq for 1 ≤ p ≤ q.
In fact, if 1 = p = q, then nothing has to be shown. So let us assume that q ≥ 2. Then

1 +Hpq = 1 +Hp +

(
1

p+ 1
+ · · ·+ 1

2p

)
+

(
1

2p+ 1
+ · · ·+ 1

3p

)
+ · · ·+

(
1

(q − 1)p+ 1
+ · · ·+ 1

qp

)
≥ 1 +Hp + p · 1

2p
+ p · 1

3p
+ · · ·+ p · 1

qp

= Hp +Hq.

Now let 1 ≤ m ≤ n ≤ p ≤ q (of course this is without loss of generality). Then by (49),

(Hm +Hn) + (Hp +Hq) ≤ (1 +Hmn) + (1 +Hpq) = 2 +Hmn +Hpq

≤ 2 + 1 +H(mn)(pq) = 3 +Hmnpq.

Remark 1 More generally, one can show that
n∑
j=1

Hnj ≤ (n− 1) +H∏n
j=1 nj

.

Remark 2 Solutions to the special case (49) above also appeared in Amer. Math. Monthly 56 (2)
1949, 109-110, Problem E819 Euler’s constant.

Remark 3 A different proof of Hp+Hq ≤ 1+Hpq, p, q ∈ N = {1, 2, . . . }, can be given via induction
on q: for q = 1, Hp +H1 = Hp + 1 ≤ 1 +Hp·1. Now for q → q + 1, we use that

Hp(q+1) = Hpq +
1

pq + 1
+ · · ·+ 1

pq + p
≥ Hpq +

p

pq + p
= Hpq +

1

1 + q
.

Hence

Hp +Hq+1 = Hp +Hq +
1

q + 1
≤ 1 +Hpq +

1

q + 1
≤ 1 +Hp(q+1).
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Solution to problem 4896 Crux Math. 49 (10) 2023, 540

Raymond Mortini, Rudolf Rupp

We show that all solutions f : R→ R of the functional equation

(50) f
(
f(x) + yf(z)− 1

)
+ f(z + 1) = zf(y) + f(x+ z) (x, y, z ∈ R)

are given by �� ��f ≡ 0 or f(x) = x for x ∈ R.

Obviously f ≡ 0 and the identity are solutions. Now let f be a solution to (50) with f(y0) 6= 0 for
some y0 ∈ R. We claim that f is surjective.

In fact, put x = 1 and y = y0 in (50). Then, for all z ∈ R.

(51) f
(
f(1) + y0f(z)− 1

)
+ f(z + 1) = zf(y0) + f(1 + z) ⇐⇒ f

(
f(1) + y0f(z)− 1

)
= f(y0) z.

As the function z 7→ f(y0) z is surjective, the function z 7→ f
(
f(1) + y0f(z) − 1

)
is surjective, too.

Hence x 7→ f(x) is surjective.

Next put y = 0 and z = 0 in (50). Then, for all x ∈ R
(52) f

(
f(x)− 1

)
+ f(1) = f(x).

Now put u := f(x). Note that if x runs through R, the surjectivity of f implies that u runs through
R, too. In particular, f(u− 1) = u− f(1) for every u ∈ R and so, with v := u− 1, f(v) = v+ 1− f(1).
Now v = 1 yields that f(1) = 2− f(1) and so f(1) = 1. Hence f(v) = v for every v ∈ R.
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Solution to problem 4894 Crux Math. 49 (10) 2023, 539

Raymond Mortini, Rudolf Rupp

We show that �
�

�



∞∑
n=1

Hn−1Hn+1

n(n+ 1)
= 3 .

For the proof we shall decompose the series into several telescoping series.

Hn−1Hn+1

n(n+ 1)
=

Hn−1Hn+1

n
− Hn−1Hn+1

n+ 1
=
Hn−1Hn+1

n
−

(Hn − 1
n

)(Hn+2 − 1
n+2

)

n+ 1

=
Hn−1Hn+1

n
−
HnHn+2 − 1

n
Hn+2 − 1

n+2
Hn + 1

n(n+2)

n+ 1

=

(
Hn−1Hn+1

n
− HnHn+2

n+ 1

)
+

Hn+2

n(n+ 1)
+

Hn
(n+ 1)(n+ 2)

− 1

n(n+ 1)(n+ 2)
.

Now

Hn+2

n(n+ 1)
=

(
Hn+1

n
+

1
n+2

n

)
− Hn+2

n+ 1
=

(
Hn+1

n
− Hn+2

n+ 1

)
+

1

n(n+ 2)

and

Hn
(n+ 1)(n+ 2)

=

(
Hn−1

n+ 1
+

1
n

n+ 1

)
− Hn
n+ 2

=

(
Hn−1

n+ 1
− Hn
n+ 2

)
+

1

n(n+ 1)
.

Moreover,

2

n(n+ 2)
=

1

n
− 1

n+ 2
=

(
1

n
− 1

n+ 1

)
+

(
1

n+ 1
− 1

n+ 2

)
2

n(n+ 1)(n+ 2)
=

1

n(n+ 1)
− 1

(n+ 1)(n+ 2)
.

Hence

Hn−1Hn+1

n(n+ 1)
=

(
Hn−1Hn+1

n
− HnHn+2

n+ 1

)
+

(
Hn+1

n
− Hn+2

n+ 1

)
+

(
Hn−1

n+ 1
− Hn
n+ 2

)
+

3

2

(
1

n
− 1

n+ 1

)
+

1

2

(
1

n+ 1
− 1

n+ 2

)
− 1

2

(
1

n(n+ 1)
− 1

(n+ 1)(n+ 2)

)
.

Consequently

lim
N→∞

N∑
n=1

Hn−1Hn+1

n(n+ 1)
=

(
H0H2 − lim

N→∞

HNHN+2

N + 1

)
+

(
H2 − lim

N→∞

HN+2

N + 1

)
+

(
H0

2
− lim
N→∞

HN
N + 2

)
+

3

2
+

1

4
− 1

4
.

Since γ = limn→∞(Hn − logn), we have that limN→∞
HNHN+2

N+1
= 0 as well as limN→∞

HN+2

N+1
= 0 and

limN→∞
HN
N+2

= 0. Consequently, by noticing that H0 = 0,

∞∑
n=1

Hn−1Hn+1

n(n+ 1)
= H2 +

3

2
= 3.
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We thank Roberto Tauraso for confirming the result via Maple and wolframalpha.com, the latter
though using a different representation:

Calculating the sum beginning with index n = 2, this software obtains the wrong result (the actual

sum is of course 3, too as the first summand (H1−1)(H1+0.5)
1∗2 = 0):

Very strange, too, is that the software does not give the correct value of the original sum but only
very rough approximations:
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Solution to problem 4893 Crux Math. 49 (10) 2023, 539

Raymond Mortini, Rudolf Rupp

The statement of the problem is a bit ambiguous, as problems arise for x = 0. Note that for
0 < x ≤ 1 and 1 ≤ t ≤ 1/x one has

0 ≤ x2t ≤ x2 1

x
= x ≤ 1,

so that the integral
∫ 1/x

1
f(x2t) dt is well defined for 0 < x ≤ 1. Moreover, for −1 ≤ x < 0 and

1/x ≤ t ≤ 0, one has

−1 ≤ x = x2
1

x
≤ x2t ≤ 0,

and so the integral
∫ 1/x

1
f(x2t) dt = −

∫ 1

0
f(x2t) dt−

∫ 0

1/x
f(x2t) dt is well defined for −1 ≤ x < 0, too.

If x = 0, though, then the symbol
∫ 1/x

1
is not well defined as 1/0+ =∞ and 1/0− = −∞. Actually no

function can be a solution to x2 +
∫ 1/x

1
f(x2t)dt = 1 also at this point, as

∫ ±∞
1

f(0)dt is divergent if

f(0) 6= 0, and if f(0) = 0, then
∫ ±∞
1

0 dt = 0 but 0 + 0 6= 1.
Thus we need to interprete at x = 0 this functional equation as

lim
x→0

(
x2 +

∫ 1/x

1

f(x2t)dt

)
= 1.

We show that �� ��f(x) = 2x

is the only continuous function f : [−1, 1]→ R satisfying for x ∈ [−1, 1]\{0} =: X the integral equation

(53) x2 +

∫ 1/x

1

f(x2t) dt = 1,

and

(54) lim
x→0

(
x2 +

∫ 1/x

1

f(x2t)dt

)
= 1.

Proof. For x ∈ X and f ∈ C[−1, 1], let F (x) := x2 +
∫ 1/x

1
f(x2t)dt. By the change of variable u := x2t

we obtain

x2F (x)− x4 =

∫ x

x2
f(u)du.

So F ≡ 1 on X if and only if
∫ x
x2
f(u)du = x2−x4 on X, hence also on [−1, 1]. Hence, if f ∈ C[−1, 1]

is a solution on X to (53) then, by taking derivatives, f(x)− f(x2) = 2x− 4x3 on [−1, 1]. From this,
we guess that f(x) = 2x. To this end, let g(x) := f(x) − 2x, x ∈ [−1, 1]. Then g ∈ C[−1, 1] and
g(x) = 2xg(x2) for x ∈ [−1, 1]. Since g(−x) = −2xg(x2), it suffices to determine g for x ∈ [0, 1].

By induction, for each x ∈ [0, 1],

g(x) = 2nx2
n−1g(x2

n

).

Now, for 0 ≤ x < 1 we may let n → ∞ and conclude (due to the continuity of g at 0 and mym → 0

for 0 ≤ y < 1) that g(x) = limn→∞ 2nx2
n−1 g(0) = 0. As g is continuous at 1, we deduce that g ≡ 0
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on [0, 1], hence on [−1, 1], and so f(x) = 2x for x ∈ [−1, 1] whenever f satisfies (53) on X. Now it is
straightforward to show that 2x also satisfies (54), that is

lim
x→0

(
x2 +

∫ 1/x

1

f(x2t)dt

)
= 1.
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Solution to problem 4889 Crux Math. 49 (9) 2023, 491

Raymond Mortini, Rudolf Rupp

Consider the functional equation

(55)
1

y − x

∫ y

x

f(g(t))dt = f
(x+ y

2

)
, x 6= y.

We show that all nonconstant continuous functions f : R → R and g : R → R satisfying (1) are
given by �� ��f(x) = ax+ b for a 6= 0, b ∈ R and g(x) = x.

In fact, for fixed x, let y → x. Then (1) implies (for instance via l’Hospital’s rule) that

(56) f(g(x)) = f(x)

for every x ∈ R. Hence

(57)
1

y − x

∫ y

x

f(t)dt = f
(x+ y

2

)
, x 6= y.

Next we observe that any continuous f satisfying (57), necessarily is C∞. In fact, for all x,∫ x+1

x−1

f(t)dt = 2f(x).

As the function on the left obviously is differentiable by the fundamental theorem of calculus, we do
have the same for the function on the right. A calculation gives f(x+ 1)− f(x− 1) = 2f ′(x). Hence,
the continuity of f implies that f is continuously differentiable. Inductively, we now conclude that f
is C∞.

Now let

H(x, y) :=

∫ y+x

y−x
f(t)dt.

Then, by assumption,

H(x, y) = 2xf

(
y + x+ (y − x)

2

)
= 2x f(y).

Therefore,
Hy = f(y + x)− f(y − x) = 2xf ′(y),

and
Hx = f(y + x) + f(y − x) = 2f(y).

Addition yields
f(y + x) = xf ′(y) + f(y).

Now

f ′(y + x) =
∂

∂y
f(y + x) = xf ′′(y) + f ′(y)

f ′(y + x) =
∂

∂x
f(y + x) = f ′(y).

Hence, for all x, we must have xf ′′(y) = 0. As f ′′ is continuous, f ′′ ≡ 0, and so f(x) = ax+ b with
a 6= 0 (since f is not constant) and b ∈ R. Moreover, as we know from (56) that f(g(x)) = f(x), the
injectivity of the linear function f implies that g is the identity.

We note that an equivalent for (57), the mid-point mean value theorem for derivatives, was dealt
with in [1].
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Solution to problem 4862 Crux Math. 49 (7) 2023, 375

Raymond Mortini, Rudolf Rupp

Let

Lm(n) :=
1

2n
1

nm

n∑
k=0

(
m+ k

k

) (
m+ n+ 1

n− k

)
.

We prove that �



�
	lim

n→∞
Lm(n) =

2

m!
.

To this end, note that(
m+ k

k

) (
m+ n+ 1

n− k

)
=

(m+ k)!

m!k!

(m+ n+ 1)!

(m+ k + 1)!(n− k)!

=
(m+ n+ 1)!

m!

1

k!(m+ k + 1)(n− k)!
=

(m+ n+ 1)!

m!n!

(
n

k

)
1

m+ k + 1
.

Hence
n∑
k=0

(
m+ k

k

) (
m+ n+ 1

n− k

)
=

(m+ n+ 1)!

m!n!

n∑
k=0

(
n

k

)
1

m+ k + 1
.

Put

f(x) :=

n∑
k=0

(
n

k

)
1

m+ k + 1
xm+k+1.

Then

f ′(x) =

n∑
k=0

(
n

k

)
xm+k = xm(1 + x)n.

Consequently, as
∫ 1

0
f ′(x)dx = f(1)− f(0) and f(0) = 0,

n∑
k=0

(
m+ k

k

) (
m+ n+ 1

n− k

)
=

(m+ n+ 1)!

m!n!

∫ 1

0

xm(1 + x)n dx,

and so

(58) Lm(n) =
1

nm
(m+ n+ 1)!

m!n!

∫ 1

0

xm
(

1 + x

2

)n
dx.

Case 1 If m = 0, then

L0(n) =
(n+ 1)!

n!

∫ 1

0

(
1 + x

2

)n
dx = (n+ 1)

[
2

n+ 1

(
1 + x

2

)n+1
]1
0

= 2

(
1− 1

2n+1

)
→ 2.

Case 2 m ≥ 1. We claim that

Rn := (n+ 1)

∫ 1

0

xm
(

1 + x

2

)n
dx→ 2 as n→∞.

In fact, partial integration yields
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Rn =

[
xm2

(
1 + x

2

)n+1
]1
0

−
∫ 1

0

mxm−12

(
1 + x

2

)n+1

dx

= 2−m
∫ 1

0

xm−12

(
1 + x

2

)n+1

dx︸ ︷︷ ︸
:=In

.

Since

0 ≤ In ≤ 2

∫ 1

0

(
1 + x

2

)n+1

dx =
1

n+ 2

[(
1 + x

2

)n+2
]1
0

≤ 1

n+ 2
,

we conclude that In → and so Rn → 2.
Together with (58), this finally yields that

Lm(n) =
1

nm
(m+ n+ 1)!

m!n!

∫ 1

0

xm
(

1 + x

2

)n
dx

=
1

m!

(m+ n+ 1)(m+ n) . . . (n+ 2)

nm
(n+ 1)

∫ 1

0

xm
(

1 + x

2

)n
dx

=
1

m!

m+ n+ 1

n

m+ n

n
. . .

n+ 2

n
Rn

→ 1m · 2

m!
=

2

m!
.
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Solution to problem 4870 Crux Math. 49 (7) 2023, 377

Raymond Mortini, Rudolf Rupp

We will show the following:

Let q, c > 0 and define the sequence (not series like it is mentioned in the problem statement)

(an) by a1 = c and an+1 = an +
1

q · an
for n ≥ 1. Then, with c(q) = 2/q

lim
n→∞

∣∣an −√c(q)n∣∣ = 0.

Remark If one starts with c < 0, then all the an are negative too, and one obtains
∣∣an+

√
c(q)n

∣∣→ 0.
(This is done by considering bn := −an).

Solution Let h(x) := x +
1

qx
. Then h > 0 on ]0,∞[ and so an+1 = h(an) is well defined. Taking

squares

a2n+1 = a2n +
2

q
+

1

q2a2n
,

or equivalently

a2n+1 − a2n =
2

q
+

1

q2a2n
,

we obtain the finite telescoping series:

a2n+1 − a21 =
n∑
k=1

(a2k+1 − a2k) =
2

q
n+

1

q2

n∑
k=1

1

a2k
.

Hence

(59) a2n+1 = c2 +
2

q
n+

1

q2

n∑
k=1

1

a2k
.

This allows us to estimate an+1:

a2n+1 ≥ c2 +
2

q
n,

and so by using this,

(60) a2n+1 ≤ c2 +
2

q
n+

1

q2

n∑
k=1

1

c2 +
2

q
(k − 1)

.

Next consider the decreasing function f(x) =
1

c2 +
2

q
x

, x ≥ 0. Then
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n∑
k=1

1

c2 +
2

q
(k − 1)

=
1

c2
+

n−1∑
k=1

f(k) ≤ 1

c2
+

∫ n−1

0

f(x)dx

=
1

c2
+

[
q

2
log

(
c2 +

2

q
x

)]n−1

0

=
1

c2
+
q

2
log

(
1 +

2

qc2
(n− 1)

)
.

Thus we have arrived at the following estimates:

(61) c2 +
2

q
n ≤ a2n+1 ≤ c2 +

2

q
n+

1

q2
1

c2
+

1

2q
log

(
1 +

2

qc2
(n− 1)

)
.

Hence

∆n :=

∣∣∣∣an+1 −
√

2

q
n

∣∣∣∣ =

∣∣∣a2n+1 − 2
q
n
∣∣∣

an+1 +
√

2
q
n

≤
c2 + 1

q2
1
c2

+ 1
2q

log
(

1 + 2
qc2

(n− 1)
)

√
c2 + 2

q
n+

√
2
q
n

−→
n→∞

0.

Finally ∣∣∣∣an −√2

q
n

∣∣∣∣ ≤
∣∣∣∣an −√2

q
(n− 1)

∣∣∣∣+

∣∣∣∣√2

q
(n− 1)−

√
2

q
n

∣∣∣∣
= ∆n−1 +

√
2

q
· 1√

n− 1 +
√
n

−→
n→∞

0.
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Solution to problem 4866 Crux Math. 49 (7) 2023, 376

Raymond Mortini, Rudolf Rupp

This is entirely trivial. We claim that
�� ��the identity is the only solution f : R→ R to

(62) f(xy + f(f(y))) = xf(y) + y.

We first show that f(0) = 0. In fact, if x = 0, then f(f(f(y))) = y. Now take y = 0 in (62). Then
0 = f(f(f(0))) = xf(0). Hence f(0) = 0.

Next, we take y = 1 in (62). Then

(63) f(x+ f(f(1))) = xf(1) + 1.

Put u := x+ f(f(1)). This yields

(64) f(u) = (u− f(f(1))) f(1) + 1 =: au+ b

In other words, f necessarily is an affine function. As we already know, f(0) = 0. Thus b = 0. Now
(62) yields

a(xy + a2y) = xay + y.

Hence a = 1.
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Solution to problem 4857 Crux Math. 49 (5) 2023, 323

Raymond Mortini

Since the function log x is concave on ]0,∞[, we have

log

(
A+B + C

3

)
≥ logA+ logB + logC

3
=: R.

Here we take
A := aabb, B := bbcc, C = ccaa.

Now the function f(x) := 2x log x is convex on ]0,∞[, since f ′′(x) = 2/x ≥ 0. Hence

2a log a+ 2b log b+ 2c log c = f(a) + f(b) + f(c) ≥ 3f

(
a+ b+ c

3

)
= 3f

(
1

2

)
= −3 log 2.

Hence 3R ≥ −3 log 2, equivalently R ≥ log(1/2) from which we deduce that A+B+C ≥ 3/2. In other
words

aabb + bbcc + ccaa ≥ 3

2
.
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Solution to problem 4855 Crux Math. 49 (5) 2023, 323

Raymond Mortini, Rudolf Rupp

We claim that all solutions (a, b) ∈ N× N are given by�� ��(1, v), (u, 1), (t, t), (2, 3), (3, 2)

where u, v, t ∈ N := {1, 2, · · · } can be arbitrarily chosen.

It is easily seen that these are solutions. Now let (a, b) be a solution. Then (b, a) is a solution, too.
If b = a, or if b = 1, then nothing remains to be shown. So we may assume that a > b > 1. Let log x
be the natural logarithm. Now the function f : x 7→ x/ log x is strictly increasing for x ≥ e and strictly
decreasing for 1 < x ≤ e with minx>0 f(x) = e. So if a > b ≥ 3 > e,

a

log a
>

b

log b

or equivalently,

ba > ab.

Hence ab − ba < 0, but a − b > 0. So this case, where a > b ≥ 3, does not occur. So it remains to
consider the case a > b = 2. If a = 3, then we actually have the solution (3, 2). If a ≥ 4, then

a

log a
≥ 4

log 4
=

2

log 2
,

and so
a2 − 2a ≤ 0 < a− 2.

Thus this case a ≥ 4 > 2 = b does not occur, either. As all cases have been considered, we obtain the
assertion.
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Solution to problem 4854 Crux Math. 49 (5) 2023, 323

Raymond Mortini, Rudolf Rupp

We prove that for 1 ≤ r, s ≤ n,�
�

�

S :=

n∑
j=1

(
sin

(
j
rπ

n+ 1

)
+ sin

(
j
sπ

n+ 1

))2

=

{
n+ 1 if r 6= s

2(n+ 1) if r = s

We first show that

(65)

n∑
j=1

cos

(
j

2ρπ

n+ 1

)
=

{
−1 if ρ ∈ Z \ (n+ 1)Z
n if ρ ∈ (n+ 1)Z

and that for odd ρ ∈ Z

(66)

n∑
j=1

cos

(
j
ρπ

n+ 1

)
= 0.

To see this, we will use that cosx = Re(eix), and that

(67)

n∑
j=1

eijt = eit
n−1∑
j=0

eijt = eit
1− eint

1− eit =
eit − ei(n+1)t

1− eit .

Now put t = 2ρπ/(n + 1) whenever ρ ∈ Z \ (n + 1)Z. The latter guarantees that the denominator
does not vanish. Hence

n∑
j=1

eij
2ρπ
n+1 =

ei
2ρπ
n+1 − 1

1− ei
2ρπ
n+1

= −1.

Now if ρ ∈ (n+ 1)Z, then,
n∑
j=1

eij
2ρπ
n+1 = n.

Thus (65) holds. If ρ is odd, then, by putting t = ρπ/(n+ 1) in (67), we obtain

n∑
j=1

eij
ρπ
n+1 =

ei
ρπ
n+1 + 1

1− ei
ρπ
n+1

= i cot

(
1

2

ρπ

n+ 1

)
.

This is a purely imaginary number, so its real part is 0. This yields (66).
From (65) we easily deduce that for r ∈ {1, 2, . . . , n}

(68)

n∑
j=1

sin2

(
j
rπ

n+ 1

)
=
n+ 1

2
.
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In fact, using that sin2 x = 1−cos 2x
2

, we obtain from (65)

n∑
j=1

sin2

(
j
rπ

n+ 1

)
=

n∑
j=1

1− cos

(
j

2rπ

n+ 1

)
2

=
n

2
− 1

2

n∑
j=1

cos

(
j

2rπ

n+ 1

)
=

n+ 1

2
.

We are now ready to calculate the value of S.

• Case 1
�� ��r = s. Then

S =

n∑
j=1

(
sin

(
j
rπ

n+ 1

)
+ sin

(
j
rπ

n+ 1

))2

= 4

n∑
j=1

sin2

(
j
rπ

n+ 1

)
=
(68)

4
n+ 1

2
= 2(n+ 1).

• Case 2
�� ��r 6= s. Since r, s ∈ {1, 2, . . . , n}, r and s do not belong to (n + 1)Z. Note that due to

sinx sin y = 1
2
(cos(x− y)− cos(x+ y)),

(69) (sinx+ sin y)2 = sin2 x+ sin2 y + cos(x− y)− cos(x+ y).

Hence

S =

n∑
j=1

sin2

(
j
rπ

n+ 1

)
+

n∑
j=1

sin2

(
j
sπ

n+ 1

)
+

n∑
j=1

cos

(
jπ
r − s
n+ 1

)
−

n∑
j=1

cos

(
jπ
r + s

n+ 1

)

=
(68)

n+ 1 +

n∑
j=1

cos

(
jπ
r − s
n+ 1

)
−

n∑
j=1

cos

(
jπ
r + s

n+ 1

)
= n+ 1 + S1 − S2.

Several cases have to be analyzed now:

a) r− s is even, say r− s = 2ρ, where ρ ∈ Z. Then r+ s is even, too. Since 0 < |r− s| ≤ n− 1 and
0 < r + s ≤ 2n < 2(n+ 1), we again have two subcases:

a1) r + s 6∈ Z(n+ 1) (equivalently r + s 6= n+ 1): Then by (65),

S = n+ 1 + (−1)− (−1) = n+ 1.

a2) r + s = n+ 1 ∈ Z(n+ 1): Then n is odd, say n = 2m+ 1 for some m ∈ {0, 1, 2, . . . }, and so

S2 =

2m+1∑
j=1

cos(jπ) = (−1) + (+1) + · · ·+ (−1) + (+1) + (−1) = −1.

Hence
S = n+ 1 + (−1)− (−1) = n+ 1.

b) r − s is odd. Then r + s is odd, too. Again we have two subcases:

b1) r + s 6= n+ 1: Then by (66),

S = n+ 1 + 0− 0 = n+ 1.

b2) r + s = n+ 1. Then n is even, say n = 2m with m ∈ {1, 2, . . . }, and so

S2 =

2m∑
j=1

cos(jπ) = (−1) + (+1) + · · ·+ (−1) + (+1) = 0.

Hence
S = n+ 1 + 0− 0 = n+ 1.
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Solution to problem 4844 Crux Math. 49 (5) 2023, 273

Raymond Mortini, Rudolf Rupp

For n ≥ 1, let

In :=

∫ ∞
0

xn−1e−x√
x

(
n−1∑
k=0

(
2k

k

)
x−k

22k(n− k − 1)!

)
dx.

We show that �� ��In =
√
π .

We use the following well-known formulas, where Γ is the Gamma function:

(70)

∫ ∞
0

xs−1e−x dx = Γ(s), Γ(s+ 1) = s Γ(s), s > 0

(71) Γ

(
m+

1

2

)
= Γ

(
1

2

)
1

2

3

2

5

2
· · · 2m− 1

2
=
√
π

∏m
k=1(2k − 1)

2m
=

(2m)!

m!4m
√
π

So, with m = n− k − 1,

In =

n−1∑
k=0

(
2k

k

)
1

22k(n− k − 1)!

∫ ∞
0

x(n−k−1/2)−1e−x dx

=

n−1∑
k=0

(
2k

k

)
1

22k(n− k − 1)!
Γ(n− k − 1/2)

=

n−1∑
k=0

(
2k

k

)
1

22k(n− k − 1)!

(2(n− k − 1))!

(n− k − 1)!4n−k−1

√
π

=
1

4n−1

n−1∑
k=0

(2k)!

(k!)2
(2(n− k − 1))!

((n− k − 1)!)2
√
π =

1

4n−1

n−1∑
k=0

(
2k

k

)(
2(n− k − 1)

n− k − 1

)
√
π.

This is related to the coefficient in the Cauchy product of

∞∑
n=0

(
2n

n

)
xn =

∞∑
n=0

(
−1/2

n

)
(−1)n4nxn =

1√
1− 4x

,

with itself and which converges for |x| < 1/4, or if we take x = y/4,

∞∑
n=0

1

4n

(
2n

n

)
yn =

1√
1− y

.

In fact, for |y| < 1,

∞∑
m=0

ym =
1

1− y =
1√

1− y
1√

1− y
=

∞∑
m=0

(
m∑
k=0

(
2k
k

)
4k

(
2(m−k)
m−k

)
4m−k

)
ym

The coefficients being unique, we deduce that for every m = 0, 1, · · ·
m∑
k=0

(
2k
k

)
4k

(
2(m−k)
m−k

)
4m−k

= 1.
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Hence, with m = n− 1, we conclude that In =
√
π.
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Solution to problem 4850 Crux Math. 49 (5) 2023, 274, first version 14

Raymond Mortini, Rudolf Rupp

Let n ≥ 2. We show that for any finite field the sum S of all invertible n× n matrices is the n× n
zero matrix On.

For n ≥ 1, let Mn be the set of all n × n matrices and let Un be the set of all invertible n × n
matrices. Since the field has only a finite number of elements, Un has only a finite number of elements.
So S :=

∑
U∈Un U is a well defined element in Mn. We will show that for every Ũ ∈ Un,

S · Ũ = S.

Fix an invertible matrix Ũ ∈ Un and consider the map

ι :

{
Mn →Mn

X 7→ X · Ũ
.

Then ι is a bijection of Mn onto itself. The inverse is given by ι−1(Y ) = Y · Ũ−1, since

ι ◦ ι−1(Y ) = ι(Y · Ũ−1) = (Y · Ũ−1) · Ũ = Y

and
ι−1 ◦ ι(X) = ι−1(X · Ũ) = (X · Ũ) · Ũ−1 = X.

Moreover, and this is the main point here, ι maps Un bijectively onto itself. Thus (and here we have
not yet used that n 6= 1)

(72) S =
∑
U∈Un

ι(U) = ι(
∑
U∈Un

U) = ι(S) = S · Ũ .

Now we use that n ≥ 2. Take for Ũ and 1 ≤ i < j ≤ n the elementary matrices

Eij = (~e1, . . . , ~ej︸︷︷︸
i-th col

, . . . , ~ei︸︷︷︸
j-th col

, . . . , ~en),

which interchange for X · Eij the i-th and j-th column of X. Thus S · Eij = S implies that all the
columns of S are the same. Say S = (~s, . . . , ~s). Next we consider the matrix

E =


1 1 0
0 1 0

. . .
...

0 · · · 1

 .

Note that the action X ·E of E on a matrix X is to replace the second column of X by the sum of the
first and second column. Since E is invertible, we obtain from (72) that S · E = S and so

~s+ ~s = ~s.

Hence ~s = ~0. Consequently S = On.

Remark We may also consider the case n = 1. Note that the smallest field is given by F2 := {0, 1},
with 1 6= 0, where 0 is the neutral element for addition and 1 the one for multiplication. This necessarily
has characteristic 2. Here S = 1. If the finite field is not field-isomorphic to F2, it has more than two
elements, and so there is an (invertible) element u different from 1. Now by (72), S = Su, hence
S(1− u) = 0. Since 1− u 6= 0, hence invertible,we conclude that S = 0.

14 This was tacitly replaced by another problem later on.
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Solution to problem 4835 Crux Math. 49 (4) 2023, 213

Raymond Mortini, Rudolf Rupp

This is a standard result/exercise in old monographs on function theory/complex analysis and is for
instance in [1, p. 70] (see figure (??).

Using a not so sophisticated wording, we will show that four distinct points zj (j = 1, . . . , 4) in the
plane belong to a circle or a line if and only if their cross-ratio (bi-rapport, Doppelverhältnis)

DV (z1, z2, z3, z4) :=
z1 − z2
z1 − z4

/z3 − z2
z3 − z4

is a real number.

In particular, being real, will be independent of the ”order” of the points on the circle, respectively
line.

Our proof will be done in the extended complex plane, Ĉ := C ∪ {∞} (also called the one-point
compactification of C). Let us recall some terminology here. If L is a line in C, then L∪ {∞} is called

an extended line. As usual we call the elements of the set of circles and extended lines in Ĉ ”generalized
circles”.

We also use an extension of the definition of the cross-ratio to points in Ĉ. This is done by taking
limits. For instance

(73) D(z1, z2, z3,∞) =
z1 − z2
z3 − z2

.

Finally, let us recall the following results:
i) There is a unique linear-fractional map (or in modern terminology, a Möbius transform) T (z) :=

(az + b)/(cz + d), ad − bc 6= 0, viewed as map from Ĉ to Ĉ mapping three distinct points z2, z3, z4 in

Ĉ to 0, 1,∞, namely T (z) = DV (z, z2, z3, z4).
ii) The cross ratio is invariant under linear-fractional maps:

DV (T (z1), T (z2), T (z3), T (z4)) = DV (z1, z2, z3, z4).

Note that the latter is an immediate consequence of i).

iii) The class of generalized circles is invariant under Möbius transforms.

Now we are ready to confirm the statement above:

Given four distinct points z1, z2, z3, z4 ∈ C, consider the map S(z) := DV (z, z2, z3, z4). Suppose
that these zj belong to a generalized circle E. Now S maps E to the extended real line R ∪ {∞},
since z2 → 0, z3 → 1 and z4 → ∞. In particular, wj := S(zj) ∈ R ∪ {∞} for j = 1, . . . , 4. Since
DV (w1, w2, w3, w4) is real, the invariance result shows that DV (z1, z2, z3, z4) is real.

Conversely, suppose that DV (z1, z2, z3, z4) is real. Note that S(zj) ∈ {0, 1,∞} ⊆ R ∪ {∞} for
j = 2, 3, 4. Now the image of the extended real line by the inverse Möbius transform S−1 is a generalized
circle, E. Of course E contains the points z2, z3 and z4. But, by (73), and the assumption, we have

S(z1) = DV (S(z1), S(z2), S(z3), S(z4)) = DV (z1, z2, z3, z4) ∈ R.

Hence z1 = S−1(S(z1)) ∈ E. In other words, all the zj belong either to a circle or a line.
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This can be shortened, without the explicit use of the cross ratio. Actually, just iii) is relevant here:
Consider the Möbius transform

M(z) :=
z − z4
z − z2

z3 − z2
z3 − z4

.

Then z4, z3, z2 are mapped to 0, 1,∞, and so the (unique) generalized circle E determined by z4, z3, z2
is mapped to the extended real line. Thus the point z1 belongs to E if and only if M(z1) ∈ R. In other
words, all the zj belong either to a circle or a line if and only if z1−z4

z1−z2
z3−z2
z3−z4

∈ R.
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Solution to problem 4836 Crux Math. 49 (4) 2023, 214

Raymond Mortini, Rudolf Rupp

We first calculate the missing part

P :=

∞∏
n=1

2n+1∈P

4n(n+ 1)

(2n+ 1)2
.

Put p := 2n+ 1. Then n = (p− 1)/2 and so, in view of the Euler formula

π2

6
=

∞∑
n=1

1

n2
=
∏
p∈P

1

1− p−2
,

we have

P =
∏
p∈P
p6=2

p2 − 1

p2
=

4

3

6

π2
=

8

π2
.

To calculate

R :=

∞∏
n=1

4n(n+ 1)

(2n+ 1)2
,

we use partial products and Stirling’s formula lim
n→∞

nne−n
√

2πn

n!
= 1.

PN :=

N∏
n=1

4n(n+ 1)

(2n+ 1)2
=

4N N !(N + 1)!(
(2N+1)!∏N
n=1(2n)

)2 =
4NN !(N + 1)!

(2N + 1)!2

(
2NN !

)2
1

=
42NN !4(N + 1)

(2N + 1)!2

∼ 42N N4Ne−4N4π2N2(N + 1)

(2N + 1)4N+2e−4N−2 2π(2N + 1)

= πe2
(2N)4NN2(N + 1)

(2N + 1)4N (2N + 1)3

= 2πe2
1[(

1 + 1
2N

)2N]2 N2(N + 1)

(2N + 1)3

→ 2πe2
1

e2
1

8
=
π

4
.

Hence

∞∏
n=1

2n+1/∈P

4n(n+ 1)

(2n+ 1)2
=

π/4

8/π2
=
π3

32
.

A second way to derive the value of P is as follows:
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For z ∈ C we have

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
= πz

∞∏
n=1

(
1− z

n

)
e
z
n

∞∏
n=1

(
1 +

z

n

)
e−

z
n

= πz(1− z)ez
∞∏
n=1

(
1− z

n+ 1

)
e

z
n+1

∞∏
n=1

(
1 +

z

n

)
e−

z
n

= πz(1− z)ez
∞∏
n=1

(
1− z

n+ 1

)(
1 +

z

n

)
e

z
n+1
− z
n

= πz(1− z)ez e
∑∞
n=1( z

n+1
− z
n )
∞∏
n=1

(
1− z

n+ 1

)(
1 +

z

n

)
= πz(1− z)

∞∏
n=1

(
1− z

n+ 1

)(
1 +

z

n

)
.

Hence

P =

∞∏
n=1

4n(n+ 1)

(2n+ 1)2
=

∞∏
n=1

2n

2n+ 1

2n+ 2

2n+ 1

=

∞∏
n=1

1

1 + 1
2n

1

1− 1
2(n+1)

=
1

∞∏
n=1

(
1 +

1

2n

)(
1− 1

2(n+ 1)

)
=

πz(1− z)
sin(πz)

∣∣∣
z=1/2

=
π

4
.
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Solution to problem 4828 Crux Math. 49 (3) 2023, 157

Raymond Mortini, Rudolf Rupp

Let

I :=

∫ π/4

0

∫ π/4

0

cosx cos y

cos(x+ y) cos(x− y)
dy︸ ︷︷ ︸

:=I(x)

dx.

Now fix the variable x. Since

cos(x+ y) cos(x− y) = cos2 y − sin2 x,

we obtain

I(x) = cosx

∫ π/4

0

cos y

(1− sin2 x)− sin2 y
dy

u := sin y = cosx

∫ √2/2

0

du

cos2 x− u2

=
1

2
(log(cosx+ u)− log(cosx− u))

∣∣∣√2/2

u=0

=
1

2
log

(
cosx+ 1/

√
2

cosx− 1/
√

2

)
.

Hence (using Fubini),

(74) I =
1

2

∫ π/4

0

log

(√
2 cosx+ 1√
2 cosx− 1

)
dx.

The value of this integral is known to be the Catalan number C (see formula (18) in [1]). An indepen-
dent proof is below: using that cos a+ cos b = 2 cos(a+b

2
) cos(a−b

2
) and cos(a− b) = −2 sin a+b

2
sin a−b

2
,

we obtain

log

(√
2 cosx+ 1√
2 cosx− 1

)
= log

(
cosx+ cosπ/4

cosx− cosπ/4

)
= − log tan

(
x+ π/4

2

)
− log tan

(
−x+ π/4

2

)
.

A change of the variable x + π/4 = 2y, respectively −x + π/4 = 2y, and a standard integral
representation of C yields

I = −1

2

∫ π/4

π/8

log tan y (2dy)− 1

2

∫ π/8

0

log tan y (2dy) = −
∫ π/4

0

log tan y dy = C.

A proof of this standard representation can be given for instance by using power series or Fourier
series:

h(z) :=
1

2
log

(
1 + z

1− z

)
=

∞∑
n=0

1

2n+ 1
z2n+1.

Its Taylor coefficients belong to `2 and so the associated Fourier series

h∗(eit) :=

∞∑
n=0

1

2n+ 1
ei(2n+1)t
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converges in the L2(]0, π[)-norm to

h(eit) =
1

2
log(i cot(t/2)) = i

π

4
− 1

2
log tan(t/2)

(Actually the series h∗(eit) converges pointwise for z = eit with 0 < t < π by the Abel-Dirichlet rule,
but we do not need this.)

Taking real parts, and using that
∫ ∑

=
∑∫

(note that Fourier series converge in the L2-norm,

hence in the L1 norm), we may conclude that

−
∫ π/4

0

log tan y dy =

∫ π/2

0

∞∑
n=0

1

2n+ 1
cos(2n+ 1)t dt =

∞∑
n=0

(−1)n
1

(2n+ 1)2
.

References
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First we claim that on [0, 1/2] the function f(x) =

√
1− x
1 + x

is convex. In fact,

f ′(x) = − 1√
1−x
1+x

(1 + x)2

and

f ′′(x) =
1− 2x

(1− x)(x+ 1)3
√

1−x
1+x

≥ 0.

Since the graph of a convex function lies below the secant determined by (a, f(a)), (b, f(b)), we obtain

that f(x) ≤ 1 − 2(1 − 3−1/2)x, where a = 0 and b = 1/2. Since 1 − 3−1/2 ≥ 1/3, we deduce that for
0 ≤ x ≤ 1/2

f(x) ≤ 1− (2/3)x

, and so
n∑
i=1

f(ai) ≤ n− (2/3)

n∑
i=1

ai = n− 2/3.

But for n ≥ 2, we have

n− 2/3 < (n+ 1)

√
n− 1

n+ 1
=
√
n2 − 1,

since
n2 − 1− (n− 2/3)2 = 4/3n− 13/9 ≥ 8/3− 13/9 = 11/9 > 0.

This upper bound in the problem appears to be artificial. We did not see a way to derive this in a
natural way. To prove the reverse inequality, we use Jensen’s inequality and obtain

1

n

n∑
i=1

f(ai) ≥ f
(∑n

i=1 ai

n

)
= f(1/n).

Hence
n∑
i=1

√
1− ai
1 + ai

≥ n

√
1− 1

n

1 + 1
n

= n

√
n− 1

n+ 1
.
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We claim that �



�
	S =

π2

12
− 1

2
.

Just write

Hk
k(k + 1)(k + 2)

=
1

2

(
Hk
( 1

k(k + 1)
− 1

(k + 1)(k + 2)

))
=

1

2

(
Hk

k(k + 1)
− Hk+1

(k + 1)(k + 2)
+

1

(k + 1)2(k + 2)

)
.

Now
1

(k + 1)2(k + 2)
=

1

k + 2
− k+1− 1

(k + 1)2
=

(
1

k + 2
− 1

k + 1

)
+

1

(k + 1)2
.

Since the Cesaro means of the sequences (1/k) converge to 0, that is Hk/k → 0, we conclude that

S =
1

2

H1

2
− 1

2

1

1 + 1
+

1

2

∞∑
k=1

1

(k + 1)2
=
π2

12
− 1

2
.
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We prove that �
�

�

I :=

∞∑
n=1

On
n(n+ 1)

= log 4.

First we note that

On
n(n+ 1)

= On

(
1

n
− 1

n+ 1

)
=
On
n
− On+1

n+ 1
+

1

(2n+ 1)(n+ 1)
.

Since the Cesaro means of the null sequence (1/(2n+ 1)) converge to 0, we obtain

I =
O1

1
+

∞∑
n=1

1

(2n+ 1)(n+ 1)
= 1 + 2 log 2− 1 = log 4.

The value of the series S :=

∞∑
n=1

1

(2n+ 1)(n+ 1)
can be determined as follows:

N∑
n=1

1

(2n+ 1)(n+ 1)
=

N∑
n=1

( 2

2n+ 1
− 1

n+ 1

)
splitting into even an odd =

N∑
n=1

( 1

2n+ 1
− 1

2n+ 1

)
+

N∑
n=1

( 1

2n+ 1
− 1

2n

)
+

2N+1∑
n=N+1

1

n

= −1 +

2N+1∑
n=1

(−1)n+1 1

n
+

2N+1∑
n=N+1

1

n

−→
N→∞

−1 + log 2 + log 2.

Note that the well-known assertion limN→∞
∑2N
n=N+1

1
n

= log 2 is a direct consequence of the fact
that the Euler-Mascheroni constant γ is given by

γ = lim(Hn − logn),

where Hn :=
∑n
i=1

1
i
, since

H2N −HN = (H2N − log(2N)− γ) + (logN + γ −HN ) + log 2→ log 2.
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Substituting x = cosh t we obtain Tn(cosh t) = cosh(nt). In particular, Tn has no zeros on [1,∞[.
Hence

I :=

∫ ∞
1

dx

Tn(x)2/n
=

∫ ∞
0

sinh t(
cosh(nt)

)2/n dt =

∫ ∞
0

et − e−t

2

(
ent + e−nt

2

)2/n
dt

= 2−1+2/n

∫ ∞
0

1− e−2t

et
(
1 + e−2nt

)2/n dt.

Hence

I < 2−1+2/n

∫ ∞
0

1− e−2t

et
dt = 2−1+2/n

[
−e−t +

1

3
e−3t

]∞
0

= 2−1+2/n 2

3
=

1

3
n
√

4.

Moreover

I > 2−1+2/n

∫ ∞
0

1− e−2t

et(1 + 1)2/n
dt = 2−1

∫ ∞
0

1− e−2t

et
dt = 2−1 2

3
=

1

3
.
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We show that for a, b, k ≥ 0 (k not necessary an integer)�



�
	In :=

∫ 1

0

xk
√
a

x
+ bn2x2n dx

n→∞−→
√
b+

√
a

k + 1/2
.

Write
fn(x) = xk−1/2

√
a+ bn2x2n+1.

If a = 0, then

In =

∫ 1

0

√
bnxn+kdx =

n
√
b

n+ k + 1
→
√
b.

For a > 0, let

dn(x) := xk−1/2
(√

a+ bn2x2n+1 −
√
bn2x2n+1

)
.

Then
0 ≤ dn(x) = xk−1/2 a√

a+ bn2x2n+1 +
√
bnxn+1/2

≤ a√
a
xk−1/2.

Hence dn is dominated by an L1[0, 1] function and so, by using that nxn → 0 for 0 < x < 1,

lim
n

∫ 1

0

dn(x)dx =

∫ 1

0

lim
n
dn(x)dx =

∫ 1

0

√
axk−1/2 =

√
a

k + 1/2
.

Consequently, ∫ 1

0

fn(x)dx =

∫ 1

0

dn(x)dx+
√
b

∫ 1

0

nxk−1/2xn+1/2dx

=

∫ 1

0

dn(x)dx+
√
b

n

k + n+ 1

−→
n→∞

√
a

k + 1/2
+
√
b.
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Note that the harmonic mean x0 := 2ab/(a + b) is less than or equal to the arithmetic mean
y0 := (a+ b)/2. We show that the inequality holds for arbitrary x0, y0 with 0 < x0 < y0 < 1. So let F
be that primitive of f on [0, 1] with F (0) = 0. We shall prove that�



�
	2

∫ y0

x0

tf(t) dt ≥ (F (y0)− F (x0))(F (y0) + F (x0)) ,

from which the desired inequality immediately follows. By partial integration,

(75) 2

∫ y0

x0

t f(t) dt = 2

∫ y0

x0

tF ′(t) dt = 2(y0F (y0)− x0F (x0))− 2

∫ y0

x0

F (t)dt.

For 0 ≤ x, y ≤ 1, put

H(x, y) := 2yF (y)− 2xF (x)− 2

∫ y

x

F (t)dt− (F (y)2 − F (x)2).

We have to show that H(x0, y0) ≥ 0. Since 0 ≤ f ≤ 1, F (x) ≤
∫ x
0

1 dt = x. Hence

∂H

∂x
(x, y) = −2

(
F (x) + xf(x)

)
+ 2F (x) + 2F (x)f(x) = 2

(
F (x)− x

)
f(x) ≤ 0.

Consequently, by using that H(y, y) = 0, we obtain ξ ∈]x0, y0[ with

H(x0, y0) = H(x0, y0)−H(y0, y0) =
∂H

∂x
(ξ, y0)︸ ︷︷ ︸
≤0

(x0 − y0)︸ ︷︷ ︸
≤0

≥ 0.
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Let E :=]0,∞[× ]0,∞[× ]0,∞[ and let H : E → ]0,∞[ be given by

H(a, b, c) =
a7 + a3 + bc

a+ bc+ 1
+
b7 + b3 + ca

b+ ca+ 1
+
c7 + c3 + ab

c+ ab+ 1
.

Put L := {(a, b, c) ∈ E : abc = 1}. To be shown is that infLH = 3 and that this lower bound is
obtained exactly at (1, 1, 1). To this end, consider for x > 0 the function

f(x) :=
x7 + x3 + x−1

x+ x−1 + 1
=
x8 + x4 + 1

x2 + x+ 1
= x6 − x5 + x3 − x+ 1.

Then f is convex on [0,∞[. In fact,

f ′(x) = 6x5 − 5x4 + 3x2 − 1 and f ′′(x) = 30x4 − 20x3 + 6x = 2x(15x3 − 10x2 + 3).

Now f ′′(x) = 2x
(
5x2(3x− 2) + 3

)
. Then, clearly, f ′′(x) ≥ 0 if x ≥ 2/3. Since

max
[0,2/3]

x2(2− 3x) = 32/35 ≤ 3/5,

we deduce that f ′′(x) ≥ 0 on [0, 2/3], too. Due to Jensen’s inequality, for (a, b, c) ∈ L

H(a, b, c) = f(a) + f(b) + f(c) = 3
f(a) + f(b) + f(c)

3
≥ 3 f

(a+ b+ c

3

)
Since f is convex for x ≥ 0, f(x) ≥ f(1) + f ′(1)(x − 1) = 1 + 3(x − 1) = −2 + 3x. Why we take

evaluation at 1? Because it works! It is an a posteriori choice, since the minimal value is taken at
(a, b, c) = (1, 1, 1). Thus we obtain the estimate

H(a, b, c) ≥ 3 (−2 + (a+ b+ c)) = −6 + 3

(
a+ b+

1

ab

)
.

We can even avoid Jensen’s inequality:

H(a, b, c) = f(a) + f(b) + f(c) ≥ (−2 + 3a) + (−2 + 3b) + (−2 + 3c) = −6 + 3(a+ b+ c).

Since a + b + 1
ab
≥ 3 (see below) we deduce that for abc = 1 we have H(a, b, c) ≥ −6 + 9 = 3. As

H(1, 1, 1) = 3, we are done.

The inequality g(a, b) := a + b +
1

ab
≥ 3 is well known. It can for instance be shown by using

differential calculus:

ga(a, b) = 1− 1

ab2
= 0 ⇐⇒ ab2 = 1 and gb(a, b) = 1− 1

ba2
= 0 ⇐⇒ ba2 = 1.

In other words, ab(a − b) = 0. Hence a = b = 1 is the only stationary point. Thus g(1, 1) = 3 is the
minimum, since the limit of g at the boundary ab = 0 is ∞.
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We show that n = 2 is the only solution. In fact
√

23 + 1 +
√

2 + 2 = 3 + 2 = 5. Now, for x, y ≥ 0,
one has

√
x+
√
y ∈ N if and only if x and y are perfect squares. To see this, just note that

√
x+
√
y =

x− y√
x−√y

implies that
√
x+
√
y ∈ Q if and only

√
x−√y ∈ Q and so, by adding (respectively substracting),

√
x

and
√
y are rational. Thus

√
x = p/q for some p, q ∈ N with no common divisor. Hence x2 = p2/q2 ∈ N,

and so q = 1.
Due to a classical result by L. Euler, the Diophantine equation n3 + 1 = m2 has in N = {0, 1, 2, . . . }

only the solutions (m,n) = (1, 0) and (m,n) = (3, 2) (see for instance [1], a reference provided to the
first author by Amol Sasane). Thus n = 2 is the only positive integer also satisfying

√
n+ 2 ∈ N.

References

[1] https://mathoverflow.net/questions/39561/is-there-an-elementary-way-to-find-the-integer-
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Solution to problem 4810 Crux Math. 49 (1) 2023, 45

Raymond Mortini, Rudolf Rupp

We first show that whenever
∑n
j=1 a

2
j = 1, then

(76)

n∑
j=1
j 6=i

a2j

( n∑
j=1
j 6=i

aj
)3 ≥ 1√

1− a2i

√
n− 1

(n− 1)2
.

In fact, using Cauchy-Schwarz, we immediately obtain

n∑
j=1
j 6=i

a2j

( n∑
j=1
j 6=i

aj
)3 ≥

n∑
j=1
j 6=i

a2j

(( n∑
j=1
j 6=i

a2j
)
(n− 1)

)3/2 =
1√

1− a2i

√
n− 1

(n− 1)2
.

Next we prove that whenever
∑n
j=1 a

2
j = 1, then

(77)

n∑
i=1

1√
1− a2i

≥ n
√

n

n− 1
.

In fact, consider the convex function f(x) = 1√
1−x . By Jensen’s inequality (or one of the possible

defintions of convexity), if
∑n
j=1 tj = 1 where (0 ≤ tj ≤ 1), then

f
( n∑
j=1

tjxj
)
≤

n∑
j=1

tjf(xj).

Here we choose xi = a2i , and tj = 1/n. Note that
∑n
i=1 a

2
i

n
= 1/n. Hence

n∑
i=1

1√
1− a2i

= n

n∑
i=1

1

n
f(xi) ≥ nf

( 1

n

n∑
i=1

xj
)

=
n√

1− 1
n

= n

√
n

n− 1
.

Now putting (76) and (77) together yields

n∑
i=1

n∑
j=1
j 6=i

a2j

( n∑
j=1
j 6=i

aj
)3 ≥

√
n− 1

(n− 1)2
n

√
n

n− 1
=

n
√
n

(n− 1)2
.



190

Solution to problem 4803 Crux Math. 49 (1) 2023, 44

Raymond Mortini, Rudolf Rupp

It turns out that the triple (3, 4, 5) satisfying 32 + 42 = 52 is relevant here. Only one solution to the
problem with p ≤ q exists: p = 2, q = 3 and a = 2, b = 1, c = 2. To sum up:�� ��22·2 + 32·1 = (2 · 2 + 1)2

To see this, we use of course the well known parametrizations of the solutions to A2 + B2 = C2,
which are given by

(∗) A = 2mn,B = m2 − n2 and C = m2 + n2, m, n ∈ N.
The conditions to be dealt with are

i) 2mn = pa, ii) m2 − n2 = qb and iii) m2 + n2 = 2c+ 1.

• First we note that (a, b) = (0, 0) is not admissible as 1 + 1 = 2 is even. Now if b = 0 and a 6= 0,
then by i) p necessarily must be an even prime, that is p = 2. Hence

22a + 1 = (2c+ 1)2.

By (*), 1 = m2 − n2 and 22a = 2mn. Consequently m and n are powers of 2. Hence m2 − n2 is an
even number; and not 1. Thus ab 6= 0.
• So let ab > 0. Since p is prime, m and n can only be powers of 2 by (i). Due to iii), telling us

that m2 + n2 is an odd number, not both m and n can be proper powers of 2. Since m ≥ n (by ii)),
we necessarily have n = 1 and m = 2x with x 6= 0. By ii),

qb = m2 − 1 = (2x)2 − 1 = (2x − 1)(2x + 1).

This implies that q 6= 2 (as the right hand side is odd). Since the difference of the factors is 2, q ≥ 3
cannot divide both factors. Thus we can only have that the factor 2x − 1 equals 1.

Hence x = 1 and qb = 3, yielding b = 1 and q = 3. Finally by i), pa = 2mn = 2 · 21 · 1 = 22. So
p = 2 and a = 2. Finally, c = 2 as 32 + 42 = 52.
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We show, more generally, that whenever f, g : [0, 1]→ [0,∞[ are continuous and f(1)g(1) 6= 0, then�
�

�

lim

n→∞

1

n3

n∑
n=1

(∫ 1

0

xkf(x) dx

)−1 (∫ 1

0

xkg(x) dx

)−1

=
1

3

1

f(1)

1

g(1)
.

Hence the limit in the problem is (a+ b)2/3.

Proof Let M := max{|f(x)| : 0 ≤ x ≤ 1}. Given ε with 0 < ε < 1
2

min{f(1), g(1)}, choose δ > 0

so that |f(x) − f(1)| ≤ ε for δ ≤ x ≤ 1. Moreover, let n0 be so large that δk+1 ≤ ε/(2M) for k ≥ n0.
Then ∣∣∣∣∫ 1

0

xkf(x) dx− 1

k + 1
f(1)

∣∣∣∣ =

∣∣∣∣∫ 1

0

xk(f(x)− f(1)) dx

∣∣∣∣
≤ 2M

∫ δ

0

xk +

∫ 1

δ

xk|f(x)− f(1)| dx

≤ 2M
δk+1

k + 1
+ ε

∫ 1

0

xkdx

≤ ε

k + 1
+

ε

k + 1
.

Therefore (
1

k + 1
f(1) +

2ε

k + 1

)−1

≤
(∫ 1

0

xkf(x) dx

)−1

≤
(

1

k + 1
f(1)− 2ε

k + 1

)−1

.

We conclude that
n∑

k=n0

k + 1

f(1) + 2ε

k + 1

g(1) + 2ε
≤

n∑
k=n0

(∫ 1

0

xkf(x) dx

)−1 (∫ 1

0

xkg(x) dx

)−1
≤

n∑
k=n0

k + 1

f(1)− 2ε

k + 1

g(1)− 2ε
.

Hence, by using that
∑n
j=1 j

2 = n(n+1)(2n+1)
6 , we deduce that

lim sup
n→∞

1

n3

n∑
n=1

(∫ 1

0

xkf(x) dx

)−1 (∫ 1

0

xkg(x) dx

)−1
≤ 1

3

1

g(1)− 2ε

1

f(1)− 2ε

and

lim inf
n→∞

1

n3

n∑
n=1

(∫ 1

0

xkf(x) dx

)−1 (∫ 1

0

xkg(x) dx

)−1
≥ 1

3

1

f(1) + 2ε

1

g(1) + 2ε
.

from which we conclude that

lim
n→∞

1

n3

n∑
n=1

(∫ 1

0

xkf(x) dx

)−1 (∫ 1

0

xkg(x) dx

)−1
=

1

3

1

f(1)

1

g(1)
.

Remark The lower estimate show that the limit is infinite if f(1)g(1) = 0.
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First we note that ab+ bc+ ca = 4abc is equivalent to

(∗) `(a, b, c) :=
1

a
+

1

b
+

1

c
= 4.

If a = b = c, then this condition is satisfied if a = 3/4. Let

g(a, b, c) = a−1/a + b−1/b + c−1/c.

It suffices to show that the minimum M of g under condition (*) is obtained for a = b = c.
Note that M := g(3/4, 3/4, 3/4) = 3(3/4)−4/3 = 4(4/3)1/3 ∼ 4.402.

The gradient of the Lagrange function

H(a, b, c, λ) = g(a, b, c) + λ(`(a, b, c)− 4)

is zero if
λ = a−1/a (1− log a) = b−1/b (1− log b) = c−1/c (1− log c).

Since the function x 7→ x−1/x (1− log x) is strictly decreasing on ]0,∞[, the only solution is
where a = b = c. The existence of the minimum is shown as follows (note that

E := {(a, b, c) : a, b, c > 0, `(a, b, c) = 4}
is not compact. Condition (*) implies that a, b, c ≥ 1/4. Let L := infE g. Then

L ≥ 3 min
[1/4,∞[

x−1/x = 3e−1/e ≥ 3× 0.692 = 2.076.

If this infimum is not taken on E, then there is an → ∞ (or bn → ∞, or cn → ∞) such that

(an, bn, cn) ∈ E and g(an, bn, cn)→ L. In particular a
−1/an
n → 1. We may assume that bn → b0

and cn → c0 (since otherwise bn → ∞ and so cn → 1/4, as well as L = 1 + 1 + 44 > M , a
contradiction). Hence L = infE′(1 + b−1/b + c−1/c), where

E′ = {(b, c) : b, c > 0, 1/b+ 1/c = 3}.
In particular, b ≥ 1/3. Thus (by using Lagrange again, yielding x = 2/3)

L = inf
]1/3,∞[

1 + x−1/x +

(
3x− 1

x

) 3x−1
x x=2/3

= 1 + 2(3/2)3/2 ∼ 4.674 > M.

A contradiction. Consequently (an, bn, cn) → (α, β, γ) ∈ E and so the infimum is a minimum.
Hence

g(a, b, c) ≥ g(α, β, γ) = L = M.

Here is a second proof, based on the article [1] (which unfortunately contains many typos
(poor proofreading? Poor referee job?). The function f(x) := xx is convex. Let Tu(x) :=
f ′(u)(x−u) +f(u) be the tangent to the graph of f at the point (u, f(u)). Then f(x) ≥ Tu(x).
Next, let x1 = 1/a, x2 = 1/b and x3 = 1/c. Then with u := S = (x1 + x2 + x3)/3,

3∑
j=1

f(xj) ≥
3∑
j=1

TS(xj) =

3∑
j=1

(f ′(S)(xj − S) + f(S)) = f ′(S)

3∑
j=1

(xj − S) + 3f(S)
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= f ′(S)

3∑
j=1

xj − 3Sf ′(S) + 3f(S) = 3f(S).

Since S = (1/a+ 1/b+ 1/c)/3 = 4/3, we obtain with 1/a+ 1/b+ 1/c = 4 that

(1/a)1/a + (1/b)1/b + (1/c)1/c =

3∑
j=1

f(xj) ≥ 3f(4/3) = 3(4/3)4/3 = 4(4/3)1/3.
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Solution to problem 4801 Crux Math. 49 (1) 2023, 44

Raymond Mortini, Rudolf Rupp�



�
	We show that all solutions are given by f(x) =

C

1 + x
for C ∈ R.

• It is straightforward to check that these are solutions:

f

(
x+

1

y

)
=

c

1 + x+ 1
y

=
cy

y + yx+ 1
= yf(xy + y).

• Suppose that f : ]0,∞[→ R is a solution. Let y = 1
1+x . Then

(78) f(2x+ 1) = f(x+
1

y
) = yf(y(1 + x)) =

1

1 + x
f(1).

Next, let y = 1
x . Hence, by using (78),

f(2x) = f(x+
1

y
) = yf(y(1 + x)) =

1

x
f(1 +

1

x
) =

1

x
f(1 + 2

1

2x
)
(78)
=

1

x

f(1)

1 + 1
2x

=
2f(1)

2x+ 1
.

Now let X := 2x and C := 2f(1). Then f(X) =
2f(1)

X + 1
=

C

1 +X
.
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Solution to problem 4772 Crux Math. 48 (8) 2022, 483

Raymond Mortini, Rudolf Rupp

For k = 1, this problem was given for instance in the Middle European Mathematical
Olympiad (MEMO) in 2012 in Switzerland (see [?] and [?]) and we follow those published
solutions.

We claim that for a > 0, all solutions f : R+ → R+ of 15

(79) f(ax+ f(y)) =
y

a
f(xy + 1)

are given by f(x) = a/x. First, it is straightforward to see that this is a solution. Now we
proceed as in [?, ?]. Let f be a solution.

Step 1 Consider for y > 0, y 6= a, the auxiliary function

g(y) :=
a− yf(y)

a− y
(this function is formally obtained by solving in R×R+ the equation ax+f(y) = xy+ 1, which

gives x = xy = 1−f(y)
a−y for y 6= a, and so ax + f(y) = a−yf(y)

a−y = g(y). It will turn out that

x = −1/y and g ≡ 0).

Now for every y > 0 with y 6= a and xy > 0, we have that g(y) ≤ 0, since otherwise f is
well-defined at g(y) > 0 and so f(g(y)) = y

af(g(y)), yielding that y = a, a contradiction.

Step 2
Case 1 If there would exist y0 > 1 such that f(y0) < a/y0, then with x0 := 1 − 1

y0
> 0 we

have x0y0 + 1 = y0,

u0 := ax0 + f(y0) = a− a

y0
+ f(y0) < a,

and
f(u0) = f(ax0 + f(y0)) =

y0
a
f(y0) < 1.

Then xu0 := 1−f(u0)
a−u0

> 0 and so

g(u0) = axu0
+ f(u0) = xu0

u0 + 1 > 0.

But by Step 1, g(u0) ≤ 0, a contradiction.
Case 2 If there would exist y1 > 1 such that f(y1) > a/y1, then by the same reasoning as

above, with x1 := 1− 1
y1

and

u1 := ax1 + f(y1) > a,

we have f(u1) > 1 and so g(u1) > 0, again. A contradiction.

We conclude that f(y) = a/y for every y > 1. To deal with the remaining case, take x = 1/a
and 0 < y ≤ 1. Then by (79),

(80) f(1 + f(y)) =
y

a
f
(y
a

+ 1
)
.

15 We prefer to use the letter a instead of k, as for us k always belongs to N.
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As both 1 + f(y) and y
a + 1 are bigger than 1, we deduce from (80) that

a

1 + f(y)
=
y

a

a
y
a + 1

=
ay

y + a
.

Hence f(y) = a/y.
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Solution to problem 4779 Crux Math. 48 (8) 2022, 483

Raymond Mortini

If f is constant, then f ′ ≡ 0 and we may choose any numbers a < c1 < c2 < b to satisfy

(81)
√
bf ′(c1)+

√
af ′(c2) = 0.

Otherwise, f takes its distinct extremal values on [a, b]. We may assume that M := max[a,b] f >
f(a) (if not, M = f(a) and so min[a,b] f < f(a) and we consider −f). Say M = f(x0) for some
x0 ∈ ]a, b[. Then f ′(x0) = 0, and due to continuity of f ′, there are a < x1 < x2 ≤ x0 with
f ′(x) > 0 for x ∈ ]x1, x2[, but f ′(x2) = 0; we may choose

x2 = inf{t ≤ x0 : f ′ ≡ 0 on [t, x0]}.
By a similar argument, there are x0 ≤ y2 < y1 such that f ′(y2) = 0, but f ′(x) < 0 for
x ∈ ]y2, y1[. By the intermediate value theorem for continuous functions, here for f ′, there
exists a small ε > 0 such that f ′ takes every value from [0, ε] on ]x1, x2] and every value from

[−ε, 0] on [y2, y1[. Now choose c1 ∈ ]x1, x2[ so that
√
b√
a
f ′(c1) ∈ ]0, ε[ (this is possible since

limx↗x2
f ′(x) = 0). Hence there exists c2 ∈ ]y2, y1[ with

f ′(c2) = −
√
b√
a
f ′(c1).

Thus
√
bf ′(c1)+

√
af ′(c2) = 0 and c1 < c2.

Remark I do not see the role played by the special coefficients
√
a and

√
b. The whole works

for any 0 < s1 < s2 <∞.
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Solution to problem 4771 Crux Math. 48 (8) 2022, 483

Raymond Mortini, Rudolf Rupp

The problem is a bit ambiguous, due to an undefined ∼ symbol. Let

Ln :=

∫ 1

0

f(x)2n+1 dx and Rn = a · b
n

n

Is it Ln − Rn → 0? Or Ln/Rn → 1? Or cLn ≤ Rn ≤ CLn for almost every n and some
positive constants c, C? Note that, a priori, it is not even clear that Ln > 0.

We are going to show the following:

Example 12. �
�

�

lim

n→∞

n+ 1

f(1)2n+1

∫ 1

0

f(x)2n+1 dx =
f(1)

2f ′(1)
.

Hence, with a :=
f(1)2

2f ′(1)
and b = f(1)2 we get that Ln/Rn → 1.

Proof. Since f is assumed to be increasing, we see that f ′(x) ≥ 0 for 0 ≤ x ≤ 1. To exclude
that for some points x0 ∈ ]0, 1], f ′(x0) = 0, we need the convexity 16 of f : in fact, let T be the
tangent to the graph of f at (x0, f(x0)); then T (x) = f(x0) + f ′(x0)(x− x0). The convexity of
f implies that the graph of f lies above T . In particular, if f ′(x0) = 0, then, due to f being
strictly increasing, f(x0− ε) < f(x0) < f(x0 + ε) would contradict this fact. We conclude that
f ′(x) > 0 for every x ∈ ]0, 1].

To calculate our limit, we let 0 < s < 1 and write the integral
n+ 1

f(1)2n+1
Ln as In(s) + Jn(s),

where

In(s) =
n+ 1

f(1)2n+1

∫ s

0

f(x)2n+1 dx and Jn(s) =
n+ 1

f(1)2n+1

∫ 1

s

f(x)2n+1 dx.

Claim 1 There is a function h(s) with 0 < h(s) < 1, such that

(82)
f(1)

2f ′(1)

(
1− h2n+2(s)

)
≤ Jn(s) ≤ f(1)

2f ′(s)
.

To see this, note that f convex and C1 imply that f ′ is increasing (by the way, a fact
equivalent to f being convex). By the mean-value theorem, and for s < x ≤ 1, there is

cx ∈ ]s, 1[ with f ′(cx) = f(1)−f(x)
1−x . Hence

f ′(s) ≤ f ′(cx) ≤ f ′(1)

and so

f ′(s) ≤ f(1)− f(x)

1− x
≤ f ′(1).

16 Note that f merely being strictly increasing, does not exclude the existence of zeros of f ′: f(x) =
(x− 1/2)3.
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In other words

(83) f(1)− f ′(1) + f ′(1)x ≤ f(x) ≤ f(1)− f ′(s) + f ′(s)x.

Now for f(x) = Ax+B with A 6= 0 we have∫ 1

s

(Ax+B)2n+1 dx =
(A+B)2n+2 − (As+B)2n+2

A(2n+ 2)
.

Applying this to (83) yields

n+ 1

f(1)2n+1

∫ 1

s

f(x)2n+1 dx ≤ n+ 1

f(1)2n+1

(f ′(s) + f(1)− f ′(s))2n+2 − (f ′(s)s+ f(1)− f ′(s))2n+2

f ′(s)(2n+ 2)

=
1

2f ′(s)

f(1)2n+2 − (f ′(s)s+ f(1)− f ′(s))2n+2

f(1)2n+1

=
f(1)

2f ′(s)

(
1−

(
1− f ′(s)

f(1)
(1− s)

)2n+2
)

≤ f(1)

2f ′(s)

because 0 ≤ 1− f ′(s)
f(1) (1− s) < 1 for s ∈ [s1, 1]. Similarily,

n+ 1

f(1)2n+1

∫ 1

s

f(x)2n+1 dx ≥ n+ 1

f(1)2n+1

(f ′(1) + f(1)− f ′(1))2n+2 − (f ′(1)s+ f(1)− f ′(1))2n+2

f ′(1)(2n+ 2)

=
1

2f ′(1)

f(1)2n+2 − (f ′(1)s+ f(1)− f ′(1))2n+2

f(1)2n+1

=
f(1)

2f ′(1)

(
1−

(
1− f ′(1)

f(1)
(1− s)

)2n+2
)

=:
f(1)

2f ′(1)

(
1− h(s)2n+2

)
,

with h(s) := 1− f ′(1)
f(1) (1− s). Note that 0 < h(s) < 1 for s ∈ [s2, 1].

This finishes the proof of Claim 1.

Claim 2 limn→∞ In(s) = 0 for every 0 < s < 1.
To this end, we need to show that max[0,1] |f | = f(1) and that the maximum is only obtained

at 1 (note that f may take negative values). In fact, since f is increasing, f(0) ≤ f(x) ≤ f(1)
for every x ∈ [0, 1]. If f(0) ≥ 0, nothing has to be proven. So let f(0) < 0. Then, by the mean
value theorem on [0, 1] there is 0 < cx < 1 such that

f(x) = f(0) + f ′(cx)x ≤ f(0) + f ′(1)x ≤ f(0) + f ′(1)

(note that f ′ is increasing). Using that 0 ≤ f ′(1) < 2f(1) 17, we obtain f(1) < f(0) + 2f(1).
Hence f(0) > −f(1). As f is strictly increasing, we also have f(0) < f(1), and so |f(0)| < f(1).
Moreover, |f(x)| 6= f(1) for any x ∈ [0, 1[.

We conclude that

|In(s)| =
∣∣∣∣ n+ 1

f(1)2n+1

∫ s

0

f(x)2n+1

∣∣∣∣ ≤ (n+ 1)s

(
max[0,s] |f(x)|

f(1)

)2n+1

=: (n+ 1)M2n+1,

where 0 < M = M(s) < 1. As
∑∞
n=1(n+ 1)M2n+1 converges, In(s)→ 0 as n→∞.

17 It is only here that we use this assumption.
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We are now ready to determine the limit of n+1
f(1)2n+1

∫ 1

0
f(x)2n+1 dx. To this end, fix ε > 0

and choose s3 = s3(ε) ∈]0, 1[ so that for all s ∈ [s3, 1]∣∣∣∣ f(1)

2f ′(s)
− f(1)

2f ′(1)

∣∣∣∣ < ε.

Now for s0 := max{s1, s2, s3}, depending on ε, we obtain from Claim 1 that

f(1)

2f ′(1)

(
1− h2n+2(s0)

)
≤ Jn(s0) ≤ f(1)

2f ′(s0)
≤ f(1)

2f ′(1)
+ ε.

Since 0 < h(s0) < 1, there is n0 = n0(ε, s0) such that

0 < h(s0)2n+2 < ε for all n ≥ n0.
Thus, for n ≥ n0

f(1)

2f ′(1)
(1− ε) ≤ Jn(s0) ≤ f(1)

2f ′(1)
+ ε.

By Claim 2, there is n1 ≥ n0 (depending on ε) such that |In(s0)| < ε for n ≥ n1. We
conclude that for these n ≥ n1

n+ 1

f(1)2n+1
Ln = In(s0) + Jn(s0)

{
≤ ε+ f(1)

2f ′(1) + ε

≥ −ε+ f(1)
2f ′(1) (1− ε).

Hence ∣∣∣∣ n+ 1

f(1)2n+1
Ln −

f(1)

2f ′(1)

∣∣∣∣ ≤ max

{
2ε, ε

(
1 +

f(1)

2f ′(1)

)}
.

�

Remark The function f(x) = x − 1/2 shows that the assertion may fail if f ′(1) = 2f(1),
since in this case Ln = 0. On the other hand, it may hold, too if f ′(1) = 2f(1). In fact, if
f(x) = e2x, then f ′(1) = 2f(1) and

Ln =
e4n+2 − 1

4n+ 2
and Rn =

e4

4e2
· e

4n

n
=
e4n+2

4n
,

nevertheless Ln/Rn → 1. What is the reason for this? Well, an analysis of the proof shows
that the condition f ′(1) < 2f(1) can be replaced by the assumption that the maximum of |f |
is only obtained at 1. This makes the class of functions with the wished assymptotic behavior

of the integrals
∫ 1

0
f(x)2n+1 dx much larger.
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Solution to problem 4780 Crux Math. 48 (8) 2022, 484

Raymond Mortini, Rudolf Rupp

The assertion is not compatible with the hypotheses. So we prove the following two results:

Example 13. Let a > 0 and f ∈ C1[−a, a]. If f(0) = 0, then∫ a

−a
(f ′(x))2 dx ≥ 3

2a3

(∫ a

−a
f(x) dx

)2

.

Example 14. Let 0 < a, b <∞ and f ∈ C1[a, b]. If f((a+ b)/2) = 0, then, with C = 12
(b−a)3 ,∫ b

a

(f ′(x))2 dx ≥ C

(∫ b

a

f(x) dx

)2

.

Proof of Example 1. Let p be a polynomial. Then, using The Cauchy-Schwarz inequality

I :=

(∫ a

0

(f ′p)(x) dx

)2

≤
(∫ a

0

(f ′(x))2 dx

) (∫ a

0

p(x)2 dx

)
Using partial integration,

I =

(
(f(x)p(x)

∣∣∣a
0
−
∫ a

0

f(x)p′(x) dx

)2

Now choose p(x) = x − a. Then
∫ a
0
p(x)2 dx = 1

3 (x − a)3
∣∣∣a
0

= 1
3a

3. Hence, by noticing that

p(a) = f(0) = 0,

I =

(∫ a

0

f(x) dx

)2

≤
(∫ a

0

(f ′(x))2 dx

)
1

3
a3

If we choose p(x) = x+ a, then p(−a) = 0, and we similarily obtain the appropriate estimation

for
∫ 0

−a f(x)dx. Hence, using that (x+ y)2 ≤ 2(x2 + y2),(∫ a

−a
f(x) dx

)2

≤ 2

3
a3
∫ a

−a
(f ′(x))2 dx

�

Proof of Example 2. Just use the affine transformation φ given by φ(x) = x + a+b
2 . Then

φ(− b−a2 ) = a and φ( b−a2 ) = b, as well as φ(0) = a+b
2 . Let c := (b − a)/2. Hence, with

F (t) := f(φ(t)) for −c ≤ t ≤ c we obtain∫ b

a

(f ′(x))2 dx =

∫ c

−c
(F ′(t))2 dt ≥ 3

2c3

(∫ c

−c
F (t) dt

)2

=
12

(b− a)3

(∫ b

a

f(x) dx

)2

.

�
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Of course Example 1 is a special case of Example 2. Is C best possible? Let

q(x) =


(x− a)2

2
− (b− a)2

8
if a ≤ x ≤ (a+ b)/2

(x− b)2

2
− (a− b)2

8
if (a+ b)/2 ≤ x ≤ b.

Then q is continuous on [a, b], q((a+ b)/2) = 0 and∫ b

a

(q′(x))2 dx =
12

(b− a)3

(∫ b

a

q(x) dx

)2

.

Unfortunately, q is not C1. How to modify?
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Solution to problem 4777 Crux Math. 48 (8) 2022, 484

Raymond Mortini, Rudolf Rupp

The assertion is not correct. In fact, let x := (x1, . . . , xn), R+ = {x ∈ R : x > 0},

S :=
{

(x1, . . . , xn) ∈ (R+)n :

n∑
i=1

1

xi
= 1
}
,

and

f(x) :=

n∑
i=1

1
1
2 + x2i

.

We prove that for n ≥ 2, �



�
	n

1/2 + n2
= min

x∈S
f(x) < sup

x∈S
f(x) =

2

3
,

and that for n = 1, S = {1} and so�
�

�

f(x) =

1
1
2 + x2

= f(1) =
2

3
.

Proof Wlog n ≥ 2. First we note that
∑n
i=1 1/xi = 1 for xi ∈ R+ implies that xi ≥ 1 for

every i. Now max
1≤x<∞

x

1 + 2x2
=

1

3
, since the function is decreasing on [1,∞[. Hence, for x ∈ S,

n∑
i=1

1
1
2 + x2i

=

n∑
i=1

xi
1 + 2x2i

2

xi
<

2

3

n∑
i=1

1

xi
=

2

3
,

since for n ≥ 2, no xi can be 1. If for k > n

xk =
(
x
(k)
1 , . . . , x(k)n

)
:=
( 1

1− (n− 1)/k
, k, . . . , k

)
,

then
∑n
i=1(1/x

(k)
i ) = 1, xk → (1,∞, . . . ,∞) and f(xk)→ 2/3. Hence supS f = 2/3.

To prove the assertion on the minimum, we use Lagrange. It is preferable to work with the
new variable yj := 1/xj (to get a compact definition set, guarantying the existence of the global
extrema). So let

S′ =
{

(y1, . . . , yn) ∈ Rn, yj ≥ 0 :

n∑
j=1

yj = 1
}

and

g(y1, . . . , yn) :=

n∑
i=1

y2i
1 + 1

2y
2
i

.

Then S′ is compact and inf fS = inf gS′ = min gS′ =: m. Say g(x′) = m for some x′ ∈ S′.
In order to apply Lagrange, we need to show that x′ is an interior point of S′ (in symbols,
x′ ∈ (S′)◦). Let y′ := (1/n, . . . , 1/n). Then y′ ∈ (S′)◦. Now on ∂S′ at least one of the
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coordinates of these points y := (y1, . . . , yn) ∈ ∂S′ is 0. Say, yn = 0. But then
∑n−1
i=1 yi = 1

and (via induction on n, starting with the trivial case of one-tuples)

g(y) ≥ n− 1

1/2 + (n− 1)2
>

n

1/2 + n2
= g(y′).

Hence the absolute minimum of g on S′ does not belong to the boundary.
By Lagrange’s theorem, there exists λ ∈ R and (y1, . . . , yn) ∈ S′ such that

∇
(
g(y1, . . . , yn) + λ(1−

n∑
i=1

yi)
)

= 0.

That is, for every i ∈ {1, . . . , n},

(84) λ =
2yi

(1 + 1
2y

2
i )2

.

Unfortunately, the function y 7→ q(y) := 2y
(1+ 1

2y
2)2

is not injective on [0, 1] (note that the

derivative vanishes at y = ±
√

2/3). So we must discuss several cases (see figure 9):

Figure 9. Non injectivity of q on [0, 1]

(i) If 8/9 = q(1) ≤ λ < max[0,1] q, then the equation q(y) = λ has two solutions 0 < y1, y2 ≤ 1.
(ii) If λ = max[0,1] q or if 0 ≤ λ < q(1) = 8/9, then the equation q(y) = λ has exactly one

solution 0 ≤ y0 ≤ 1.
(iii) In all other cases, there is no solution with y ≥ 0.

We first show that the case (i) does not yield minimal solutions. In fact, for fixed λ ∈
[q(1),max[0,1] q[, equation (84) has 2n solutions of the form P := (a, . . . , a︸ ︷︷ ︸

k-times

, b, . . . , b︸ ︷︷ ︸
(n−k)-times

) and their

permutations, where k = 0, . . . , n and 0 ≤ a ≤ b ≤ 1. Note that

(85) q(1/n) =
8n3

(1 + 2n2)2
≤ q(1/2) < q(1) =

8

9
< q(

√
2/3).

Hence 1/n ≤ 1/2 < min{a, b} (see figure 9).
Let A := (1/n, . . . , 1/n). Then A ∈ S′. Since the function y 7→ y2/(1 + 1

2y
2) is increasing on

[0,∞[, we deduce that

g(P ) = k
a2

1 + 1
2a

2
+ (n− k)

b2

1 + 1
2b

2
> g(A),

so P does not yield a minimum. Thus only the second case occurs. That is, we need to
consider only a solution of (84) of the form (y1, . . . , yn) = (a, . . . , a) with 0 < a ≤ 1. Using the
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constraint condition
∑n
i=1 yi = 1, we obtain that a = 1/n, hence (y1, . . . , yn) = (1/n, . . . , 1/n).

Consequently, x′ = (1/n, . . . , 1/n) is the unique point where g takes its absolute minimum on
S′. We conclude that

min gS′ =
n

1
2 + n2

.

For completeness, we observe that M := maxS′ g necessarily is obtained on the boundary of
S′ (for instance, M = g(1, 0, . . . , 0) = 2/3), as Lagrange only yields a single stationary point of
the Lagrange function in (S′)◦.

A second way to see that case (i) does not occur goes as follows:
We first show that the case (i) does not yield minimal solutions. In fact, for fixed λ ∈

[q(1),max[0,1] q[, equation (84) has 2n solutions of the form P := (a, . . . , a︸ ︷︷ ︸
k-times

, b, . . . , b︸ ︷︷ ︸
(n−k)-times

) and their

permutations, where k = 0, . . . , n and 0 ≤ a ≤ b ≤ 1. Note that q(1/2) = (8/9)2 and that
n ≥ 2. Thus

(86) q(1/n) ≤ q(1/2) < q(1) ≤ λ < q(
√

2/3).

Hence 1/n ≤ 1/2 < min{a, b} = a (see figure 9). Since for such a point P = (y1, . . . , yn) we
have

n∑
i=1

yi = ka+ (n− k)b > k
1

2
+ (n− k)

1

2
=
n

2
≥ 1,

P does not belong to S′; that is such a solution of the system (84) of equations does not satisfy
the constraint P ∈ S′.
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Partial Solution to problem 4763 Crux Math. 48 (7) 2022, 421
Raymond Mortini, Rudolf Rupp

Here we give our thoughts on this not very precisely formulated problem.
First we note that S ⊆ K necessarily is an additive subgroup of the field K. Note that

{0, 1} ⊆ K. In particular 0 = x− x ∈ S and with x ∈ S we have −x = 0− x ∈ S.
If

(FE) f(x− y) = f(x)f(y) for all x, y ∈ S
then we get the following:

(1) y = x =⇒ f(0) = f(x)2

(2) y = 0 =⇒ f(x) = f(x)f(0) =⇒ f(x)(1− f(0)) = 0
Case 1 There exists x0 ∈ S with f(x0) = 0. Then, by (1), f(0) = 0 and so f(x) = 0 for all

x ∈ S.
Case 2 f has no zeros. Then (2) implies that f(0) = 1.
We claim that f(2x) = 1 for every x ∈ S (note that ZS ⊆ S).
In fact, f(x) = f(2x− x) = f(2x)f(x), hence f(2x) = 1.
We conclude that for S = R e.g., the constant function f(y) = 1 is the only solution, as

every y ∈ R writes as y = 2x for some x.
Next we show that f is even and that f(x) ∈ {−1, 1}. In fact, by (FE), for x = 0,

f(−y) = f(0)f(y) = f(y) for every y ∈ S.

Hence 1 = f(2u) = f(u− (−u)) = f(u)f(−u) = f(u)2 for any u ∈ S.
If S = Z, then we have three solutions: f ≡ 0, f ≡ 1 but also

f(n) =

{
1 if n even

−1 if n odd.

In fact by the claim above, f(2m) = 1 for every m ∈ Z. Now let σ := f(1). We already
know that σ = ±1. Now for every m ∈ Z,

σ = f(1) = f((2m+ 1)− 2m) = f(2m+ 1)f(2m) = f(2m+ 1).

Let P := Pf := {x ∈ S : f(x) = 1} and R := {x ∈ S : f(x) = −1}. Then P is a subgroup of
S since x, y ∈ P implies that x− y ∈ P , because f(x− y) = f(x)f(y) = 1 · 1 = 1.

As shown above, 2S ⊆ P ⊆ S and 2S is a subgroup of S. Here S = 2S if and only if all the
translation operators τx : S → S, y 7→ x− y have a fixed point.

Also note that R has the following property:

(PR) (R−R) ⊆ P and (R− P ) ∪ (P −R) ⊆ R.
Conversely, if P is a proper subgroup of S and R := S \ P such that (PR) holds, then the

function g given by

g(x) =

{
1 if x ∈ P
−1 if x ∈ R

,

satisfies the functional equation (FE) g(x− y) = g(x)g(y) for x, y ∈ S.
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Note that P may be strictly bigger than 2S: in fact, let K = C, S := Z + iZ, P = 2Z + iZ
and R = S \ P . Then S, P,R satisfy (PR), but P := 2S does not satisfy (PR).

If S = K is a field of characteristic 2, then Pf = R = S (note that 1 = −1), and so only the
constant functions 1 and 0 satisfy (FE).
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Solution to problem 4747 Crux Math. 48 (2022), 282 by
Raymond Mortini, Rudolf Rupp

We claim that all solutions of the functional equation

f(x2f(x) + f(y)) = f(f(x3))) + y, x, y ∈ R

are given by f(x) = x and f(x) = −x.

Claim1 f is injective:
Put x = 0. Then

(87) f(f(y)) = f(f(0)) + y.

Now if f(y1) = f(y2), then by (87)

f(f(y1)) = f(f(0)) + y1 and f(f(y2)) = f(f(0)) + y2

Hence y1 = y2.

Claim 2 f is surjective:
Let w ∈ R. Then, by (87),

w = f(f(0)) + (w − f(f(0))) = f(f(w − f(f(0))).

Claim 3 f(0) = 0:
Take y = 0: then f(x2f(x) + f(0)) = f(f(x3)). Since f is bijective, we conclude that

x2f(x) + f(0) = f(x3). Now put x = 1: then 12 f(1) + f(0) = f(1). Hence f(0) = 0.

Claim 4 f ◦ f = id (that is, f is an involution).
This follows from (87).
Hence our equation becomes

(88) f(x2f(x) + f(y)) = x3 + y (x, y ∈ R).

In particular, for y = 0,

(89) f(x2f(x)) = x3 or equivalenty x2f(x) = f(x3).

Claim 5 f is additive:
In fact, the surjectivity of f and x 7→ x3 now imply that x 7→ x2f(x) is surjective, too. Hence

f(x2f(x)︸ ︷︷ ︸
=a

+ f(y)︸︷︷︸
=b

) = x3 + y = f(x2f(x)) + y = f(a) + f(b)

yields the additivity of f .
Claim 6 f(−x) = −f(x).
Just use that with f(0) = 0 and f additive,

0 = f(0) = f(x+ (−x)) = f(x) + f(−x).

Claim 7 Let f(a) = 1. Then a = ±1.
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Recall that by (5) and (6), f(a+ b) = f(a) + f(b) for a, b ∈ R and f(mx) = mf(x) for every
m ∈ Z. Hence, by (89), for x = a+ b,

(a+ b)2f(a+ b) = f((a+ b)3).

Expansion yields:

(a2 + b2 + 2ab)(f(a) + f(b)) = f(a3) + 3f(a2b) + 3f(ab2) + f(b3) ⇐⇒
a2f(a) + b2f(a) + 2abf(a) + a2f(b) + b2f(b) + 2abf(b) = f(a3) + 3f(a2b) + 3f(ab2) + f(b3) ⇐⇒

b2f(a) + 2abf(a) + a2f(b) + 2abf(b) = 3f(a2b) + 3f(ab2).

• Let b = 1 and note that a = f(1). Then

1 + 2a+ a3 + 2a2 = 3f(a2) + 3 = 3a3 + 3 ⇐⇒
2a3−2a2−2a+ 2 = 0 ⇐⇒ a2(a−1)− (a−1) = 0 ⇐⇒ (a−1)(a2−1) = 0 ⇐⇒ a ∈ {−1, 1}.

Claim 8 If the additive function f satisfies x2f(x)) = f(x3), then f(x) = f(1)x. To see
this, we consider four cases:
• Let a = 2, f(1) = ±1 and b = x. Then

(90)
�� ��±x2 ± 4x− 4f(x) + 2xf(x)− 3f(x2) = 0 .

• Let a = 1, f(1) = ±1 and b = x. Then,

(91)
�� ��±x2 ± 2x− 2f(x) + 2xf(x)− 3f(x2) = 0 .

Calculating (90)-(91), yields ±2x− 2f(x) = 0. Hence f(x) = ±x = f(1)x.

One can also prove Claim 8 without using Claim 7, and then deducing Claim 7 from Claim
8 if additionally we assume that f is an involution.

In

(92) b2f(a) + 2abf(a) + a2f(b) + 2abf(b) = 3f(a2b) + 3f(ab2).

choose a = 1, resp. a = 2 and b = x. Then f(2) = f(2 · 1) = 2f(1) and so

(93) x2f(1) + 2f(1)x+ f(x) + 2xf(x)− 3f(x)− 3f(x2) = 0

(94) 2x2f(1) + 8f(1)x+ 4f(x) + 4xf(x)− 12f(x)− 6f(x2) = 0

Hence, by calculating (93)- 12 (94), we obtain

(95) − 2f(1)x− f(1)x+ 3f(x) = 0.

Hence f(x) = f(1)x. Using (89), that is f(x2f(x)) = x3, we have

f(1)x2f(1)x = x3.

Hence f(1)2 = 1 and so f(1) = ±1.
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Solution to problem 4657 Crux Math. 47 (2021), 301 by
Raymond Mortini, Rudolf Rupp

a) Suppose that the function f satisfies f(x) + f(2x) ≡ 0 on R. Then the continuity of f at
x = 0 implies that f ≡ 0. In fact, fix x ∈ R \ {0}. By induction, f(x/2n) = (−1)nf(x). By
taking limits, the continuity at 0 implies that for n even we get f(0) = f(x) and for n odd, we
get f(0) = −f(x). Hence 2f(x) = f(0)− f(0) = 0, and so f ≡ 0.

b) Define the function f : R+ → R by f(0) = 0, f(x) = 1 if 1 ≤ x < 2 and x rational,
f(x) = −1 if 1 < x < 2 and x irrational. If n ∈ N and 2n ≤ x < 2n+1, put f(x) = (−1)nf(x/2n).
If 1

2n+1 ≤ x < 1
2n , put f(x) = (−1)nf(2nx). If x < 0, then let f(x) = f(−x). Then f is

discontinuous everywhere and, by construction, f(x) + f(2x) = 0.

c) All solutions to f(x) + f(2x) ≡ 0 on R:

Let g : [−2,−1[∪[1, 2[→ R be an arbitrary function. Put

f(x) =


0 if x = 0

(−1)ng(x/2n) if 2n ≤ |x| < 2n+1

(−1)ng(2nx) if 1
2n+1 ≤ |x| < 1

2n .

This functional equation and its companion f(x) = f(2x) appear multiple times:
https://math.stackexchange.com/questions/3144431/if-fx-f2x-is-continuous-is-f-continuous-or-

not
https://math.stackexchange.com/questions/3374236/limit-question-unknown-function
https://math.stackexchange.com/questions/1046961/finding-continuous-functions
https://math.stackexchange.com/questions/1039622/continuous-functions-satisfying-fxf2x-0

https://math.stackexchange.com/questions/3480985/find-an-example-of-function-where-lim-
x-to-0fxf2x-0-but-lim-x-to

https://math.stackexchange.com/questions/2757365/find-f0-if-fxf2x-x-space-space-forall-x
https://math.stackexchange.com/questions/2579482/function-satisfying-lim-limits-x-to-0fx-f2x-

but-doesnt-have-lim-li
https://math.stackexchange.com/questions/3524310/if-fx-f2x-then-f-is-differentiable
https://math.stackexchange.com/questions/277313/proving-a-function-is-constant-in-mathbbr-

if-fx-f2x-and-f-is-continuo
https://math.stackexchange.com/questions/2821984/functional-equation-satisfying-f2x-fx

https://math.stackexchange.com/questions/3144431/if-fx-f2x-is-continuous-is-f-continuous-or-not 
https://math.stackexchange.com/questions/3144431/if-fx-f2x-is-continuous-is-f-continuous-or-not 
https://math.stackexchange.com/questions/3374236/limit-question-unknown-function 
https://math.stackexchange.com/questions/1046961/finding-continuous-functions 
https://math.stackexchange.com/questions/1039622/continuous-functions-satisfying-fxf2x-0 
https://math.stackexchange.com/questions/1039622/continuous-functions-satisfying-fxf2x-0 
https://math.stackexchange.com/questions/3480985/find-an-example-of-function-where-lim-x-to-0fxf2x-0-but-lim-x-to 
https://math.stackexchange.com/questions/3480985/find-an-example-of-function-where-lim-x-to-0fxf2x-0-but-lim-x-to 
https://math.stackexchange.com/questions/2757365/find-f0-if-fxf2x-x-space-space-forall-x 
https://math.stackexchange.com/questions/2579482/function-satisfying-lim-limits-x-to-0fx-f2x-but-doesnt-have-lim-li 
https://math.stackexchange.com/questions/2579482/function-satisfying-lim-limits-x-to-0fx-f2x-but-doesnt-have-lim-li 
https://math.stackexchange.com/questions/3524310/if-fx-f2x-then-f-is-differentiable 
https://math.stackexchange.com/questions/277313/proving-a-function-is-constant-in-mathbbr-if-fx-f2x-and-f-is-continuo 
https://math.stackexchange.com/questions/277313/proving-a-function-is-constant-in-mathbbr-if-fx-f2x-and-f-is-continuo 
https://math.stackexchange.com/questions/2821984/functional-equation-satisfying-f2x-fx 
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Solution to problem 4636 Crux Math. 47 (2021), 200 by
Raymond Mortini, Rudolf Rupp

The equation
(3x + 7)log4 3 − (4x − 7)log3 4 = 4x − 3x − 14

has on R the unique solution x = 2. In fact, first note that a := log4 3 = log 3
log 4 > 0 and

log3 4 = 1/a. Then with A := 3x + 7 and B := 4x − 7 we have to solve Aa −B1/a = B − A or
equivalently,

Aa +A = (B1/a)a +B1/a.

Since the function x 7→ xa + x is strictly increasing, we deduce that A = B1/a. In other words,
3x + 7 = (4x − 7)1/a, or equivalently

(96) log 4 log(4x − 7) = log 3 log(3x + 7).

The curve y(x) = log 4 log(4x− 7)− log 3 log(3x + 7) is defined for x > log 7/ log 4 := x0 with
limx→x0 y(x) =∞ and its derivative

y′(x) = log2 4
1

1− 7x−4
− log2 3

1

1 + 7x−3

is strictly decreasing with limy→x0
y′(x) = ∞ and limx→∞ y′(x) = (log2 4 − log2 3). Note that

the asymptote at infinite is the line y = (log2 4− log2 3)x. In particular, y′ > 0 and so the curve
is strictly increasing and its unique zero is x1 = 2 (observe that log(4) log(9) = 4 log(2) log(3) =
log(3) log(16), so (96) holds).
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Solution to problem 4634 Crux Math. 47 (2021), 200 by
Raymond Mortini, Rudolf Rupp

For an > 0, let Gn := n(a1 · · · an)1/n. Then limn→∞Gn = 0 whenever
∑∞
n=1 an is conver-

gent. In fact, given ε > 0, choose N so big that
∑∞
n=N an < ε. Due to the arithmetic-geometric

inequality, for n > N ,

Gn = (a1 · · · aN )1/n
n

n−N

(
(n−N)(aN+1 · · · an)1/(n−N

)n−N
n

(n−N)1−
n−N
n

≤ σn
( n∑
j=N+1

aj

)n−N
n

,

where
σn := (a1 · · · aN )1/n

n

n−N
(n−N)N/n.

Since limn σn = 1, we have lim supnGn ≤ lim supn ε
n−N
n = ε, from which we deduce that

Gn → 0.
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Solution to problem 4615 Crux Math. 47 (2021), 301 by
Raymond Mortini, Rudolf Rupp

If p is a polynomial, we have (due to Cauchy-Schwarz)∣∣∣∣∫ 1

0

f ′′pdx

∣∣∣∣2 ≤ (∫ 1

0

(f ′′)2dx

)(∫ 1

0

p2dx

)
.

Now, by using twice integration by parts,∫
f ′′pdx = (f ′ + c)p−

(
(f + cx+ c′)p′ −

∫
(f + cx+ c′)p′′dx

)
Now let p(x) = x(x− 1). Evaluation at the end-points and using the hypothesis that

∫ 1

0
fdx =

f(1)/2, yields ∫ 1

0

f ′′pdx = −f(0).

Since
∫ 1

0
p2dx =

∫ 1

0
(x4 + x2 − 2x3)dx = 1/30, we deduce that∫ 1

0

(f ′′)2dx ≥ 30f(0)2.

Equality is given if f ′′ = p and f(1) = 2
∫ 1

0
fdx; for instance if

f(x) =
1

12
x4 − 1

6
x3 − 1

30
.

Here f(1) = −7/60.
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7. Elemente der Mathematik

Solution to problem 1441 Elem. Math. 78 (2023), 180

Raymond Mortini, Rudolf Rupp

Diese Aufgabe ist unseren Ermessens nach nicht korrekt formuliert, da per Definition eine
Kurve das stetige Bild eines Intervals in einen topologischen Raum ist. Deshalb liegen hier zwei
Kurven vor und wir werden folgendes zeigen 18:

8. Nichtnegative Parameter

Proposition 15. Es seien a, b ∈ R, a, b ≥ 0 und Γ± die Kurven, welche gegeben sind durch
die Parameterdarstellung

Γ+ : z(t) = (x(t), y(t)) =

(
t− a

t
, t2 +

b

t

)
, t > 0,

beziehungsweise

Γ− : z(t) = (x(t), y(t)) =

(
t− a

t
, t2 +

b

t

)
, t < 0.

Dann gilt:

(1) Γ± besitzen keine Selbstüberschneidungen; sind also Jordanbögen.
(2) Für a > 0 schneidet Γ+ die Kurve Γ− in genau einem Punkt.
(3) Für a = 0 liegt der Graph einer Funktion auf R \ {0} vor, und folglich sind keine

Selbstüberschneidungen vorhanden.
(4) Γ+ schneidet Γ− für a, b ∈ N = {0, 1, 2 . . . } mit senkrechten Schnittwinkel genau dann

wenn (a, b) = (2r2 + 1, r(2r2 + 1)) für ein r ∈ N.

Lösung (1) (2) Zu betrachten ist das folgende System von Gleichungen für s, t ∈ R \ {0}: t− a/t = s− a/s

t2 + b/t = s2 + b/s.
⇐⇒

 t− s = a
(
1
t −

1
s

)
= a(s− t) 1

st

t2 − s2 = b
(
1
s −

1
t

)
= b(t− s) 1

st .

Für s 6= t und a 6= 0 ist dies äquivalent zu{
st = −a

st(t+ s) = b
⇐⇒

{
st = −a
t+ s = − b

a .

18Die Schreibweise mit −A und B, anstatt A und B, lässt uns vermuten, dass bloss nichtnegative
Zahlen gemeint waren mit der Bezeichnung ”ganzzahlig”. Im zweiten Abschnitt betrachten wir auch
den Fall wo a, b beliebig sind.
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Dies führt auf die Lösung der quadratischen Gleichung

0 = x2 − (s+ t)x+ st = x2 +
b

a
x− a.

Die Lösungen hierzu sind

(97) s =
−b+

√
b2 + 4a3

2a
und t =

−b−
√
b2 + 4a3

2a
.

Es liegen also ein negativer und ein positiver Wert der Kurven-Parameter s und t vor. Folglich
schneidet Γ− die Kurve Γ+ in genau einem Punkt und es liegen keine Selbstüberschneidungen
vor.

(3) ist klar.

(4) Es sei M := (z(s), z(t)) dieser eindeutige Schnittpunkt mit s < 0 und t > 0. Diese
Kurven Γ− und Γ+ schneiden sich nun senkrecht in M genau dann wenn gilt

0 = 〈ż(s), ż(t)〉 = ẋ(s) ẋ(t) + ẏ(s) ẏ(t)

⇐⇒
(

1 +
a

s2

) (
1 +

a

t2

)
= −

(
2s− b

s2

) (
2t− b

t2

)
.

Einsetzen von st = −a und st(s+ t) = b ergibt

−
(

1− t

s

) (
1− s

t

)
=

(
2s− t(t+ s)

s

) (
2t− s(t+ s)

t

)
.

Multiplikation mit st liefert

−(s− t)(t− s) =
(
2s2 − t(t+ s)

) (
2t2 − s(t+ s)

)
= (s− t)(t+ 2s) (t− s)(s+ 2t)

= (s− t)(t− s)(t+ 2s)(s+ 2t).

Da s 6= t, erhält man schliesslich

(98) (t+ 2s)(s+ 2t) = −1.

Umformen ergibt

−1 = ts+ 2s2 + 2t2 + 4st = 5st+ 2
(
(s+ t)2 − 2st

)
= st+ 2(s+ t)2.

Durch Einsetzen von st = −a und s+ t = −b/a ergibt das

(99) − 1 = −a+ 2

(
b

a

)2

⇐⇒ −a2 = −a3 + 2b2 ⇐⇒ 2b2 + a2 − a3 = 0.

Wir müssen nun alle Lösungspaare (a, b) ∈ N2 dieser diophantischen Gleichung bestimmen.
Ein Umschreiben ergibt

(100) 2
b2

a2
− a = −1.

Es sei r := b
a . Gemäss der Voraussetzung ist r ∈ Q. Also hat a die Form a = 2r2 + 1 und

b = ra = r(1 + 2r2). Dies ist jedoch nur möglich wenn r selbst in N liegt, was man wie folgt
einsehen kann. Ist r = 0 so ist das evident. Sei also r 6= 0. Die Voraussetzungen a ∈ N und
a = 2r2 + 1 implizieren m := 2r2 ∈ N. Wir zeigen dass m von der Form m = 2n2 ist für ein
n ∈ N und damit ist r ∈ N. Es sei r = p/q, mit ggt (p, q) = 1. Sodann mq2 = 2p2. Ist m = 2i
gerade, so erhalten wir iq2 = p2. Da jeder Primfaktor von q nun p2 teilt, also auch p, muss
wegen ggt (p, q) = 1 nun q = 1 sein. D.h. m hat die gewünschte Form. Ist m = 2i+1 ungerade,
so muss wegen 2p2 = mq2 die Zahl q auch gerade sein. Sagen wir q = 2ju, wobei j ∈ N, j 6= 0,
und u ungerade. Folglich ist p2 = (mu2)22j−1. Weil 2 kein gemeinsamer Faktor von p und q ist,
erhalten wir den Widerspruch, da die linke Seite von p2 = (mu2)22j−1 ungerade ist, die rechte
aber gerade.
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Damit haben alle Lösungen von (100) notwendigerweise die Form (a, b) = (1+2r2, r(1+2r2)),
r ∈ N. Umgekehrt, ist auch jedes solche Paar Los̈ung der Gleichung (100):

2r2 − (1 + 2r2) = −1.

Beispiele für (a, b): (1, 0), (3, 3), (9, 18), (19, 57), (33, 132).
Damit hat man mit (a, b) = (1, 0) den einzigen Schnittpunkt M = (0, 1) von Γ+ mit Γ− im

90 Grad Winkel für (s, t) = (1,−1) bei

Γ+(s) =

(
s− 1

s
, s2
)
, s > 0, Γ−(t) =

(
t− 1

t
, t2
)
, t < 0,

Figure 10. r = 0, a = 1, b = 0

oder mit (a, b) = (3, 3) den Schnittpunkt M = (−1, 4) von Γ+ mit Γ− im 90 Grad Winkel

für (s, t) = (−1+
√
13

2 , −1−
√
13

2 ) bei

Γ+(s) =

(
s− 3

s
, s2 +

3

s

)
, s > 0, Γ−(t) =

(
t− 3

t
, t2 +

3

t

)
, t < 0,

oder mit (a, b) = (9, 18) den Schnittpunkt M = (−2, 13) von Γ+ mit Γ− im 90 Grad Winkel

für (s, t) = (
√

10− 1,−1−
√

10) bei

Γ+(s) =

(
s− 9

s
, s2 +

18

s

)
, s > 0, Γ−(t) =

(
t− 9

t
, t2 +

18

t

)
, t < 0,

Das Überraschendste für uns bei dieser proposition: der Schnittpunkt M hat auch ganz-
zahlige Komponenten:

M = (−r, 1 + 3r2).
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Figure 11. r = 1, a = 3, b = 3

9. Die restlichen Fälle

Fall 2.1: b2 + 4a3 < 0, äquivalent a < −
(
b2

4

)1/3
. In diesem Fall hat die quadratische

Gleichung (97) keine reellen Lösungen, und folglich sind Γ+ und Γ− Jordanbögen die sich nicht
schneiden (siehe Grafik 12).

Figure 12. a = −1, b = 1

Fall 2.2: −
(
b2

4

)1/3
< a < 0. In diesem Fall ist b2 + 4a3 > 0 und es liegen zwei verschiedene

Lösungen s, t der quadratische Gleichung (97) vor, welche aber wegen st = −a > 0 dasselbe
Vorzeichen haben. Damit schneiden sich die Kurven Γ+ und Γ− nicht, aber genau eine von
denen hat einen Selbstüberschneidungspunkt (siehe Grafik 13). Nämlich Γ+ falls b > 0 und Γ−

falls b < 0. Anmerken möchten wir noch, dass die Gleichung (99), 2b2 + a2 − a3 = −1, keine
Lösung hat falls a < 0. Folglich ist diese Selbstüberschneidung nie senkrecht.
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Figure 13. a = −1, b = 3

Fall 2.3: b2 + 4a3 = 0.
Auch hier schneiden sich die Kurven Γ+ und Γ− nicht, und beide sind wieder Jordanbögen.
Siehe Grafik (14) zum Beispiel

Γ+(s) =

(
s+

1

s
, s2 +

2

s

)
, s > 0, Γ−(t) =

(
t+

1

t
, t2 +

2

t

)
, t < 0.

Figure 14. a = −1, b = 2

Fall 3: a > 0, b ≤ 0. Da ist prinzipiell kein Unterschied zum Fall a > 0, b ≥ 0; es liegt nur
eine Spiegelung der Kurven an der y-Achse vor. Z.B. hat für b < 0 die Kurve

(x(t), y(t)) =

(
t− a

t
, t2 +

b

t

)
, t > 0,

mit der Transformation t→ −t auch die Parameterdarstellung(
−(t− a

t
), t2 − b

t

)
, t < 0.

Die Spiegelung an der y Achse ist dann gegeben durch(
t− a

t
, t2 +

(−b)
t

)
, t < 0
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Figure 15. a = 9, b = 18 blau, b = −18 rot

Fazit: Die Kurve Γ+ = Γ+(a, b) schneidet für a, b ∈ Z die Kurve Γ−(a, b) in einem rechten
Winkel genau dann wenn

(a, b) =
(
(1 + 2r2),±r(1 + 2r2)

)
mit r ∈ N = {0, 1, 2, 3 . . . }.

Oder in der Formulierung der proposition: Die unstetige ”Kurve” c = c(a, b) besitzt eine
”Selbstüberschneidung” mit senkrechtem Schmittwinkel genau dann wenn

(a, b) =
(
(1 + 2r2), r(1 + 2r2)

)
mit r ∈ Z.
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Solution to problem 1442 Elem. Math. 78 (2023), 180

Raymond Mortini, Rudolf Rupp

Let f(x, y, z) :=
1

x
+

1

y
+

2

z
. Using Lagrange multipliers, we show that�

�
�



inf
x2+y2+z2=1
x>0,y>0,z>0

f(x, y, z) = min
x2+y2+z2=1

x,y,z≥ 1
4
√

3

f(x, y, z) = (2 + 22/3)3/2 ∼ 6.794693902 · · ·

First we recall the version of Lagrange’s theorem, we will use:

Theorem 16. Let G := {ξ = (x, y, z) ∈ R3 : x > 0, y > 0, z > 0} be the first octant and
g(x, y, z) := x2 + y2 + z2 − 1. Then f and g belong to C1(G). If ζ ∈ G is a local extremum of
f on the set N := {(x, y, z) ∈ G : g(x, y, z) = 0} for which ∂

∂z g(ζ) 6= 0, then there exists λ ∈ R
such that (ζ, λ) is a stationary point of Lagrange’s function

L(x, y, z, λ) := f(x, y, z) + λg(x, y, z).

Next, we prove the existence of such a local extremum. Let η := (3−1/2, 3−1/2, 3−1/2). Then

η ∈ N . Moreover, f(η) = 4
√

3. Also, if (x, y, z) ∈ N is such that at least one of its coordinates

is strictly bigger than (4
√

3)−1, then f(x, y, z) > 4
√

3. Hence

inf
N
f = min

{
f(x, y, z) : x2 + y2 + z2 = 1, x, y, z ≥ 1

4
√

3

}
.

Finally we solve Lagrange’s equations for (x, y, z) ∈ G and λ ∈ R:

(1)
∂

∂x
L(x, y, z, λ) = − 1

x2
+ λ(2x)

!
= 0

(2)
∂

∂y
L(x, y, z, λ) = − 1

y2
+ λ(2y)

!
= 0

(3)
∂

∂z
L(x, y, z, λ) = − 2

z2
+ λ(2z)

!
= 0

(4)
∂

∂λ
L(x, y, z, λ) = x2 + y2 + z2 − 1

!
= 0

(1) and (2) yield that x = y and (2) and (3) yield that 2
z3 = 1

y3 , equivalently z = 21/3y. Due

to (4),

1 = x2 + x2 + 22/3x2,

hence

x = y = (2 + 22/3)−1/2, z = 21/3(2 + 22/3)−1/2.
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Consequently, the unique stationary point of L on G× R is

P =

(
1√

2 + 22/3
,

1√
2 + 22/3

,
21/3√

2 + 22/3
,

(2 + 22/3)3/2

2

)
Let ζ be the point formed with the first three coordinates of P , which are of course bigger than
(4
√

3)−1. Then

f(ζ) = 2
√

2 + 22/3 + 2

√
2 + 22/3

21/3
= (2 + 22/3)

√
2 + 22/3 = (2 + 22/3)3/2.

Of course, this point ζ must now be that unique point on N where infN is taken (note that
sup fN =∞).
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Solution to problem 1437 Elem. Math. 78 (2023), 135

Raymond Mortini, Rudolf Rupp

This is well known since ”hundreds of years” (see [4]).

(a) First note that f(x) = −
∫ 1

0
(1− x)s ds. In fact

−
∫ 1

0

(1− x)s ds = −
∫ 1

0

es log(1−x) ds = −
[
es log(1−x)

log(1− x)

]1
0

= −
(

1− x
log(1− x)

− 1

log(1− x)

)
=

x

log(1− x)
.

Now

(1− x)s =

∞∑
k=0

(−1)k
(
s

k

)
xk.

Since
∫ ∑

=
∑∫

(due to uniform convergence in s for every fixed x ∈ ] − 1, 1[; note that

|(−1)k
(
s
k

)
| ≤ 1 ), we obtain

f(x) =

∞∑
k=0

[
(−1)k+1

∫ 1

0

(
s

k

)
ds

]
xk.

Hence

ak = (−1)k+1

∫ 1

0

(
s

k

)
ds = (−1)k+1

∫ 1

0

s(s− 1)(s− 2) · · · (s− k + 1)

k!
ds

=

∫ 1

0

s(1− s)(2− s) · · · (k − 1− s)
k!

ds

=
1

k

∫ 1

0

s
(

1− s

1

)(
1− s

2

)
· · ·
(

1− s

k − 1

)
ds.

Since every factor is less than 1, we obtain

0 ≤ ak ≤
1

k
.

Moreover, as 0 ≤ s ≤ 1, and for k ≥ 2,

ak ≥
∫ 1

0

s(1− s)1 · 2 · 3 · 4 . . . (k − 2)

k!
ds =

(
1

2
− 1

3

)
1

k(k − 1)
=

1

6k(k − 1)
.

The right-hand side, though, is smaller than (3k2)−1. So we need a more careful estimate.
Instead of ”breaking” after the second factor, we brake after the fifth factor. Noticing that∫ 1

0

s(1− s)(2− s)(3− s)(4− s) ds =
9

4
,
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we obtain for k ≥ 5,

ak ≥
9

4

4 . . . 5 . . . (k − 2)

k!
=

9

4

1

3!

1

k(k − 1)
=

3

8

1

k2
≥ 1

3

1

k2
.

The estimate ak ≥ 1
3k2 now holds also for k = 1, . . . , 4, due to the following explicit repre-

sentation of the Taylor sums for f(x):

(b) We first show that (ak) is decreasing (to 0):

ak+1 =
1

k + 1

∫ 1

0

s
(

1− s

1

)(
1− s

2

)
· · ·
(

1− s

k − 1

)(
1− s

k

)
︸ ︷︷ ︸
≤1

ds

≤ k

1 + k
ak ≤ ak.

The alternating series test of Leibniz now yields the convergence of
∑∞
k=0(−1)kak. Finally, by

Abel’s rule (see [3, p. 1415]),
∞∑
k=0

(−1)kak = lim
x→−1+

f(x) = − 1

log 2
.

Next we show that kak → 0. In fact, due to 1− x ≤ e−x for x ≥ 0,

kak =

∫ 1

0

s
(

1− s

1

)(
1− s

2

)
· · ·
(

1− s

k − 1

)
ds

≤
∫ 1

0

exp

−s k−1∑
j=1

1

j

 ds = −


exp

−s k−1∑
j=1

1

j


k−1∑
j=1

1

j



1

0

≤ 1
k−1∑
j=1

1

j

≤ 1∫ k

1

dx/x

=
1

log k
.

Note that limx→1− f(x) = 0. Hence, by Tauber’s Theorem ([2, p. 52]), F :=
∑∞
k=0 ak is

convergent and
∑∞
k=0 ak = 0. Very funny! By the way, F is called Fontana’s series (Gregorio

Fontana 1735–1803), see [1, (formula 20)], and the ak are the (moduli) of the Gregory coefficients
(James Gregory 1638–1675), see [1] and [4].
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Solution to problem 1434 Elem. Math. 77 (2022), 85

Raymond Mortini, Rudolf Rupp

Let

S3 :=

∞∑
n=0

1

(3n+ 3)3
and T3 :=

∞∑
n=0

(−1)n

(3n+ 3)3
.

Then

S3 =
1

27
ζ(3) and T3 =

1

27
η(3)

where η(3) is the Dirichlet η-function. It is well-known that η(3) = (3/4)ζ(3). Thus

S1 + S2 + S3 = ζ(3) and T1 − T2 + T3 = η(3)

imply that

S1 + S2 = 26
27ζ(3) and T1 − T2 = 13

18ζ(3).

On the other hand,

S1 − T1 =

∞∑
n=0

1− (−1)n

(3n+ 1)3
=

n=2k+1
2

∞∑
k=0

2

(3(2k + 1) + 1)3

= 2

∞∑
k=0

1

(6k + 4)3
=

1

4

∞∑
k=0

1

(3k + 2)3

=
1

4
S2.

Moreover,

S2 + T2 =

∞∑
n=0

1 + (−1)n

(3n+ 2)3
=

n=2k
2

∞∑
k=0

1

(6k + 2)3

= =
1

4

∞∑
k=0

1

(3k + 1)3

=
1

4
S1.

This yields the linear system
1 1 0 0
1 − 1

4 −1 0
− 1

4 1 0 1
0 0 1 −1

 ·

S1

S2

T1
T2

 =


26
27ζ(3)

0
0

13
18ζ(3)

 .

The determinant is, unfortunately, zero. The null-space is the one dimensional vector space
generated by (4,−4, 5, 5)⊥.

We may write the system as
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
1 1 0 0
1 − 1

4 −1 0
− 1

4 1 0 1
0 0 1 1

 ·

S1

S2

T1
T2

 =


26
27ζ(3)

0
0

13
18ζ(3) + 2T2

 .

In other words,


S1

S2

T1
T2

 =



1
2

2
5

−2
5

2
5

1
2

−2
5

2
5

−2
5

3
8

−1
2

−1
2

1
2

−3
8

1
2

1
2

1
2


·


26
27ζ(3)

0
0

13
18ζ(3) + 2T2

 .

That is

(101)


S1 = R1 + 4

5T2

S2 = R2 − 4
5T2

T1 = R3 + T2

T2 = T2

where the Rj are rational multiples of η(3). More precisely,

R1 =
1

2
· 26

27
ζ(3) +

2

5
· 13

18
ζ(3) =

104

5 · 27
· ζ(3),

R2 =
1

2
· 26

27
ζ(3)− 2

5
· 13

18
ζ(3) =

26

5 · 27
· ζ(3),

R3 =
3

8
· 26

27
ζ(3) +

1

2
· 13

18
ζ(3) =

13

18
· ζ(3).

Next we use that for 0 < a < 2π (see below)

(102) h(a) :=

∞∑
n=0

sin(n+ 1)a

(n+ 1)3
=
a3 − 3πa2 + 2π2a

12
,

and put a = 2π/3. Then, since sin(2π/3) =
√

3/2,

S1 − S2 =
2√
3
h(2π/3) =

2√
3
· 2π3

81
=

4π3

81
√

3
.

By the formula (101) above,

S1 − S2 =
4

5
· 13

18
ζ(3) +

8

5
T2.

Hence

T2 =
5

8

(
4π3

81
√

3
− 4

5
· 13

18
ζ(3)

)
=

�
�

�

5π3

2 · 81
√

3
− 13

36
ζ(3) ∼ 0.11843 · · · .

Finally, by (101) again,�
�

�

S1 =

13

27
ζ(3) +

2π3

81
√

3
= 3−5(117 ζ(3) + 2

√
3 π3) ∼ 1.02078 · · · ,�

�
�

S2 =

13

27
ζ(3)− 2π3

81
√

3
= 3−5(117 ζ(3)− 2

√
3 π3) ∼ 0.13675 · · · ,�

�
�

T1 =

13

36
ζ(3) +

5π3

2 · 81
√

3
=

1

1944

(
702 ζ(3) + 20

√
3 π3

)
∼ 0.98659 · · · .

Addendum
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The value in (102) for h(a) is given as follows (we had developed this in solving the problem
12388 in AMM). Note that

h′(a) =

∞∑
n=0

cos(n+ 1)a

(n+ 1)2
.

Since 1
3π

2 + 4
∑∞
n=1

cosnx
n2 is the Fourier series of the function (x− π)2, 0 ≤ x < 2π, extended

2π-periodically, we see that for 0 < a < 2π,

h′(a) =
(a− π)2

4
− π2

12
.

As h(0) = 0, we deduce that for 0 < a < 2π,

h(a) =
(a− π)3

12
− π2

12
a+

π3

12
=
a3 − 3πa2 + 2π2a

12
.
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Solution to problem 1435 Elem. Math. 77 (2022), 85

Raymond Mortini, Rudolf Rupp

Let

A(x, y) :=
√
x2 + 3 +

√
y2 + 3 +

√
xy + 3.

Since by assumption x + y = 2, we just have to prove that 6 is the minimal value of the
function

f(x) :=
√
x2 + 3 +

√
(2− x)2 + 3 +

√
x(2− x) + 3, 0 ≤ x ≤ 2,

which is attained at x = 1.

First we note that f is symmetric with respect to x = 1; that is

f(1 + x) = f(1− x) for 0 ≤ x ≤ 1.

We show that f decreases on [0, 1]. Note that f(0) = 2
√

3 +
√

7 > 6 = f(1). It is sufficient
to prove that f ′ ≤ 0 on [0, 1]:

f ′(x) =
x√

x2 + 3
− 2− x√

(2− x)2 + 3
+

1

2

2− 2x√
x(2− x) + 3.

But f ′ ≤ 0 for 0 ≤ x ≤ 1 if and only if

(103) L(x) :=
x√

x2 + 3
+

1− x√
x(2− x) + 3

≤ 2− x√
(2− x)2 + 3

.

Next note that, due to 2− x ≥ x,

1− x√
x(2− x) + 3

≤ 1− x√
x2 + 3

.

Hence L(x) ≤ 1√
x2+3

. Thus (103) holds for 0 ≤ x ≤ 1 if

(104)
1√

x2 + 3
≤ 2− x√

(2− x)2 + 3
,

or equivalently

(105)

√
(2− x)2 + 3√
x2 + 3

≤ 2− x.
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This holds, though, due to the following equivalences for 0 ≤ x ≤ 1:

(2− x)2 + 3 ≤ (2− x)2(x2 + 3) ⇐⇒ 3 ≤ (2− x)2(x2 + 2) =: R(x).

The latter is true, since min0≤x≤1R(x) = R(1) = 3 ( note that the derivative of R equals
R′(x) = −4(2− x)(x2 − x+ 1), so R′ ≤ 0 on [0, 1].)
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Let

S :=

∞∑
k,n=0

(−1)k+n+1

(2n+ 1)(2k + 1)(2n+ 2k + 3)2

(
−1/2

n

)
.

Then S is the value of the integral∫ 1

0

arcsinx arctanx log x dx.

Just take the series

arcsinx =

∞∑
n=0

(−1)n

2n+ 1

(
−1/2

n

)
x2n+1

arctanx =

∞∑
n=0

(−1)n

2n+ 1
x2n+1

and use that ∫ 1

0

xm log x dx = −(m+ 1)−2.



231

Partial solution to problem 1428 Elem. Math. 77 (2022), 196

Raymond Mortini, Rudolf Rupp

Let

f(a, b, c) :=

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
ab+ bc+ ca

a2 + b2 + c2
.

Then, by using that 2xy
x+y ≤

√
xy ≤ x+y

2 ,

f(a, b, c) =
1

a2 + b2 + c2

(
a

bc

b+ c
+ b

ca

c+ a
+ c

ab

a+ b

)
+ 1

≤ 1

a2 + b2 + c2

(
a
b+ c

4
+ b

c+ a

4
+ c

a+ b

4

)
+ 1

=
1

a2 + b2 + c2
2ab+ 2bc+ 2ca

4
+ 1

=
1

a2 + b2 + c2
(a+ b+ c)2 − (a2 + b2 + c2)

4
+ 1

≤ 1

a2 + b2 + c2
(a2 + b2 + c2)(1 + 1 + 1)− (a2 + b2 + c2)

4
+ 1

≤ 3

2
.

If we let a = b = c, then f(a, a, a) = 3/2 and so
�� ��k2 = 3/2 . To determine k1, let

g(a, b, c) :=

(
a

b+ c
+

b

c+ a
+

c

a+ b

)2
ab+ bc+ ca

a2 + b2 + c2
.

Then, by using two of the estimates above, namley f ≥ 1, and Cauchy-Schwarz,

g(a, b, c) =
a2 + b2 + c2

ab+ bc+ ca
f(a, b, c)2 >

a2 + b2 + c2

ab+ bc+ ca
≥ 1.

We guess k1 =
√

2. In fact, we may restrict to triples (x, 1, c) (homogeniety). Then it remains
to prove that

fc(x) :=

(
1

x+ c
+

x

c+ 1
+

c

1 + x

)2(
x+ cx+ c

1 + x2 + c2

)
≥ 2.

Now

lim
c→0

fc(x) = x+
1

x
= f0(x) ≥ 2.

Graphical evidence seems to indicate that mc := minx>0 fc(x) ≥ 2 and limc→0mc = 2.
As it is customn with this type of questions, the infimum of the two-variable function

f(x, c) := fc(x) is taken on the boundary of the first quadrant; that is when c = 0. We
have no proof though of this last claim.
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Solution to problem 1383 in Elem. Math 74 (2019), 38, by
Raymond Mortini and Rudolf Rupp

Theorem 17. Let 0 < α ≤ 1. Then

σ(α) := sup

{
|(1− z)α − (1− w)α|

|z − w|α
: |z|, |w| ≤ 1, z 6= w

}
= max{1, 21−α sin(απ/2)}

=

{
1 if 0 < α ≤ 1/2

21−α sin(απ/2) if 1/2 ≤ α ≤ 1.

Moreover,

max
0<α≤1

log σ(α) =

(
1− 2

π
arctan

(
π

2 log 2

))
log 2 + log

(
π√

π2 + 4(log 2)2

)
.

10

1

αo

σ(α  )o

q(α)

α
0.5

Figure 16. The Hölder-Lipschitz constant σ(α)

See R. Mortini, R. Rupp, The best Hlder-Lipschitz constant associated with the function
(1− z)α, Computational Meth. Funct. Theory 20 (2020), 667–676.
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Solution to problem 1350 in Elem. Math 71 (2016), 84
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solution of problem 1339 Elem. Math. 70 (2015), 82.
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Solution to problem 1281 Elem. Math. 65 (2010), 127, by
Raymond Mortini, Jérôme Noël

a) Exponentiating, we have to calculate the value of the infinite product

P =

∞∏
n=2

(
e2
(
n− 1

n+ 1

)n)
.

We claim that P = 4π
e3 ; so S = log(4π)− 3.

Let PN =
∏N
n=2

(
e2
(
n−1
n+1

)n)
. Then by Stirlings formula, telling us that n! ∼ e−nnn

√
2πn,

we obtain

PN =
1

e2
e2N

∏N
n=2(n− 1)n∏N
n=2(n+ 1)n

=

1

e2
e2N

∏N
n=2(n− 1)n∏N
n=2 n

n+1

∏N
n=2 n

n+1∏N
n=2(n+ 1)n

=

2

e2
e2N (N !)2

NN+1(N + 1)N
=

2

e2

(
eNN !

NN

)2
NN

(N + 1)N
1

N
∼

2

e2
(
√

2πN)2

N

1

(1 + 1
N )N

→ 4π

e3
.

b) To determine S∗, we use the same method and calculate the value of

P ∗ =

∞∏
n=1

e

(
n

n+ 1

)n+ 1
2

We claim that P ∗ =
√
2π
e and so S∗ = 1

2 log(2π)− 1.

In fact

P ∗N =

N∏
n=1

e

(
n

n+ 1

)n+ 1
2

=
eNN !

(N + 1)N
1√
N + 1

.

Using Stirling’s formula we obtain

PN ∼
NN

(N + 1)N

√
2πN

1√
N + 1

=
√

2π
1

(1 + 1
N )N

√
N√

N + 1
→
√

2π

e
.
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solution of problem 901 Elem. Math. 38 (1983), 128.
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