The ring of real-valued multivariate polynomials
 joint work with R. Rupp

Raymond Mortini Université de Lorraine

Metz

06.05.2013

An analyst's perspective
 $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is the following algebra of real-symmetric polynomials:

$$
\mathbb{C}_{\text {sym }}[\boldsymbol{z}]=\left\{f \in \mathbb{C}[\boldsymbol{z}]: f(\boldsymbol{z})=\overline{f(\overline{\boldsymbol{z}})} \forall \boldsymbol{z} \in \mathbb{C}^{n}\right\}
$$

An analyst's perspective
 $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is the following algebra of real-symmetric polynomials:

$$
\mathbb{C}_{\text {sym }}[\boldsymbol{z}]=\left\{f \in \mathbb{C}[\boldsymbol{z}]: f(\boldsymbol{z})=\overline{f(\bar{z})} \forall \boldsymbol{z} \in \mathbb{C}^{n}\right\}
$$

$\mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right]$ is a real algebra of complex-valued polynomials that is real-isomorphic to $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

An analyst's perspective
$\overline{\boldsymbol{z}:=\left(z_{1}, \ldots, z_{n}\right) \text { and } \overline{\boldsymbol{z}}:=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right) \text {. Associated with }{ }^{\text {R }} \text {. }}$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is the following algebra of real-symmetric polynomials:

$$
\mathbb{C}_{\text {sym }}[\boldsymbol{z}]=\left\{f \in \mathbb{C}[\boldsymbol{z}]: f(\boldsymbol{z})=\overline{f(\overline{\boldsymbol{z}})} \forall \boldsymbol{z} \in \mathbb{C}^{n}\right\}
$$

$\mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right]$ is a real algebra of complex-valued polynomials that is real-isomorphic to $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. For $\boldsymbol{a} \in \mathbb{C}^{n}$ let

$$
M_{\boldsymbol{a}}:=\left\{p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]: p(\boldsymbol{a})=0\right\}
$$

By Hilbert's Nullstellensatz an ideal in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is maximal if and only if it has the form M_{a} for some $\boldsymbol{a} \in \mathbb{C}^{n}$.

Theorem

The class of maximal ideals of $\mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right]$ coincides with the class of ideals of the form

$$
S_{\mathbf{a}}:=M_{\mathbf{a}} \cap M_{\mathbf{a}} \cap \mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right],
$$

where $\mathbf{a} \in \mathbb{C}^{n}$. The set $\{\mathbf{a}, \overline{\mathbf{a}}\}$ is uniquely determined for a given maximal ideal.

Theorem

The class of maximal ideals of $\mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right]$ coincides with the class of ideals of the form

$$
S_{\mathbf{a}}:=M_{\mathbf{a}} \cap M_{\mathbf{a}} \cap \mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right],
$$

where $\mathbf{a} \in \mathbb{C}^{n}$. The set $\{\mathbf{a}, \overline{\mathbf{a}}\}$ is uniquely determined for a given maximal ideal.

Note that $M_{\mathbf{a}} \cap M_{\bar{a}} \cap \mathbb{C}_{\text {sym }}[\mathbf{z}]=M_{\mathbf{a}} \cap \mathbb{C}_{\text {sym }}[\mathbf{z}]$, because for every polynomial p in $\mathbb{C}_{\text {sym }}[\boldsymbol{z}]$ it holds that $p(\boldsymbol{a})=0$ if and only if $p(\overline{\boldsymbol{a}})=0$.

Beweis.

i) S_{a} is maximal:
to see this, suppose that $f \in \mathbb{C}_{\text {sym }}[\mathbf{z}]$ does not vanish at \boldsymbol{a}. Then

$$
(f-f(\boldsymbol{a}))(f-\overline{f(\boldsymbol{a})})=f^{2}-(2 \operatorname{Re} f(\boldsymbol{a})) f+|f(\boldsymbol{a})|^{2} \in S_{\boldsymbol{a}}
$$

and

Beweis.

i) S_{a} is maximal:
to see this, suppose that $f \in \mathbb{C}_{\text {sym }}[\mathbf{z}]$ does not vanish at \boldsymbol{a}. Then

$$
(f-f(\boldsymbol{a}))(f-\overline{f(\boldsymbol{a})})=f^{2}-(2 \operatorname{Re} f(\boldsymbol{a})) f+|f(\boldsymbol{a})|^{2} \in S_{\boldsymbol{a}}
$$

and

$$
1=\frac{(f-f(\mathbf{a}))(f-\overline{f(\mathbf{a})})}{|f(\boldsymbol{a})|^{2}}-f \frac{f-(f(\mathbf{a})+\overline{f(\boldsymbol{a})})}{|f(\boldsymbol{a})|^{2}} .
$$

Beweis.

i) S_{a} is maximal:
to see this, suppose that $f \in \mathbb{C}_{\text {sym }}[\mathbf{z}]$ does not vanish at \boldsymbol{a}. Then

$$
(f-f(\boldsymbol{a}))(f-\overline{f(\boldsymbol{a})})=f^{2}-(2 \operatorname{Re} f(\boldsymbol{a})) f+|f(\boldsymbol{a})|^{2} \in S_{\boldsymbol{a}}
$$

and

$$
1=\frac{(f-f(\mathbf{a}))(f-\overline{f(\mathbf{a})})}{|f(\mathbf{a})|^{2}}-f \frac{f-(f(\mathbf{a})+\overline{f(\boldsymbol{a})})}{|f(\mathbf{a})|^{2}} .
$$

Hence the ideal, ${I_{\mathbb{C y m}}[z]}\left(S_{a}, f\right)$, generated by S_{a} and f is the whole algebra and so S_{a} is maximal.

Beweis.

i) S_{a} is maximal:
to see this, suppose that $f \in \mathbb{C}_{\text {sym }}[\boldsymbol{z}]$ does not vanish at \boldsymbol{a}. Then

$$
(f-f(\boldsymbol{a}))(f-\overline{f(\boldsymbol{a})})=f^{2}-(2 \operatorname{Re} f(\boldsymbol{a})) f+|f(\boldsymbol{a})|^{2} \in S_{\boldsymbol{a}}
$$

and

$$
1=\frac{(f-f(\mathbf{a}))(f-\overline{f(\mathbf{a})})}{|f(\mathbf{a})|^{2}}-f \frac{f-(f(\mathbf{a})+\overline{f(\boldsymbol{a})})}{|f(\mathbf{a})|^{2}} .
$$

Hence the ideal, $I_{\mathbb{C}_{\text {sym }}[z]}\left(S_{a}, f\right)$, generated by S_{a} and f is the whole algebra and so S_{a} is maximal.
ii) if $f(a)$ is real, we simply could have argued as follows, since the constant function $\boldsymbol{z} \mapsto f(\boldsymbol{a})$ then belongs to $\mathbb{C}_{\text {sym }}[\boldsymbol{z}]$:

$$
1=-\frac{f-f(\boldsymbol{a})}{f(\boldsymbol{a})}+\frac{f}{f(\boldsymbol{a})} \in I_{\mathbb{C}_{\text {sym }}[\boldsymbol{z}]}\left(S_{\mathbf{a}}, f\right)
$$

iii) M maximal $\Longrightarrow M=S_{a}$ for some $\boldsymbol{a} \in \mathbb{C}^{n}$
iii) M maximal $\Longrightarrow M=S_{a}$ for some $a \in \mathbb{C}^{n}$ Suppose, to the contrary, that M is not contained in any ideal of the form S_{a}. Hence, for every $\boldsymbol{a} \in \mathbb{C}^{n}$, there is $p_{a} \in M$ such that $p_{a}(\boldsymbol{a}) \neq 0$.
iii) M maximal $\Longrightarrow M=S_{a}$ for some $a \in \mathbb{C}^{n}$ Suppose, to the contrary, that M is not contained in any ideal of the form S_{a}. Hence, for every $\boldsymbol{a} \in \mathbb{C}^{n}$, there is $p_{\boldsymbol{a}} \in M$ such that $p_{a}(\boldsymbol{a}) \neq 0$. By Hilbert's Nullstellensatz, the ideal generated by the set $S=\left\{p_{\boldsymbol{a}}: \boldsymbol{a} \in \mathbb{C}^{n}\right\}$ in $\mathbb{C}[\boldsymbol{z}]$ coincides with $\mathbb{C}[\mathbf{z}]$.
iii) M maximal $\Longrightarrow M=S_{a}$ for some $\boldsymbol{a} \in \mathbb{C}^{n}$ Suppose, to the contrary, that M is not contained in any ideal of the form S_{a}. Hence, for every $\boldsymbol{a} \in \mathbb{C}^{n}$, there is $p_{\boldsymbol{a}} \in M$ such that $p_{a}(\boldsymbol{a}) \neq 0$. By Hilbert's Nullstellensatz, the ideal generated by the set $S=\left\{p_{\boldsymbol{a}}: \boldsymbol{a} \in \mathbb{C}^{n}\right\}$ in $\mathbb{C}[z]$ coincides with $\mathbb{C}[z]$. Hence there are $q_{j} \in \mathbb{C}[\boldsymbol{z}]$ and finitely many $\boldsymbol{a}_{j} \in \mathbb{C}^{n},(j=1, \ldots, N)$, such that

$$
\begin{gathered}
\sum_{j=1}^{N} q_{j} p_{\mathbf{a}_{j}}=1 . \\
\Longrightarrow 1=\overline{\sum_{j=1}^{N} q_{j}(\overline{\boldsymbol{z}}) p_{\mathbf{a}_{j}}(\overline{\boldsymbol{z}})}=\sum_{j=1} \overline{q_{j}(\overline{\boldsymbol{z}})} p_{\mathbf{a}_{j}}(\boldsymbol{z}) .
\end{gathered}
$$

Hence, with

$$
q_{j}^{*}(\boldsymbol{z})=\frac{1}{2}\left(\overline{q_{j}(\overline{\boldsymbol{z}})}+q_{j}(\boldsymbol{z})\right),
$$

we conclude that

$$
\sum_{j=1}^{N} q_{j}^{*} p_{a_{j}}=1
$$

Hence, with

$$
q_{j}^{*}(\boldsymbol{z})=\frac{1}{2}\left(\overline{q_{j}(\overline{\boldsymbol{z}})}+q_{j}(\boldsymbol{z})\right),
$$

we conclude that

$$
\sum_{j=1}^{N} q_{j}^{*} p_{a_{j}}=1
$$

Since $q_{j}^{*} \in \mathbb{C}_{\text {sym }}[z]$ and $p_{\mathbf{a}_{j}} \in M$ we obtain the contradiction that $1 \in M$. Thus $M \subseteq S_{a}$ for some $a \in \mathbb{C}^{n}$. The maximality of M now implies that $M=S_{a}$.

Generators for the maximal ideals in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Generators for the maximal ideals in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. By Hilbert's Nullstellensatz the maximal ideals in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ are generated by $z_{1}-a_{1}, \ldots, z_{n}-a_{n}$, where $\boldsymbol{a}:=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$.

Generators for the maximal ideals in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. By Hilbert's Nullstellensatz the maximal ideals in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ are generated by $z_{1}-a_{1}, \ldots, z_{n}-a_{n}$, where $\boldsymbol{a}:=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$. The situation for the real algebra $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is quite different. Here are some examples. We identify $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ with $\mathbb{C}_{\text {sym }}\left[z_{1}, \ldots, z_{n}\right]$.

Example

(1) Let $\sigma \in \mathbb{C} \backslash \mathbb{R}$ and $r_{j} \in \mathbb{R}, j=1,2, \ldots, n-1$. Then the ideal generated by

$$
x_{n}^{2}-(2 \operatorname{Re} \sigma) x_{n}+|\sigma|^{2}=\left(x_{n}-\sigma\right)\left(x_{n}-\bar{\sigma}\right)
$$

and $x_{j}-r_{j},(j=1, \ldots, n-1)$, is maximal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. It corresponds to the ideal $S_{\left(r_{1}, \ldots, r_{n-1}, \sigma\right)}$.

Example

(1) Let $\sigma \in \mathbb{C} \backslash \mathbb{R}$ and $r_{j} \in \mathbb{R}, j=1,2, \ldots, n-1$. Then the ideal generated by

$$
x_{n}^{2}-(2 \operatorname{Re} \sigma) x_{n}+|\sigma|^{2}=\left(x_{n}-\sigma\right)\left(x_{n}-\bar{\sigma}\right)
$$

and $x_{j}-r_{j},(j=1, \ldots, n-1)$, is maximal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. It corresponds to the ideal $S_{\left(r_{1}, \ldots, r_{n-1}, \sigma\right)}$.
(2) The ideal $I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}\right)$ generated by $1+x^{2}$ and $1+y^{2}$ is

Example

(1) Let $\sigma \in \mathbb{C} \backslash \mathbb{R}$ and $r_{j} \in \mathbb{R}, j=1,2, \ldots, n-1$. Then the ideal generated by

$$
x_{n}^{2}-(2 \operatorname{Re} \sigma) x_{n}+|\sigma|^{2}=\left(x_{n}-\sigma\right)\left(x_{n}-\bar{\sigma}\right)
$$

and $x_{j}-r_{j},(j=1, \ldots, n-1)$, is maximal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. It corresponds to the ideal $S_{\left(r_{1}, \ldots, r_{n-1}, \sigma\right)}$.
(2) The ideal $I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}\right)$ generated by $1+x^{2}$ and $1+y^{2}$ is not maximal.

Example

(1) Let $\sigma \in \mathbb{C} \backslash \mathbb{R}$ and $r_{j} \in \mathbb{R}, j=1,2, \ldots, n-1$. Then the ideal generated by

$$
x_{n}^{2}-(2 \operatorname{Re} \sigma) x_{n}+|\sigma|^{2}=\left(x_{n}-\sigma\right)\left(x_{n}-\bar{\sigma}\right)
$$

and $x_{j}-r_{j},(j=1, \ldots, n-1)$, is maximal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. It corresponds to the ideal $S_{\left(r_{1}, \ldots, r_{n-1}, \sigma\right)}$.
(2) The ideal $\mathbb{I}_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}\right)$ generated by $1+x^{2}$ and $1+y^{2}$ is not maximal.
(3) The ideal $M:=\mathbb{I}_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, 1+x y, x-y\right)$ is maximal and corresponds to $S_{(i, i)}$.

Example

(1) Let $\sigma \in \mathbb{C} \backslash \mathbb{R}$ and $r_{j} \in \mathbb{R}, j=1,2, \ldots, n-1$. Then the ideal generated by

$$
x_{n}^{2}-(2 \operatorname{Re} \sigma) x_{n}+|\sigma|^{2}=\left(x_{n}-\sigma\right)\left(x_{n}-\bar{\sigma}\right)
$$

and $x_{j}-r_{j},(j=1, \ldots, n-1)$, is maximal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. It corresponds to the ideal $S_{\left(r_{1}, \ldots, r_{n-1}, \sigma\right)}$.
(2) The ideal $I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}\right)$ generated by $1+x^{2}$ and $1+y^{2}$ is not maximal.
(3) The ideal $M:=\mathbb{I}_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, 1+x y, x-y\right)$ is maximal and corresponds to $S_{(i, i)}$. prooi
(4) $M=I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, x-y\right)$
$M=I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, 1+x y\right)$

Example

(1) Let $\sigma \in \mathbb{C} \backslash \mathbb{R}$ and $r_{j} \in \mathbb{R}, j=1,2, \ldots, n-1$. Then the ideal generated by

$$
x_{n}^{2}-(2 \operatorname{Re} \sigma) x_{n}+|\sigma|^{2}=\left(x_{n}-\sigma\right)\left(x_{n}-\bar{\sigma}\right)
$$

and $x_{j}-r_{j},(j=1, \ldots, n-1)$, is maximal in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. It corresponds to the ideal $S_{\left(r_{1}, \ldots, r_{n-1}, \sigma\right)}$.
(2) The ideal $I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}\right)$ generated by $1+x^{2}$ and $1+y^{2}$ is not maximal.
(3) The ideal $M:=\mathbb{I}_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, 1+x y, x-y\right)$ is maximal and corresponds to $S_{(i, i)}$. prooi
(4) $M=I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, x-y\right)$
$M=I_{\mathbb{R}[x, y]}\left(1+x^{2}, 1+y^{2}, 1+x y\right)$
$M=I_{\mathbb{R}[x, y]}(1+x y, x-y)$.

$$
\begin{aligned}
& I:=I_{\mathbb{C}_{\text {sym }}[z, w]}\left(1+z^{2}, 1+w^{2}, 1+z w, z-w\right) \text {. Then } I \subseteq S_{(i, i)} \text {. We need to show } \\
& \text { that } I=S_{(i, i)} \text {. To do so, let } f \in S_{(i, i)} \text {. }
\end{aligned}
$$

$I:=I_{\mathbb{I}_{\text {sym }}[z, w]}\left(1+z^{2}, 1+w^{2}, 1+z w, z-w\right)$. Then $I \subseteq S_{(i, i)}$. We need to show that $I=S_{(i, i)}$. To do so, let $f \in S_{(i, i)}$. Then

$$
\begin{equation*}
f=\left(z^{2}+1\right) q_{1}(z, w)+\left(w^{2}+1\right) q_{2}(z, w)+r(z, w) \tag{1}
\end{equation*}
$$

for some $q_{j}, r \in \mathbb{C}_{\text {sym }}[z, w]$ with $\operatorname{deg}_{z} r<2$ and $\operatorname{deg}_{w} r<2$.
$I:=I_{\mathbb{C}_{\text {sym }}[z, w]}\left(1+z^{2}, 1+w^{2}, 1+z w, z-w\right)$. Then $I \subseteq S_{(i, i)}$. We need to show that $I=S_{(i, i)}$. To do so, let $f \in S_{(i, i)}$. Then

$$
\begin{equation*}
f=\left(z^{2}+1\right) q_{1}(z, w)+\left(w^{2}+1\right) q_{2}(z, w)+r(z, w) \tag{1}
\end{equation*}
$$

for some $q_{j}, r \in \mathbb{C}_{\text {sym }}[z, w]$ with $\operatorname{deg}_{z} r<2$ and $\operatorname{deg}_{w} r<2$.
Moreover, $r(i, i)=0$. Now r has the form

$$
r(z, w)=a+b z+c w+d z w
$$

for some $(a, b, c, d) \in \mathbb{R}^{4}$. Hence $a+b i+c i-d=0$ from which we deduce that $a=d$ and $b=-c$.
$I:=I_{\mathbb{C}_{\text {sym }}[z, w]}\left(1+z^{2}, 1+w^{2}, 1+z w, z-w\right)$. Then $I \subseteq S_{(i, i)}$. We need to show that $I=S_{(i, i)}$. To do so, let $f \in S_{(i, i)}$. Then

$$
\begin{equation*}
f=\left(z^{2}+1\right) q_{1}(z, w)+\left(w^{2}+1\right) q_{2}(z, w)+r(z, w) \tag{1}
\end{equation*}
$$

for some $q_{j}, r \in \mathbb{C}_{\text {sym }}[z, w]$ with $\operatorname{deg}_{z} r<2$ and $\operatorname{deg}_{w} r<2$.
Moreover, $r(i, i)=0$. Now r has the form

$$
r(z, w)=a+b z+c w+d z w
$$

for some $(a, b, c, d) \in \mathbb{R}^{4}$. Hence $a+b i+c i-d=0$ from which we deduce that $a=d$ and $b=-c$. Therefore

$$
r(z, w)=a(1+z w)+b(z-w)
$$

$I:=I_{\mathbb{C}_{\text {sym }}[z, w]}\left(1+z^{2}, 1+w^{2}, 1+z w, z-w\right)$. Then $I \subseteq S_{(i, i)}$. We need to show that $I=S_{(i, i)}$. To do so, let $f \in S_{(i, i)}$. Then

$$
\begin{equation*}
f=\left(z^{2}+1\right) q_{1}(z, w)+\left(w^{2}+1\right) q_{2}(z, w)+r(z, w) \tag{1}
\end{equation*}
$$

for some $q_{j}, r \in \mathbb{C}_{\text {sym }}[z, w]$ with $\operatorname{deg}_{z} r<2$ and $\operatorname{deg}_{w} r<2$.
Moreover, $r(i, i)=0$. Now r has the form

$$
r(z, w)=a+b z+c w+d z w
$$

for some $(a, b, c, d) \in \mathbb{R}^{4}$. Hence $a+b i+c i-d=0$ from which we deduce that $a=d$ and $b=-c$. Therefore

$$
r(z, w)=a(1+z w)+b(z-w) .
$$

We conclude that

$$
f \in\left(z^{2}+1\right) \mathbb{C}_{\text {sym }}[z, w]+\left(w^{2}+1\right) \mathbb{C}_{\text {sym }}[z, w]+(1+z w) \mathbb{R}+(z-w) \mathbb{R} \subseteq I
$$

$I:=I_{\mathbb{C}_{\text {sym }}[z, w]}\left(1+z^{2}, 1+w^{2}, 1+z w, z-w\right)$. Then $I \subseteq S_{(i, i)}$. We need to show that $I=S_{(i, i)}$. To do so, let $f \in S_{(i, i)}$. Then

$$
\begin{equation*}
f=\left(z^{2}+1\right) q_{1}(z, w)+\left(w^{2}+1\right) q_{2}(z, w)+r(z, w) \tag{1}
\end{equation*}
$$

for some $q_{j}, r \in \mathbb{C}_{\text {sym }}[z, w]$ with $\operatorname{deg}_{z} r<2$ and $\operatorname{deg}_{w} r<2$.
Moreover, $r(i, i)=0$. Now r has the form

$$
r(z, w)=a+b z+c w+d z w
$$

for some $(a, b, c, d) \in \mathbb{R}^{4}$. Hence $a+b i+c i-d=0$ from which we deduce that $a=d$ and $b=-c$. Therefore

$$
r(z, w)=a(1+z w)+b(z-w) .
$$

We conclude that

$$
f \in\left(z^{2}+1\right) \mathbb{C}_{\text {sym }}[z, w]+\left(w^{2}+1\right) \mathbb{C}_{\text {sym }}[z, w]+(1+z w) \mathbb{R}+(z-w) \mathbb{R} \subseteq I
$$

Thus, in view of the maximality of $S_{(i, i)}, S_{(i, i)}=I$. Hence $/$ is maximal

Theorem

Let $r_{j} \in \mathbb{R}, a_{j} \in \mathbb{C} \backslash \mathbb{R}, k+m=n, \overline{a_{j}} \notin\left\{a_{1}, \ldots, a_{m}\right\}$ Then the maximal ideal $M=S_{\left(r_{1}, \ldots, r_{k}, a_{1}, \ldots, a_{m}\right)}$ of $R:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the polynomials

Theorem

Let $r_{j} \in \mathbb{R}, a_{j} \in \mathbb{C} \backslash \mathbb{R}, k+m=n, \overline{a_{j}} \notin\left\{a_{1}, \ldots, a_{m}\right\}$ Then the maximal ideal $M=S_{\left(r_{1}, \ldots, r_{k}, a_{1}, \ldots, a_{m}\right)}$ of $R:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the polynomials

$$
p_{j}:=x_{j}-r_{j},(j=1, \ldots, k),
$$

Theorem

Let $r_{j} \in \mathbb{R}, a_{j} \in \mathbb{C} \backslash \mathbb{R}, k+m=n, \overline{a_{j}} \notin\left\{a_{1}, \ldots, a_{m}\right\}$ Then the maximal ideal $M=S_{\left(r_{1}, \ldots, r_{k}, a_{1}, \ldots, a_{m}\right)}$ of $R:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the polynomials

$$
\begin{gathered}
p_{j}:=x_{j}-r_{j},(j=1, \ldots, k) \\
p_{k+j}:=x_{k+j}^{2}-\left(2 \operatorname{Re} a_{j}\right) x_{k+j}+\left|a_{j}\right|^{2},(j=1, \ldots, m)
\end{gathered}
$$

Theorem

Let $r_{j} \in \mathbb{R}, a_{j} \in \mathbb{C} \backslash \mathbb{R}, k+m=n, \overline{a_{j}} \notin\left\{a_{1}, \ldots, a_{m}\right\}$ Then the maximal ideal $M=S_{\left(r_{1}, \ldots, r_{k}, a_{1}, \ldots, a_{m}\right)}$ of $R:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the polynomials

$$
\begin{gathered}
p_{j}:=x_{j}-r_{j},(j=1, \ldots, k), \\
p_{k+j}:=x_{k+j}^{2}-\left(2 \operatorname{Re} a_{j}\right) x_{k+j}+\left|a_{j}\right|^{2},(j=1, \ldots, m)
\end{gathered}
$$

and 2^{n-k} - 2 multilinear polynomials q_{j} in $\mathbb{R}\left[x_{k+1}, \ldots, x_{n}\right]$ vanshing at a_{k+1}, \ldots, a_{n}.

Theorem

Let $r_{j} \in \mathbb{R}, a_{j} \in \mathbb{C} \backslash \mathbb{R}, k+m=n, \overline{a_{j}} \notin\left\{a_{1}, \ldots, a_{m}\right\}$
Then the maximal ideal $M=S_{\left(r_{1}, \ldots, r_{k}, a_{1}, \ldots, a_{m}\right)}$ of $R:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the polynomials

$$
\begin{gathered}
p_{j}:=x_{j}-r_{j},(j=1, \ldots, k), \\
p_{k+j}:=x_{k+j}^{2}-\left(2 \operatorname{Re} a_{j}\right) x_{k+j}+\left|a_{j}\right|^{2},(j=1, \ldots, m)
\end{gathered}
$$

and $2^{n-k}-2$ multilinear polynomials q_{j} in $\mathbb{R}\left[x_{k+1}, \ldots, x_{n}\right]$ vanshing at a_{k+1}, \ldots, a_{n}. More precisely, we have

$$
M=\sum_{j=1}^{n} p_{j}\left(x_{j}\right) R+\sum_{j=1}^{2^{n-k-2}} q_{j}\left(x_{k+1}, \ldots, x_{n}\right) \mathbb{R} .
$$

Lemma

Let $\boldsymbol{i}=(i, \ldots, i) \in \mathbb{C}^{m}$. The a (vector-space) basis of

$$
V^{*}=\left\{f(\boldsymbol{z})=\sum_{j_{1}, \ldots, j_{m}} c_{j} z_{k+1}^{j_{1}} \cdots z_{k+m}^{j_{m}}, j_{\ell} \in\{0,1\}, c_{j} \in \mathbb{R}, f(\boldsymbol{i})=0\right\}
$$

is given by

Lemma

Let $\boldsymbol{i}=(i, \ldots, i) \in \mathbb{C}^{m}$. The a (vector-space) basis of

$$
V^{*}=\left\{f(\boldsymbol{z})=\sum_{j_{1}, \ldots, j_{m}} c_{j} z_{k+1}^{j_{1}} \cdots z_{k+m}^{j_{m}}, j_{\ell} \in\{0,1\}, c_{j} \in \mathbb{R}, f(\boldsymbol{i})=0\right\}
$$

is given by

$$
\begin{array}{rl}
x_{1}-x_{j} & 1<j \leq m \\
1+x_{j_{1}} x_{j_{2}} & 1 \leq j_{1}<j_{2} \leq m \\
x_{1}+x_{j_{1}} x_{j_{2}} x_{j_{3}} & 1 \leq j_{1}<j_{2}<j_{3} \leq m \\
1-\prod_{\ell=1}^{4} x_{j_{\ell}} & 1 \leq j_{1}<\cdots<j_{4} \leq m \\
x_{1}-\prod^{5} x_{j_{\ell}} & 1 \leq j_{1}<\cdots<j_{5} \leq m
\end{array}
$$

The last element has exactly one of the following forms:

$$
\left\{\begin{array}{lll}
x_{1}-\prod_{j=1}^{m} x_{j} & \text { if } m \equiv 1 & \bmod 4 \\
1+\prod_{j=1}^{m} x_{j} & \text { if } m \equiv 2 & \bmod 4 \\
x_{1}+\prod_{j=1}^{m} x_{j} & \text { if } m \equiv 3 & \bmod 4 \\
1-\prod_{j=1}^{m} x_{j} & \text { if } m \equiv 0 & \bmod 4
\end{array}\right.
$$

Theorem

Let $m+k=n, m \geq 2$, and
$\boldsymbol{a}:=\left(i, \ldots, i, r_{m+1}, \ldots, r_{m+k}\right) \in \mathbb{C}^{m} \times \mathbb{R}^{k}$.

Theorem

Let $m+k=n, m \geq 2$, and
$\boldsymbol{a}:=\left(i, \ldots, i, r_{m+1}, \ldots, r_{m+k}\right) \in \mathbb{C}^{m} \times \mathbb{R}^{k}$. The maximal ideal S_{a} of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the $2^{m}-2$ multilinear polynomials in Lemma 4 and the polynomials

$$
p_{m+j}:=x_{m+j}-r_{m+j},(j=1, \ldots, k)
$$

Theorem

Let $m+k=n, m \geq 2$, and
$\boldsymbol{a}:=\left(i, \ldots, i, r_{m+1}, \ldots, r_{m+k}\right) \in \mathbb{C}^{m} \times \mathbb{R}^{k}$. The maximal ideal S_{a} of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is generated by the $2^{m}-2$ multilinear polynomials in Lemma 4 and the polynomials

$$
p_{m+j}:=x_{m+j}-r_{m+j},(j=1, \ldots, k)
$$

The general case of an arbitrary maximal ideal S_{a} is easily deduced by using the transformation

$$
\chi\left(z_{1}, \ldots, z_{m}\right)=\left(\frac{z_{1}-\alpha_{1}}{\beta_{1}}, \ldots, \frac{z_{m}-\alpha_{m}}{\beta_{m}}\right)
$$

of \mathbb{C}^{m} onto \mathbb{C}^{m}, whenever

$$
\boldsymbol{a}=\left(\alpha_{1}+i \beta_{1}, \ldots, \alpha_{m}+i \beta_{m}, r_{m+1}, \ldots, r_{m+k}\right) \in \mathbb{C}^{m} \times \mathbb{R}^{k} \subseteq \mathbb{C}^{n}
$$

with $\beta_{j} \neq 0$ for $j=1, \ldots, m$.

Theorem

Let p_{1}, \ldots, p_{n+1} be polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a non-zero polynomial $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ in $n+1$ variables such that

$$
P\left(p_{1}, \ldots, p_{n+1}\right)=0
$$

Theorem

Let p_{1}, \ldots, p_{n+1} be polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a non-zero polynomial $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ in $n+1$ variables such that

$$
P\left(p_{1}, \ldots, p_{n+1}\right)=0
$$

Proof Let $k:=1+\max _{1 \leq j \leq n+1}$ deg p_{j}. For big $L \in \mathbb{N}$, to be determined later, we are looking for $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ with $0 \leq \operatorname{deg} P \leq L$ and $P\left(p_{1}, \ldots, p_{n+1}\right)=0$.

Theorem

Let p_{1}, \ldots, p_{n+1} be polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a non-zero polynomial $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ in $n+1$ variables such that

$$
P\left(p_{1}, \ldots, p_{n+1}\right)=0
$$

Proof Let $k:=1+\max _{1 \leq j \leq n+1}$ deg p_{j}. For big $L \in \mathbb{N}$, to be determined later, we are looking for $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ with $0 \leq \operatorname{deg} P \leq L$ and $P\left(p_{1}, \ldots, p_{n+1}\right)=0$.
Let V be the vector space of all polynomials p in $F\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg} p \leq k L$. Then $\operatorname{dim} V=\binom{k L+n}{n}=: A(L)$.

Theorem

Let p_{1}, \ldots, p_{n+1} be polynomials in $F\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a non-zero polynomial $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ in $n+1$ variables such that

$$
P\left(p_{1}, \ldots, p_{n+1}\right)=0
$$

Proof Let $k:=1+\max _{1 \leq j \leq n+1}$ deg p_{j}. For big $L \in \mathbb{N}$, to be determined later, we are looking for $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ with $0 \leq \operatorname{deg} P \leq L$ and $P\left(p_{1}, \ldots, p_{n+1}\right)=0$.
Let V be the vector space of all polynomials p in $F\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg} p \leq k L$. Then $\operatorname{dim} V=\binom{k L+n}{n}=: A(L)$.Consider now the following collection \mathcal{C} of (wlog distinct) polynomials:
stable rank

$$
P_{1}^{j_{1}} \cdot P_{n+1}^{j_{n+1}}: j_{i} \in \mathbb{N}, \sum_{i=1}^{n+1} i_{i}^{n}, L
$$

$$
p_{1}^{j_{1}} \ldots p_{n+1}^{j_{n+1}}: j_{i} \in \mathbb{N}, \sum_{i=1}^{n+1} j_{i} \leq L
$$

Note that each of the $B(L):=\binom{L+n+1}{n+1}$ members of \mathcal{C} belongs to V, because for $p \in \mathcal{C}$,

$$
\operatorname{deg} p \leq k\left(j_{1}+\cdots+j_{n+1}\right) \leq k L
$$

$$
p_{1}^{j_{1}} \ldots p_{n+1}^{j_{n+1}}: j_{i} \in \mathbb{N}, \sum_{i=1}^{n+1} j_{i} \leq L
$$

Note that each of the $B(L):=\binom{L+n+1}{n+1}$ members of \mathcal{C} belongs to V, because for $p \in \mathcal{C}$,

$$
\operatorname{deg} p \leq k\left(j_{1}+\cdots+j_{n+1}\right) \leq k L
$$

Then $\operatorname{card} \mathcal{C}=B(L)$. Note also that $\mathcal{C} \subseteq V$.

$$
p_{1}^{j_{1}} \ldots p_{n+1}^{j_{n+1}}: j_{i} \in \mathbb{N}, \sum_{i=1}^{n+1} j_{i} \leq L
$$

Note that each of the $B(L):=\binom{L+n+1}{n+1}$ members of \mathcal{C} belongs to V, because for $p \in \mathcal{C}$,

$$
\operatorname{deg} p \leq k\left(j_{1}+\cdots+j_{n+1}\right) \leq k L .
$$

Then card $\mathcal{C}=B(L)$. Note also that $\mathcal{C} \subseteq V$. We claim that $B(L)>A(L)$ for some L (depending on n). In fact, looking upon $B(L)$ and $A(L)$ as polynomials in L, we have that $\operatorname{deg} B=n+1$ and $\operatorname{deg} A=n$. Thus, for large L, we obtain that $B(L)>A(L)$.

Thus the cardinal of set \mathcal{C} is strictly bigger than the dimension of the vector space V it belongs to. Hence \mathcal{C} is a linear dependent set in V. In other words, there is a linear combination of the elements from S that is identically zero. This implies that there is a nonzero polynomial $P \in F\left[y_{1}, \ldots, y_{n+1}\right]$ of degree at most L such that $P\left(p_{1}, \ldots, p_{n+1}\right)=0$.

Definition

Let R be a commutative unital ring with identity element 1 .
(1) An n-tuple $\left(f_{1}, \ldots, f_{n}\right) \in R^{n}$ is said to be invertible (or unimodular), if there exists $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ such that the Bézout equation $\sum_{j=1}^{n} x_{j} f_{j}=1$ is satisfied.

Definition

Let R be a commutative unital ring with identity element 1 .
(1) An n-tuple $\left(f_{1}, \ldots, f_{n}\right) \in R^{n}$ is said to be invertible (or unimodular), if there exists $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ such that the Bézout equation $\sum_{j=1}^{n} x_{j} f_{j}=1$ is satisfied. The set of all invertible n-tuples is denoted by $U_{n}(R)$. Note that $U_{1}(R)=R^{-1}$.

Definition

Let R be a commutative unital ring with identity element 1 .
(1) An n-tuple $\left(f_{1}, \ldots, f_{n}\right) \in R^{n}$ is said to be invertible (or unimodular), if there exists $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ such that the Bézout equation $\sum_{j=1}^{n} x_{j} f_{j}=1$ is satisfied. The set of all invertible n-tuples is denoted by $U_{n}(R)$. Note that $U_{1}(R)=R^{-1}$. An $(n+1)$-tuple $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(R)$ is called reducible if there exists $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ such that $\left(f_{1}+a_{1} g, \ldots, f_{n}+a_{n} g\right) \in U_{n}(R)$.

Definition

Let R be a commutative unital ring with identity element 1 .
(1) An n-tuple $\left(f_{1}, \ldots, f_{n}\right) \in R^{n}$ is said to be invertible (or unimodular), if there exists $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ such that the Bézout equation $\sum_{j=1}^{n} x_{j} f_{j}=1$ is satisfied. The set of all invertible n-tuples is denoted by $U_{n}(R)$. Note that $U_{1}(R)=R^{-1}$. An $(n+1)$-tuple $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(R)$ is called reducible if there exists $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ such that $\left(f_{1}+a_{1} g, \ldots, f_{n}+a_{n} g\right) \in U_{n}(R)$.
(2) The Bass stable rank of R, denoted by bsr R, is the smallest integer n such that every element in $U_{n+1}(R)$ is reducible. If no such n exists, then bsr $R=\infty$.

Definition

Let R be a commutative unital ring with identity element 1 .
(1) An n-tuple $\left(f_{1}, \ldots, f_{n}\right) \in R^{n}$ is said to be invertible (or unimodular), if there exists $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ such that the Bézout equation $\sum_{j=1}^{n} x_{j} f_{j}=1$ is satisfied. The set of all invertible n-tuples is denoted by $U_{n}(R)$. Note that $U_{1}(R)=R^{-1}$. An $(n+1)$-tuple $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(R)$ is called reducible if there exists $\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$ such that $\left(f_{1}+a_{1} g, \ldots, f_{n}+a_{n} g\right) \in U_{n}(R)$.
(2) The Bass stable rank of R, denoted by bsr R, is the smallest integer n such that every element in $U_{n+1}(R)$ is reducible. If no such n exists, then bsr $R=\infty$.

Note that if bsr $R=n, n<\infty$, and $m \geq n$, then every invertible $(m+1)$-tuple $(\boldsymbol{f}, g) \in R^{m+1}$ is reducible.

Theorem (Vasershtein)

$$
\text { bsr } \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=n+1
$$

Theorem (Vasershtein)

$$
\operatorname{bsr} \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=n+1
$$

Proof $\operatorname{bsr} \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \geq n+1$.
Consider the invertible $(n+1)$-tuple $\left(x_{1}, \ldots, x_{n}, 1-\sum_{j=1}^{n} x_{j}^{2}\right)$ in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Theorem (Vasershtein)

$$
\text { bsr } \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=n+1
$$

Proof bsr $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \geq n+1$.
Consider the invertible $(n+1)$-tuple $\left(x_{1}, \ldots, x_{n}, 1-\sum_{j=1}^{n} x_{j}^{2}\right)$ in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. This tuple cannot be reducible in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \subseteq C\left(\mathbb{R}^{n}, \mathbb{R}\right)$, since otherwise the n-tuple $\left(x_{1}, \ldots, x_{n}\right)$, restricted to the unit sphere $\partial \mathscr{B}$ in \mathbb{R}^{n}, would have a zero-free extension \boldsymbol{e} to \mathscr{B}, where \boldsymbol{e} is given by

$$
\left(x_{1}+u_{1} \cdot\left(1-\sum_{j=1}^{n} x_{j}^{2}\right), \ldots, x_{n}+u_{n} \cdot\left(1-\sum_{j=1}^{n} x_{j}^{2}\right)\right)
$$

for some $u_{j} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

This contradicts Brouwer's result that the identity map

$$
\left(x_{1}, \ldots, x_{n}\right): \partial \mathscr{B} \rightarrow \partial \mathscr{B}
$$

defined on the boundary of the closed unit ball \mathscr{B} in \mathbb{R}^{n} does not admit a zero-free continuous extension to \mathscr{B}.

Next we prove that bsr $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \leq n+1$.

Next we prove that bsr $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \leq n+1$.
This follows from a combination of Bass Theorem telling us that the Bass stable rank of a Noetherian ring with Krull dimension n is less than or equal to $n+1$, and Theorem below, according to which the Krull dimension of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is n.

Definition

Let R be a commutative unital ring, $R \neq\{0\}$.
(1) A chain $\mathfrak{C}=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ of ideals in R is said to have length n if

$$
I_{0} \subset I_{1} \subset \cdots \subset I_{n}
$$

the inclusions being strict.

Definition

Let R be a commutative unital ring, $R \neq\{0\}$.
(1) A chain $\mathfrak{C}=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ of ideals in R is said to have length n if

$$
I_{0} \subset I_{1} \subset \cdots \subset I_{n}
$$

the inclusions being strict.
(2) The Krull dimension of R is defined to be the supremum of the lengths of all increasing chains of prime ideals

$$
P_{0} \subset \cdots \subset P_{n}
$$

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, $R \neq\{0\}$. The following assertions are equivalent:

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, $R \neq\{0\}$. The following assertions are equivalent:
(1) The Krull dimension of R is at most N.

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, $R \neq\{0\}$. The following assertions are equivalent:
(1) The Krull dimension of R is at most N.
(2) For all $\left(a_{0}, \ldots, a_{N}\right) \in R^{N+1}$ there exists

$$
\left(x_{0}, \ldots, x_{N}\right) \in R^{N+1} \text { and }\left(n_{0}, \ldots, n_{N}\right) \in \mathbb{N}^{N+1} \text { such that }
$$

$$
\begin{equation*}
a_{0}^{n_{0}}\left(a_{1}^{n_{1}}\left(\cdots\left(a_{N}^{n_{N}}\left(1+a_{N} x_{N}\right)+\cdots\right)\right)+a_{0} x_{0}\right)=0 \tag{2}
\end{equation*}
$$

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, $R \neq\{0\}$. The following assertions are equivalent:
(1) The Krull dimension of R is at most N.
(2) For all $\left(a_{0}, \ldots, a_{N}\right) \in R^{N+1}$ there exists $\left(x_{0}, \ldots, x_{N}\right) \in R^{N+1}$ and $\left(n_{0}, \ldots, n_{N}\right) \in \mathbb{N}^{N+1}$ such that

$$
\begin{equation*}
a_{0}^{n_{0}}\left(a_{1}^{n_{1}}\left(\cdots\left(a_{N}^{n_{N}}\left(1+a_{N} x_{N}\right)+\cdots\right)\right)+a_{0} x_{0}\right)=0, \tag{2}
\end{equation*}
$$

in other words

$$
\begin{equation*}
L_{0} \circ \cdots \circ L_{N}(1)=0, \tag{3}
\end{equation*}
$$

where for $a, x \in R$ and $n \in \mathbb{N}, L_{a, n, x}(y)=a^{n}(y+a x)$. If

Proposition (Coquand-Lombardi)

Let F be a field and $R \neq\{0\}$ a commutative unital algebra over F. If any $(n+1)$-tupel $\left(f_{0}, \ldots, f_{n}\right) \in R^{n+1}$ is algebraically dependent over F,

Proposition (Coquand-Lombardi)

Let F be a field and $R \neq\{0\}$ a commutative unital algebra over F. If any $(n+1)$-tupel $\left(f_{0}, \ldots, f_{n}\right) \in R^{n+1}$ is algebraically dependent over F, a then the Krull dimension of R is at most n.

[^0]
Proof

Let $Q\left(f_{0}, \ldots, f_{n}\right)=0$ for some nonzero polynomial $Q \in F\left[y_{0}, \ldots, y_{n}\right]$.

Proof

Let $Q\left(f_{0}, \ldots, f_{n}\right)=0$ for some nonzero polynomial $Q \in F\left[y_{0}, \ldots, y_{n}\right]$. We assume that these monomials are ordered lexicographically with respect to the powers $\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$.

Proof

Let $Q\left(f_{0}, \ldots, f_{n}\right)=0$ for some nonzero polynomial $Q \in F\left[y_{0}, \ldots, y_{n}\right]$. We assume that these monomials are ordered lexicographically with respect to the powers
$\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$. Let
be the "first"monomial appearing in the relation above (here the coefficient $a_{i_{0}, \ldots, i_{n}}$, belongs to F and $\left.\left(i_{0}, \ldots, i_{n}\right) \in \mathbb{N}^{\eta}\right)$.

Proof

Let $Q\left(f_{0}, \ldots, f_{n}\right)=0$ for some nonzero polynomial $Q \in F\left[y_{0}, \ldots, y_{n}\right]$. We assume that these monomials are ordered lexicographically with respect to the powers
$\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$. Let
be the "first"monomial appearing in the relation above (here the coefficient $a_{i_{0}, \ldots, i_{n}}$ belongs to F and $\left.\left(i_{0}, \ldots, i_{n}\right) \in \mathbb{N}^{n}\right)$. Without loss of generality we may assume that the coefficient of this monomial is 1 .

Proof

Let $Q\left(f_{0}, \ldots, f_{n}\right)=0$ for some nonzero polynomial $Q \in F\left[y_{0}, \ldots, y_{n}\right]$. We assume that these monomials are ordered lexicographically with respect to the powers
$\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n+1}$. Let

$$
a_{i_{0}, \ldots, i_{n}} f_{0}^{i_{0}} f_{1}^{i_{1}} \ldots f_{n}^{i_{n}}
$$

be the "first"monomial appearing in the relation above (here the coefficient $a_{i_{0}, \ldots, i_{n}}$ belongs to F and $\left.\left(i_{0}, \ldots, i_{n}\right) \in \mathbb{N}^{n}\right)$. Without loss of generality we may assume that the coefficient of this monomial is 1 . Then Q can be written as
$Q=f_{0}^{i_{0}} \ldots f_{n-1}^{i_{n-1}} f_{n}^{i_{n}}+f_{0}^{i_{0}} \ldots f_{n-1}^{i_{n-1}} f_{n}^{1+i_{n}} R_{n}+f_{0}^{i_{0}} \ldots f_{n-1}^{1+i_{n-1}} R_{n-1}+\ldots$

$$
+f_{0}^{i_{0}} f_{1}^{1+i_{1}} R_{1}+f_{0}^{1+i_{0}} R_{0}
$$

where R_{j} belongs to $F\left[f_{j}, f_{j+1}, \ldots, f_{n}\right], j=0,1_{2} \ldots, n$.

Hence Q has been written in the form given by equation 2 (with $a_{j}:=f_{j}$ and $\left.x_{j}:=R_{j}\right)$, that is

$$
f_{0}^{i_{0}}\left(f_{1}^{i_{1}}\left(\cdots\left(f_{n}^{i_{n}}\left(1+f_{n} R_{n}\right)+\cdots\right)\right)+f_{0} R_{0}\right)=0
$$

Hence Q has been written in the form given by equation 2 (with $a_{j}:=f_{j}$ and $\left.x_{j}:=R_{j}\right)$, that is

$$
f_{0}^{i_{0}}\left(f_{1}^{i_{1}}\left(\cdots\left(f_{n}^{i_{n}}\left(1+f_{n} R_{n}\right)+\cdots\right)\right)+f_{0} R_{0}\right)=0
$$

We conclude from Theorem 10, that the Krull dimension of R is at most n.

Theorem

If F is a field then the Krull dimension of $F\left[x_{1}, \ldots, x_{n}\right]$ is n.

Theorem

If F is a field then the Krull dimension of $F\left[x_{1}, \ldots, x_{n}\right]$ is n.

Beweis.

By Perron's Theorem, $R:=F\left[x_{1}, \ldots, x_{n}\right]$ satisfies the assumption of Proposition 11. Hence the Krull dimension of R is less or equal to n.

Theorem

If F is a field then the Krull dimension of $F\left[x_{1}, \ldots, x_{n}\right]$ is n.

Beweis.

By Perron's Theorem, $R:=F\left[x_{1}, \ldots, x_{n}\right]$ satisfies the assumption of Proposition 11. Hence the Krull dimension of R is less or equal to n. But we have the chain of prime ideals

$$
\{0\} \subset I_{R}\left(x_{1}\right) \subset I_{R}\left(x_{1}, x_{2}\right) \subset \cdots \subset I_{R}\left(x_{1}, \ldots, x_{n}\right)
$$

Theorem

If F is a field then the Krull dimension of $F\left[x_{1}, \ldots, x_{n}\right]$ is n.

Beweis.

By Perron's Theorem, $R:=F\left[x_{1}, \ldots, x_{n}\right]$ satisfies the assumption of Proposition 11. Hence the Krull dimension of R is less or equal to n. But we have the chain of prime ideals

$$
\{0\} \subset I_{R}\left(x_{1}\right) \subset I_{R}\left(x_{1}, x_{2}\right) \subset \cdots \subset I_{R}\left(x_{1}, \ldots, x_{n}\right)
$$

Since $\{0\}$ is a prime ideal too, this chain has length n. Thus the Krull dimension of R is n.

[^0]: ${ }^{a}$ In other words, if there is a non-zero polynomial $Q \in F\left[y_{0}, \ldots, y_{n}\right]$ such that $Q\left(f_{0}, \ldots, f_{n}\right)=0$.

