The ring of real-valued multivariate polynomials joint work with R. Rupp

Raymond Mortini Université de Lorraine

Metz

06.05.2013

1	/ 27

R. Mortini

Real polynomials

-

An analyst's perspective

 $\overline{z} := (z_1, \dots, z_n)$ and $\overline{z} := (\overline{z}_1, \dots, \overline{z}_n)$. Associated with $\mathbb{R}[x_1, \dots, x_n]$ is the following algebra of *real-symmetric polynomials*:

$$\mathbb{C}_{\rm sym}[\mathbf{Z}] = \left\{ f \in \mathbb{C}[\mathbf{Z}] : f(\mathbf{Z}) = \overline{f(\overline{\mathbf{Z}})} \ \forall \mathbf{Z} \in \mathbb{C}^n \right\}.$$

< ロ > < 同 > < 回 > < 回 > .

An analyst's perspective

 $\overline{z} := (\overline{z}_1, \dots, \overline{z}_n)$ and $\overline{\overline{z}} := (\overline{z}_1, \dots, \overline{z}_n)$. Associated with $\mathbb{R}[x_1, \dots, x_n]$ is the following algebra of *real-symmetric polynomials*:

$$\mathbb{C}_{\text{sym}}[\boldsymbol{z}] = \left\{ f \in \mathbb{C}[\boldsymbol{z}] : f(\boldsymbol{z}) = \overline{f(\overline{\boldsymbol{z}})} \ \forall \boldsymbol{z} \in \mathbb{C}^n \right\}.$$

 $\mathbb{C}_{\text{sym}}[z_1, \ldots, z_n]$ is a real algebra of complex-valued polynomials that is real-isomorphic to $\mathbb{R}[x_1, \ldots, x_n]$.

An analyst's perspective

 $\overline{z} := (\overline{z}_1, \dots, \overline{z}_n)$ and $\overline{\overline{z}} := (\overline{z}_1, \dots, \overline{z}_n)$. Associated with $\mathbb{R}[x_1, \dots, x_n]$ is the following algebra of *real-symmetric polynomials*:

$$\mathbb{C}_{\text{sym}}[\boldsymbol{z}] = \left\{ f \in \mathbb{C}[\boldsymbol{z}] : f(\boldsymbol{z}) = \overline{f(\overline{\boldsymbol{z}})} \ \forall \boldsymbol{z} \in \mathbb{C}^n \right\}.$$

 $\mathbb{C}_{\text{sym}}[z_1, \dots, z_n]$ is a real algebra of complex-valued polynomials that is real-isomorphic to $\mathbb{R}[x_1, \dots, x_n]$. For $a \in \mathbb{C}^n$ let

$$M_{\boldsymbol{a}} := \{ \boldsymbol{p} \in \mathbb{C}[\boldsymbol{z}_1, \dots, \boldsymbol{z}_n] : \boldsymbol{p}(\boldsymbol{a}) = 0 \}.$$

By Hilbert's Nullstellensatz an ideal in $\mathbb{C}[z_1, \ldots, z_n]$ is maximal if and only if it has the form M_a for some $a \in \mathbb{C}^n$.

Theorem

The class of maximal ideals of $\mathbb{C}_{sym}[z_1, \ldots, z_n]$ coincides with the class of ideals of the form

 $S_a := M_a \cap M_{\overline{a}} \cap \mathbb{C}_{sym}[z_1, \ldots, z_n],$

where $\mathbf{a} \in \mathbb{C}^n$. The set $\{\mathbf{a}, \overline{\mathbf{a}}\}$ is uniquely determined for a given maximal ideal.

э

Theorem

The class of maximal ideals of $\mathbb{C}_{sym}[z_1, \ldots, z_n]$ coincides with the class of ideals of the form

 $S_a := M_a \cap M_{\overline{a}} \cap \mathbb{C}_{sym}[z_1, \ldots, z_n],$

where $\mathbf{a} \in \mathbb{C}^n$. The set $\{\mathbf{a}, \overline{\mathbf{a}}\}$ is uniquely determined for a given maximal ideal.

Note that $M_{\mathbf{a}} \cap M_{\overline{\mathbf{a}}} \cap \mathbb{C}_{\text{sym}}[\mathbf{z}] = M_{\mathbf{a}} \cap \mathbb{C}_{\text{sym}}[\mathbf{z}]$, because for every polynomial p in $\mathbb{C}_{\text{sym}}[\mathbf{z}]$ it holds that $p(\mathbf{a}) = 0$ if and only if $p(\overline{\mathbf{a}}) = 0$.

Beweis.

i) <u>S_a is maximal</u>: to see this, suppose that $f \in \mathbb{C}_{sym}[\mathbf{Z}]$ does not vanish at **a**. Then

 $(f - f(\boldsymbol{a})) (f - \overline{f(\boldsymbol{a})}) = f^2 - (2 \operatorname{Re} f(\boldsymbol{a})) f + |f(\boldsymbol{a})|^2 \in S_{\boldsymbol{a}}$

and

Beweis.

i) <u>S_a is maximal</u>: to see this, suppose that $f \in \mathbb{C}_{sym}[\mathbf{Z}]$ does not vanish at **a**. Then

$$\left(f - f(\boldsymbol{a})\right) \, \left(f - \overline{f(\boldsymbol{a})}\right) = f^2 - \left(2 \mathrm{Re} \; f(\boldsymbol{a})\right) f + |f(\boldsymbol{a})|^2 \in S_{\boldsymbol{a}}$$

and

$$1 = \frac{\left(f - f(\boldsymbol{a})\right) \left(f - \overline{f(\boldsymbol{a})}\right)}{|f(\boldsymbol{a})|^2} - f \frac{f - \left(f(\boldsymbol{a}) + \overline{f(\boldsymbol{a})}\right)}{|f(\boldsymbol{a})|^2}$$

Beweis.

i) <u>S_a is maximal</u>: to see this, suppose that $f \in \mathbb{C}_{sym}[\mathbf{Z}]$ does not vanish at **a**. Then

$$\left(f - f(\boldsymbol{a})\right) \, \left(f - \overline{f(\boldsymbol{a})}\right) = f^2 - \left(2 \mathrm{Re} \, f(\boldsymbol{a})\right) f + |f(\boldsymbol{a})|^2 \in S_{\boldsymbol{a}}$$

and

$$1 = \frac{\left(f - f(\boldsymbol{a})\right) \left(f - \overline{f(\boldsymbol{a})}\right)}{|f(\boldsymbol{a})|^2} - f \frac{f - \left(f(\boldsymbol{a}) + \overline{f(\boldsymbol{a})}\right)}{|f(\boldsymbol{a})|^2}.$$

Hence the ideal, $I_{\mathbb{C}_{sym}[\mathbf{z}]}(S_a, f)$, generated by S_a and f is the whole algebra and so S_a is maximal.

Beweis.

i) $\underline{S_a}$ is maximal: to see this, suppose that $f \in \mathbb{C}_{sym}[\mathbf{Z}]$ does not vanish at \mathbf{a} . Then

$$\left(f - f(\boldsymbol{a})\right) \, \left(f - \overline{f(\boldsymbol{a})}\right) = f^2 - \left(2 \mathrm{Re} \; f(\boldsymbol{a})\right) f + |f(\boldsymbol{a})|^2 \in S_{\boldsymbol{a}}$$

and

$$1 = \frac{\left(f - f(\boldsymbol{a})\right) \left(f - \overline{f(\boldsymbol{a})}\right)}{|f(\boldsymbol{a})|^2} - f \frac{f - \left(f(\boldsymbol{a}) + \overline{f(\boldsymbol{a})}\right)}{|f(\boldsymbol{a})|^2}$$

Hence the ideal, $I_{\mathbb{C}_{\text{sym}}[\mathbf{z}]}(S_{\mathbf{a}}, f)$, generated by $S_{\mathbf{a}}$ and f is the whole algebra and so $S_{\mathbf{a}}$ is maximal. ii) if $f(\mathbf{a})$ is real, we simply could have argued as follows, since

the constant function $\mathbf{z} \mapsto f(\mathbf{a})$ then belongs to $\mathbb{C}_{sym}[\mathbf{z}]$:

$$1 = -\frac{f - f(\mathbf{a})}{f(\mathbf{a})} + \frac{f}{f(\mathbf{a})} \in I_{\mathbb{C}_{\text{sym}}[\mathbf{z}]}(S_{\mathbf{a}}, f).$$

R. Mortini

Real polynomials

200

iii) *M* maximal $\Longrightarrow M = S_a$ for some $a \in \mathbb{C}^n$

æ.

iii) \underline{M} maximal $\implies \underline{M} = \underline{S}_a$ for some $\underline{a} \in \mathbb{C}^n$ Suppose, to the contrary, that \underline{M} is not contained in any ideal of the form \underline{S}_a . Hence, for every $\underline{a} \in \mathbb{C}^n$, there is $\underline{p}_a \in \underline{M}$ such that $\underline{p}_a(\underline{a}) \neq 0$. iii) $\underline{M} \text{ maximal} \Longrightarrow \underline{M} = \underline{S}_{a}$ for some $\underline{a} \in \mathbb{C}^{n}$ Suppose, to the contrary, that \underline{M} is not contained in any ideal of the form \underline{S}_{a} . Hence, for every $\underline{a} \in \mathbb{C}^{n}$, there is $\underline{p}_{a} \in \underline{M}$ such that $\underline{p}_{a}(\underline{a}) \neq 0$. By Hilbert's Nullstellensatz, the ideal generated by the set $\underline{S} = \{\underline{p}_{a} : \underline{a} \in \mathbb{C}^{n}\}$ in $\mathbb{C}[\underline{z}]$ coincides with $\mathbb{C}[\underline{z}]$. iii) $\underline{M} \text{ maximal} \Longrightarrow \underline{M} = \underline{S_a}$ for some $\underline{a} \in \mathbb{C}^n$ Suppose, to the contrary, that \underline{M} is not contained in any ideal of the form $\underline{S_a}$. Hence, for every $\underline{a} \in \mathbb{C}^n$, there is $\underline{p_a} \in \underline{M}$ such that $\underline{p_a}(\underline{a}) \neq 0$. By Hilbert's Nullstellensatz, the ideal generated by the set $S = \{\underline{p_a} : \underline{a} \in \mathbb{C}^n\}$ in $\mathbb{C}[\underline{z}]$ coincides with $\mathbb{C}[\underline{z}]$. Hence there are $q_j \in \mathbb{C}[\underline{z}]$ and finitely many $\underline{a_j} \in \mathbb{C}^n$, (j = 1, ..., N), such that

N

$$\sum_{j=1}^{N} q_j p_{\mathbf{a}_j} = 1.$$

$$\implies 1 = \overline{\sum_{j=1}^{N} q_j(\overline{\mathbf{z}}) p_{\mathbf{a}_j}(\overline{\mathbf{z}})} = \sum_{j=1}^{N} \overline{q_j(\overline{\mathbf{z}})} p_{\mathbf{a}_j}(\mathbf{z}).$$

Hence, with

$$q_j^*(\boldsymbol{z}) = rac{1}{2} ig(\overline{q_j(\boldsymbol{\overline{z}})} + q_j(\boldsymbol{z}) ig),$$

we conclude that

$$\sum_{j=1}^N q_j^* \, \boldsymbol{p}_{\boldsymbol{a}_j} = 1.$$

æ.

Hence, with

$$q_j^*(\boldsymbol{z}) = \frac{1}{2} (\overline{q_j(\boldsymbol{\overline{z}})} + q_j(\boldsymbol{z})),$$

we conclude that

$$\sum_{j=1}^N q_j^* \, \boldsymbol{p}_{\boldsymbol{a}_j} = \boldsymbol{1}.$$

Since $q_j^* \in \mathbb{C}_{sym}[\mathbf{z}]$ and $p_{\mathbf{a}_j} \in M$ we obtain the contradiction that $1 \in M$. Thus $M \subseteq S_{\mathbf{a}}$ for some $\mathbf{a} \in \mathbb{C}^n$. The maximality of M now implies that $M = S_{\mathbf{a}}$.

Generators for the maximal ideals in $\mathbb{R}[x_1, \ldots, x_n]$.

<ロ> <同> <同> < 同> < 同> - < 同> - <

æ.

Generators for the maximal ideals in $\mathbb{R}[x_1, \ldots, x_n]$. By Hilbert's Nullstellensatz the maximal ideals in $\mathbb{C}[z_1, \ldots, z_n]$ are generated by $z_1 - a_1, \ldots, z_n - a_n$, where $a := (a_1, \ldots, a_n) \in \mathbb{C}^n$.

イロン イボン イヨン イヨン

э

Generators for the maximal ideals in $\mathbb{R}[x_1, \ldots, x_n]$. By Hilbert's Nullstellensatz the maximal ideals in $\mathbb{C}[z_1, \ldots, z_n]$ are generated by $z_1 - a_1, \ldots, z_n - a_n$, where $a := (a_1, \ldots, a_n) \in \mathbb{C}^n$. The situation for the real algebra $\mathbb{R}[x_1, \ldots, x_n]$ is quite different. Here are some examples. We identify $\mathbb{R}[x_1, \ldots, x_n]$ with $\mathbb{C}_{sym}[z_1, \ldots, z_n]$.

イロト イポト イラト イラト

Example

(1) Let $\sigma \in \mathbb{C} \setminus \mathbb{R}$ and $r_j \in \mathbb{R}$, j = 1, 2, ..., n - 1. Then the ideal generated by

$$\mathbf{x}_n^2 - (2 \operatorname{Re} \sigma) \mathbf{x}_n + |\sigma|^2 = (\mathbf{x}_n - \sigma)(\mathbf{x}_n - \overline{\sigma})$$

Example

(1) Let $\sigma \in \mathbb{C} \setminus \mathbb{R}$ and $r_j \in \mathbb{R}$, j = 1, 2, ..., n - 1. Then the ideal generated by

$$\mathbf{x}_n^2 - (2\operatorname{Re}\,\sigma)\,\mathbf{x}_n + |\sigma|^2 = (\mathbf{x}_n - \sigma)(\mathbf{x}_n - \overline{\sigma})$$

and $x_j - r_j$, (j = 1, ..., n - 1), is maximal in $\mathbb{R}[x_1, ..., x_n]$. It corresponds to the ideal $S_{(r_1,...,r_{n-1},\sigma)}$. (2) The ideal $I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2)$ generated by $1 + x^2$ and $1 + y^2$ is

Example

(1) Let $\sigma \in \mathbb{C} \setminus \mathbb{R}$ and $r_j \in \mathbb{R}$, j = 1, 2, ..., n - 1. Then the ideal generated by

$$\mathbf{x}_n^2 - (2\operatorname{Re}\,\sigma)\,\mathbf{x}_n + |\sigma|^2 = (\mathbf{x}_n - \sigma)(\mathbf{x}_n - \overline{\sigma})$$

and $x_j - r_j$, (j = 1, ..., n - 1), is maximal in $\mathbb{R}[x_1, ..., x_n]$. It corresponds to the ideal $S_{(r_1,...,r_{n-1},\sigma)}$. (2) The ideal $I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2)$ generated by $1 + x^2$ and $1 + y^2$ is not maximal.

Example

(1) Let $\sigma \in \mathbb{C} \setminus \mathbb{R}$ and $r_j \in \mathbb{R}$, j = 1, 2, ..., n - 1. Then the ideal generated by

$$\mathbf{x}_n^2 - (2 \operatorname{Re} \sigma) \mathbf{x}_n + |\sigma|^2 = (\mathbf{x}_n - \sigma)(\mathbf{x}_n - \overline{\sigma})$$

- (2) The ideal $I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2)$ generated by $1 + x^2$ and $1 + y^2$ is not maximal.
- (3) The ideal $M := I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, 1 + xy, x y)$ is maximal and corresponds to $S_{(i,i)}$. Proof

Example

(1) Let $\sigma \in \mathbb{C} \setminus \mathbb{R}$ and $r_j \in \mathbb{R}$, j = 1, 2, ..., n - 1. Then the ideal generated by

$$\mathbf{x}_n^2 - (2\operatorname{Re}\,\sigma)\,\mathbf{x}_n + |\sigma|^2 = (\mathbf{x}_n - \sigma)(\mathbf{x}_n - \overline{\sigma})$$

- (2) The ideal $I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2)$ generated by $1 + x^2$ and $1 + y^2$ is not maximal.
- (3) The ideal $M := I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, 1 + xy, x y)$ is maximal and corresponds to $S_{(i,i)}$. Proof

(4)
$$M = I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, x - y)$$

 $M = I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, 1 + xy)$

Example

(1) Let $\sigma \in \mathbb{C} \setminus \mathbb{R}$ and $r_j \in \mathbb{R}$, j = 1, 2, ..., n - 1. Then the ideal generated by

$$\mathbf{x}_n^2 - (2 \operatorname{Re} \sigma) \mathbf{x}_n + |\sigma|^2 = (\mathbf{x}_n - \sigma)(\mathbf{x}_n - \overline{\sigma})$$

- (2) The ideal $I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2)$ generated by $1 + x^2$ and $1 + y^2$ is not maximal.
- (3) The ideal $M := I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, 1 + xy, x y)$ is maximal and corresponds to $S_{(i,i)}$. Proof

(4)
$$M = I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, x - y)$$

 $M = I_{\mathbb{R}[x,y]}(1 + x^2, 1 + y^2, 1 + xy)$
 $M = I_{\mathbb{R}[x,y]}(1 + xy, x - y).$

 $I := I_{\mathbb{C}_{\text{sym}}[z,w]}(1 + z^2, 1 + w^2, 1 + zw, z - w)$. Then $I \subseteq S_{(i,i)}$. We need to show that $I = S_{(i,i)}$. To do so, let $f \in S_{(i,i)}$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

э.

 $I := I_{\mathbb{C}_{\text{sym}}[z,w]}(1 + z^2, 1 + w^2, 1 + zw, z - w)$. Then $I \subseteq S_{(i,i)}$. We need to show that $I = S_{(i,i)}$. To do so, let $f \in S_{(i,i)}$. Then

$$f = (z^{2} + 1)q_{1}(z, w) + (w^{2} + 1)q_{2}(z, w) + r(z, w)$$
(1)

for some q_j , $r \in \mathbb{C}_{sym}[z, w]$ with deg_z r < 2 and deg_w r < 2.

9/2

27 R. Mortini	Real polynomials
---------------	------------------

э.

 $I := I_{\mathbb{C}_{\text{sym}}[z,w]}(1 + z^2, 1 + w^2, 1 + zw, z - w)$. Then $I \subseteq S_{(i,i)}$. We need to show that $I = S_{(i,i)}$. To do so, let $f \in S_{(i,i)}$. Then

$$f = (z^{2} + 1)q_{1}(z, w) + (w^{2} + 1)q_{2}(z, w) + r(z, w)$$
(1)

for some q_j , $r \in \mathbb{C}_{\text{sym}}[z, w]$ with $\deg_z r < 2$ and $\deg_w r < 2$. Moreover, r(i, i) = 0. Now r has the form

r(z,w) = a + bz + cw + dzw

for some $(a, b, c, d) \in \mathbb{R}^4$. Hence a + bi + ci - d = 0 from which we deduce that a = d and b = -c.

< ロ > < 同 > < 回 > < 回 > .

 $I := I_{\mathbb{C}_{\text{sym}}[z,w]}(1 + z^2, 1 + w^2, 1 + zw, z - w)$. Then $I \subseteq S_{(i,i)}$. We need to show that $I = S_{(i,i)}$. To do so, let $f \in S_{(i,i)}$. Then

$$f = (z^{2} + 1)q_{1}(z, w) + (w^{2} + 1)q_{2}(z, w) + r(z, w)$$
(1)

for some q_j , $r \in \mathbb{C}_{\text{sym}}[z, w]$ with $\deg_z r < 2$ and $\deg_w r < 2$. Moreover, r(i, i) = 0. Now r has the form

r(z,w) = a + bz + cw + dzw

for some $(a, b, c, d) \in \mathbb{R}^4$. Hence a + bi + ci - d = 0 from which we deduce that a = d and b = -c. Therefore

$$r(z,w) = a(1+zw) + b(z-w).$$

< ロ > < 同 > < 回 > < 回 > .

 $I := I_{\mathbb{C}_{\text{sym}}[z,w]}(1 + z^2, 1 + w^2, 1 + zw, z - w)$. Then $I \subseteq S_{(i,i)}$. We need to show that $I = S_{(i,i)}$. To do so, let $f \in S_{(i,i)}$. Then

$$f = (z^{2} + 1)q_{1}(z, w) + (w^{2} + 1)q_{2}(z, w) + r(z, w)$$
(1)

for some q_j , $r \in \mathbb{C}_{\text{sym}}[z, w]$ with $\deg_z r < 2$ and $\deg_w r < 2$. Moreover, r(i, i) = 0. Now r has the form

$$r(z,w) = a + bz + cw + dzw$$

for some $(a, b, c, d) \in \mathbb{R}^4$. Hence a + bi + ci - d = 0 from which we deduce that a = d and b = -c. Therefore

$$r(z,w) = a(1+zw) + b(z-w).$$

We conclude that

9/27

$$f \in (z^2+1) \mathbb{C}_{\text{sym}}[z,w] + (w^2+1) \mathbb{C}_{\text{sym}}[z,w] + (1+zw) \mathbb{R} + (z-w) \mathbb{R} \subseteq I.$$

R. Mortini	Real polynomials
------------	------------------

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ つへぐ

 $I := I_{\mathbb{C}_{\text{sym}}[z,w]}(1 + z^2, 1 + w^2, 1 + zw, z - w)$. Then $I \subseteq S_{(i,i)}$. We need to show that $I = S_{(i,i)}$. To do so, let $f \in S_{(i,i)}$. Then

$$f = (z^{2} + 1)q_{1}(z, w) + (w^{2} + 1)q_{2}(z, w) + r(z, w)$$
(1)

for some q_j , $r \in \mathbb{C}_{\text{sym}}[z, w]$ with $\deg_z r < 2$ and $\deg_w r < 2$. Moreover, r(i, i) = 0. Now r has the form

$$r(z,w) = a + bz + cw + dzw$$

for some $(a, b, c, d) \in \mathbb{R}^4$. Hence a + bi + ci - d = 0 from which we deduce that a = d and b = -c. Therefore

$$r(z,w) = a(1+zw) + b(z-w).$$

We conclude that

$$f \in (z^2+1) \mathbb{C}_{\text{sym}}[z,w] + (w^2+1) \mathbb{C}_{\text{sym}}[z,w] + (1+zw) \mathbb{R} + (z-w) \mathbb{R} \subseteq I.$$

Thus, in view of the maximality of $S_{(i,i)}$, $S_{(i,i)} = I$. Hence I is maximal

examples

9 / 27	R. Mortini	Real polynomials

500

Theorem

Let $r_j \in \mathbb{R}$, $a_j \in \mathbb{C} \setminus \mathbb{R}$, k + m = n, $\overline{a_j} \notin \{a_1, \dots, a_m\}$ Then the maximal ideal $M = S_{(r_1, \dots, r_k, a_1, \dots, a_m)}$ of $R := \mathbb{R}[x_1, \dots, x_n]$ is generated by the polynomials

Theorem

Let $r_j \in \mathbb{R}$, $a_j \in \mathbb{C} \setminus \mathbb{R}$, k + m = n, $\overline{a_j} \notin \{a_1, \dots, a_m\}$ Then the maximal ideal $M = S_{(r_1, \dots, r_k, a_1, \dots, a_m)}$ of $R := \mathbb{R}[x_1, \dots, x_n]$ is generated by the polynomials

 $p_j := x_j - r_j, \ (j = 1, \ldots, k),$

Theorem

Let $r_j \in \mathbb{R}$, $a_j \in \mathbb{C} \setminus \mathbb{R}$, k + m = n, $\overline{a_j} \notin \{a_1, \dots, a_m\}$ Then the maximal ideal $M = S_{(r_1, \dots, r_k, a_1, \dots, a_m)}$ of $R := \mathbb{R}[x_1, \dots, x_n]$ is generated by the polynomials

 $p_j := x_j - r_j, \ (j = 1, \ldots, k),$

$$p_{k+j} := x_{k+j}^2 - (2 \operatorname{Re} a_j) x_{k+j} + |a_j|^2, \ (j = 1, \dots, m)$$

Theorem

Let $r_j \in \mathbb{R}$, $a_j \in \mathbb{C} \setminus \mathbb{R}$, k + m = n, $\overline{a_j} \notin \{a_1, \dots, a_m\}$ Then the maximal ideal $M = S_{(r_1, \dots, r_k, a_1, \dots, a_m)}$ of $R := \mathbb{R}[x_1, \dots, x_n]$ is generated by the polynomials

 $p_j := x_j - r_j, \ (j = 1, \ldots, k),$

 $p_{k+j} := x_{k+j}^2 - (2 \operatorname{Re} a_j) x_{k+j} + |a_j|^2, \ (j = 1, \dots, m)$

and $2^{n-k} - 2$ multilinear polynomials q_j in $\mathbb{R}[x_{k+1}, \dots, x_n]$ vanshing at a_{k+1}, \dots, a_n .

Theorem

Let $r_j \in \mathbb{R}$, $a_j \in \mathbb{C} \setminus \mathbb{R}$, k + m = n, $\overline{a_j} \notin \{a_1, \dots, a_m\}$ Then the maximal ideal $M = S_{(r_1, \dots, r_k, a_1, \dots, a_m)}$ of $R := \mathbb{R}[x_1, \dots, x_n]$ is generated by the polynomials

 $p_j := x_j - r_j, \ (j = 1, \ldots, k),$

$$p_{k+j} := x_{k+j}^2 - (2 \operatorname{Re} a_j) x_{k+j} + |a_j|^2, \ (j = 1, \dots, m)$$

and $2^{n-k} - 2$ multilinear polynomials q_j in $\mathbb{R}[x_{k+1}, \dots, x_n]$ vanshing at a_{k+1}, \dots, a_n . More precisely, we have

$$M = \sum_{j=1}^{n} p_j(x_j) R + \sum_{j=1}^{2^{n-k}-2} q_j(x_{k+1}, \ldots, x_n) \mathbb{R}.$$

Lemma

Let $\mathbf{i} = (i, \dots, i) \in \mathbb{C}^m$. The a (vector-space) basis of

$$V^* = \left\{ f(\boldsymbol{z}) = \sum_{j_1, \dots, j_m} c_j z_{k+1}^{j_1} \cdots z_{k+m}^{j_m}, \ j_\ell \in \{0, 1\}, \ c_j \in \mathbb{R}, \ f(\boldsymbol{i}) = 0 \right\}$$

is given by

Lemma

Let $\mathbf{i} = (i, \dots, i) \in \mathbb{C}^m$. The a (vector-space) basis of

$$V^* = \left\{ f(\boldsymbol{z}) = \sum_{j_1, \dots, j_m} c_j z_{k+1}^{j_1} \cdots z_{k+m}^{j_m}, \ j_\ell \in \{0, 1\}, \ c_j \in \mathbb{R}, \ f(\boldsymbol{i}) = 0 \right\}$$

is given by

$$\begin{array}{ll} \mathbf{x}_{1} - \mathbf{x}_{j} & 1 < j \leq m \\ 1 + \mathbf{x}_{j_{1}} \, \mathbf{x}_{j_{2}} & 1 \leq j_{1} < j_{2} \leq m \\ \mathbf{x}_{1} + \mathbf{x}_{j_{1}} \, \mathbf{x}_{j_{2}} \, \mathbf{x}_{j_{3}} & 1 \leq j_{1} < j_{2} < j_{3} \leq m \\ 1 - \prod_{\ell=1}^{4} \mathbf{x}_{j_{\ell}} & 1 \leq j_{1} < \cdots < j_{4} \leq m \\ \mathbf{x}_{1} - \prod_{\ell=1}^{5} \mathbf{x}_{j_{\ell}} & 1 \leq j_{1} < \cdots < j_{5} \leq m \end{array}$$

The last element has exactly one of the following forms:

$$\begin{cases} x_1 - \prod_{j=1}^m x_j & \text{if } m \equiv 1 \mod 4\\ 1 + \prod_{j=1}^m x_j & \text{if } m \equiv 2 \mod 4\\ x_1 + \prod_{j=1}^m x_j & \text{if } m \equiv 3 \mod 4\\ 1 - \prod_{j=1}^m x_j & \text{if } m \equiv 0 \mod 4 \end{cases}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Theorem

Let m + k = n, $m \ge 2$, and $\boldsymbol{a} := (i, \dots, i, r_{m+1}, \dots, r_{m+k}) \in \mathbb{C}^m \times \mathbb{R}^k$.

<ロ> <同> <同> < 同> < 同> < □> < □> <

э.

Theorem

Let m + k = n, $m \ge 2$, and $\mathbf{a} := (i, \dots, i, r_{m+1}, \dots, r_{m+k}) \in \mathbb{C}^m \times \mathbb{R}^k$. The maximal ideal $S_{\mathbf{a}}$ of $\mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n]$ is generated by the $2^m - 2$ multilinear polynomials in Lemma 4 and the polynomials $p_{m+j} := \mathbf{x}_{m+j} - r_{m+j}, (j = 1, \dots, k)$.

-

Theorem

Let m + k = n, $m \ge 2$, and $\mathbf{a} := (i, \dots, i, r_{m+1}, \dots, r_{m+k}) \in \mathbb{C}^m \times \mathbb{R}^k$. The maximal ideal $S_{\mathbf{a}}$ of $\mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n]$ is generated by the $2^m - 2$ multilinear polynomials in Lemma 4 and the polynomials $p_{m+j} := \mathbf{x}_{m+j} - r_{m+j}, (j = 1, \dots, k)$.

The general case of an arbitrary maximal ideal S_a is easily deduced by using the transformation

$$\chi(\mathbf{z}_1,\ldots,\mathbf{z}_m)=\left(\frac{\mathbf{z}_1-\alpha_1}{\beta_1},\ldots,\frac{\mathbf{z}_m-\alpha_m}{\beta_m}\right)$$

of \mathbb{C}^m onto \mathbb{C}^m , whenever

$$\mathbf{a} = (\alpha_1 + i\beta_1, \ldots, \alpha_m + i\beta_m, \mathbf{r}_{m+1}, \ldots, \mathbf{r}_{m+k}) \in \mathbb{C}^m \times \mathbb{R}^k \subseteq \mathbb{C}^n,$$

with $\beta_j \neq 0$ for $j = 1, \ldots, m$.

13 / 27	R. Mortini	Real polynomials

ヘロト ヘヨト ヘヨト ヘヨト

Theorem

Let p_1, \ldots, p_{n+1} be polynomials in $F[x_1, \ldots, x_n]$. Then there exists a non-zero polynomial $P \in F[y_1, \ldots, y_{n+1}]$ in n + 1 variables such that

 $P(p_1,\ldots,p_{n+1})=0.$

э.

Theorem

Let p_1, \ldots, p_{n+1} be polynomials in $F[x_1, \ldots, x_n]$. Then there exists a non-zero polynomial $P \in F[y_1, \ldots, y_{n+1}]$ in n + 1 variables such that

 $P(p_1,\ldots,p_{n+1})=0.$

Proof Let $k := 1 + \max_{1 \le j \le n+1} \deg p_j$. For big $L \in \mathbb{N}$, to be determined later, we are looking for $P \in F[y_1, \ldots, y_{n+1}]$ with $0 \le \deg P \le L$ and $P(p_1, \ldots, p_{n+1}) = 0$.

-

Theorem

Let p_1, \ldots, p_{n+1} be polynomials in $F[x_1, \ldots, x_n]$. Then there exists a non-zero polynomial $P \in F[y_1, \ldots, y_{n+1}]$ in n + 1 variables such that

 $P(p_1,\ldots,p_{n+1})=0.$

Proof Let $k := 1 + \max_{1 \le j \le n+1} \deg p_j$. For big $L \in \mathbb{N}$, to be determined later, we are looking for $P \in F[y_1, \ldots, y_{n+1}]$ with $0 \le \deg P \le L$ and $P(p_1, \ldots, p_{n+1}) = 0$. Let V be the vector space of all polynomials p in $F[x_1, \ldots, x_n]$ with $\deg p \le kL$. Then dim $V = \binom{kL+n}{n} =: A(L)$.

< ロ > < 同 > < 回 > < 回 > .

Theorem

Let p_1, \ldots, p_{n+1} be polynomials in $F[x_1, \ldots, x_n]$. Then there exists a non-zero polynomial $P \in F[y_1, \ldots, y_{n+1}]$ in n + 1 variables such that

 $P(p_1,\ldots,p_{n+1})=0.$

Proof Let $k := 1 + \max_{1 \le j \le n+1} \deg p_j$. For big $L \in \mathbb{N}$, to be determined later, we are looking for $P \in F[y_1, \ldots, y_{n+1}]$ with $0 \le \deg P \le L$ and $P(p_1, \ldots, p_{n+1}) = 0$. Let *V* be the vector space of all polynomials *p* in $F[x_1, \ldots, x_n]$ with deg $p \le kL$. Then dim $V = \binom{kL+n}{n} = A(L)$. Consider now the following collection C of (wlog distinct) polynomials:

< 同 > < 回 > < 回 > -

э

 $p_1^{j_1} \dots p_{n+1}^{j_{n+1}} : j_i \in \mathbb{N}, \ \sum_{i=1}^{n+1} j_i \leq L$

æ.

$$p_1^{j_1} \dots p_{n+1}^{j_{n+1}} : j_i \in \mathbb{N}, \ \sum_{i=1}^{n+1} j_i \leq L$$

Note that each of the $B(L) := \binom{L+n+1}{n+1}$ members of C belongs to V, because for $p \in C$,

$$\deg p \leq k(j_1 + \cdots + j_{n+1}) \leq kL.$$

э

$$p_1^{j_1} \dots p_{n+1}^{j_{n+1}} : j_i \in \mathbb{N}, \ \sum_{i=1}^{n+1} j_i \leq L$$

Note that each of the $B(L) := \binom{L+n+1}{n+1}$ members of C belongs to V, because for $p \in C$,

$$\deg p \leq k(j_1 + \cdots + j_{n+1}) \leq kL.$$

Then card C = B(L). Note also that $C \subseteq V$.

$$p_1^{j_1} \dots p_{n+1}^{j_{n+1}} : j_i \in \mathbb{N}, \ \sum_{i=1}^{n+1} j_i \leq L$$

Note that each of the $B(L) := \binom{L+n+1}{n+1}$ members of C belongs to V, because for $p \in C$,

$$\deg p \leq k(j_1 + \cdots + j_{n+1}) \leq kL.$$

Then card C = B(L). Note also that $C \subseteq V$. We claim that B(L) > A(L) for some *L* (depending on *n*). In fact, looking upon B(L) and A(L) as polynomials in *L*, we have that deg B = n + 1 and deg A = n. Thus, for large *L*, we obtain that B(L) > A(L).

Thus the cardinal of set C is strictly bigger than the dimension of the vector space V it belongs to. Hence C is a linear dependent set in V. In other words, there is a linear combination of the elements from S that is identically zero. This implies that there is a nonzero polynomial $P \in F[y_1, \ldots, y_{n+1}]$ of degree at most L such that $P(p_1, \ldots, p_{n+1}) = 0$.

Definition

Let *R* be a commutative unital ring with identity element 1.

An *n*-tuple (f₁,..., f_n) ∈ Rⁿ is said to be *invertible* (or *unimodular*), if there exists (x₁,..., x_n) ∈ Rⁿ such that the Bézout equation ∑_{i=1}ⁿ x_if_i = 1 is satisfied.

Definition

Let *R* be a commutative unital ring with identity element 1.

An *n*-tuple (f₁,..., f_n) ∈ Rⁿ is said to be *invertible* (or *unimodular*), if there exists (x₁,..., x_n) ∈ Rⁿ such that the Bézout equation ∑_{j=1}ⁿ x_jf_j = 1 is satisfied. The set of all invertible *n*-tuples is denoted by U_n(R). Note that U₁(R) = R⁻¹.

Definition

Let *R* be a commutative unital ring with identity element 1.

An *n*-tuple (f₁,..., f_n) ∈ Rⁿ is said to be *invertible* (or *unimodular*), if there exists (x₁,..., x_n) ∈ Rⁿ such that the Bézout equation ∑_{j=1}ⁿ x_jf_j = 1 is satisfied. The set of all invertible *n*-tuples is denoted by U_n(R). Note that U₁(R) = R⁻¹. An (n + 1)-tuple (f₁,..., f_n, g) ∈ U_{n+1}(R) is called *reducible* if there exists (a₁,..., a_n) ∈ Rⁿ such that (f₁ + a₁g,..., f_n + a_ng) ∈ U_n(R).

Definition

Let *R* be a commutative unital ring with identity element 1.

- An *n*-tuple (f₁,..., f_n) ∈ Rⁿ is said to be *invertible* (or *unimodular*), if there exists (x₁,..., x_n) ∈ Rⁿ such that the Bézout equation ∑_{j=1}ⁿ x_jf_j = 1 is satisfied. The set of all invertible *n*-tuples is denoted by U_n(R). Note that U₁(R) = R⁻¹. An (n + 1)-tuple (f₁,..., f_n, g) ∈ U_{n+1}(R) is called *reducible* if there exists (a₁,..., a_n) ∈ Rⁿ such that (f₁ + a₁g,..., f_n + a_ng) ∈ U_n(R).
- (2) The Bass stable rank of *R*, denoted by bsr *R*, is the smallest integer *n* such that every element in $U_{n+1}(R)$ is reducible. If no such *n* exists, then bsr $R = \infty$.

Definition

Let *R* be a commutative unital ring with identity element 1.

- An *n*-tuple (f₁,..., f_n) ∈ Rⁿ is said to be *invertible* (or *unimodular*), if there exists (x₁,..., x_n) ∈ Rⁿ such that the Bézout equation ∑_{j=1}ⁿ x_jf_j = 1 is satisfied. The set of all invertible *n*-tuples is denoted by U_n(R). Note that U₁(R) = R⁻¹. An (n + 1)-tuple (f₁,..., f_n, g) ∈ U_{n+1}(R) is called *reducible* if there exists (a₁,..., a_n) ∈ Rⁿ such that (f₁ + a₁g,..., f_n + a_ng) ∈ U_n(R).
- (2) The Bass stable rank of *R*, denoted by bsr *R*, is the smallest integer *n* such that every element in $U_{n+1}(R)$ is reducible. If no such *n* exists, then bsr $R = \infty$.

Note that if bsr R = n, $n < \infty$, and $m \ge n$, then every invertible (m + 1)-tuple $(f, g) \in R^{m+1}$ is reducible.

Theorem (Vasershtein)

bsr $\mathbb{R}[x_1,\ldots,x_n] = n+1$.

・ロ・・ (日・・ (日・・ (日・))

э.

Theorem (Vasershtein)

bsr $\mathbb{R}[x_1,\ldots,x_n] = n+1$.

Proof bsr $\mathbb{R}[x_1, \ldots, x_n] \ge n+1$. Consider the invertible (n+1)-tuple $(x_1, \ldots, x_n, 1 - \sum_{j=1}^n x_j^2)$ in $\mathbb{R}[x_1, \ldots, x_n]$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

э.

Theorem (Vasershtein)

bsr $\mathbb{R}[x_1,\ldots,x_n] = n+1$.

Proof bsr $\mathbb{R}[x_1,\ldots,x_n] \ge n+1$.

Consider the invertible (n + 1)-tuple $(x_1, ..., x_n, 1 - \sum_{j=1}^n x_j^2)$ in $\mathbb{R}[x_1, ..., x_n]$. This tuple cannot be reducible in $\mathbb{R}[x_1, ..., x_n] \subseteq C(\mathbb{R}^n, \mathbb{R})$, since otherwise the *n*-tuple $(x_1, ..., x_n)$, restricted to the unit sphere $\partial \mathscr{B}$ in \mathbb{R}^n , would have a zero-free extension **e** to \mathscr{B} , where **e** is given by

$$\left(x_1 + u_1 \cdot (1 - \sum_{j=1}^n x_j^2), \dots, x_n + u_n \cdot (1 - \sum_{j=1}^n x_j^2)\right)$$
some $u_j \in \mathbb{R}[x_1, \dots, x_n]$.

for

This contradicts Brouwer's result that the identity map

 $(x_1,\ldots,x_n):\partial\mathscr{B}\to\partial\mathscr{B}$

defined on the boundary of the closed unit ball \mathscr{B} in \mathbb{R}^n does not admit a zero-free continuous extension to \mathscr{B} .

Next we prove that bsr $\mathbb{R}[x_1, \ldots, x_n] \leq n + 1$.

э.

Next we prove that bsr $\mathbb{R}[x_1, \ldots, x_n] \leq n + 1$.

This follows from a combination of Bass Theorem telling us that the Bass stable rank of a Noetherian ring with Krull dimension n is less than or equal to n + 1, and Theorem below, according to which the Krull dimension of $\mathbb{R}[x_1, \ldots, x_n]$ is n.

Definition

Let *R* be a commutative unital ring, $R \neq \{0\}$.

(1) A chain $\mathfrak{C} = \{l_0, l_1, \dots, l_n\}$ of ideals in *R* is said to have *length n* if

 $I_0 \subset I_1 \subset \cdots \subset I_n,$

the inclusions being strict.

22 / 27		

Definition

Let *R* be a commutative unital ring, $R \neq \{0\}$.

(1) A chain $\mathfrak{C} = \{l_0, l_1, \dots, l_n\}$ of ideals in *R* is said to have *length n* if

 $I_0 \subset I_1 \subset \cdots \subset I_n,$

the inclusions being strict.

(2) The *Krull dimension* of *R* is defined to be the supremum of the lengths of all increasing chains of prime ideals

 $P_0 \subset \cdots \subset P_n$.

Theorem (Coquand-Lombardi)

Let **R** be a commutative unital ring, $R \neq \{0\}$. The following assertions are equivalent:

Theorem (Coquand-Lombardi)

Let **R** be a commutative unital ring, $R \neq \{0\}$. The following assertions are equivalent:

(1) The Krull dimension of R is at most N.

Theorem (Coquand-Lombardi)

Let **R** be a commutative unital ring, $R \neq \{0\}$. The following assertions are equivalent:

- (1) The Krull dimension of R is at most N.
- (2) For all $(a_0, \ldots, a_N) \in \mathbb{R}^{N+1}$ there exists $(x_0, \ldots, x_N) \in \mathbb{R}^{N+1}$ and $(n_0, \ldots, n_N) \in \mathbb{N}^{N+1}$ such that

$$a_0^{n_0}\left(a_1^{n_1}\left(\cdots\left(a_N^{n_N}(1+a_Nx_N)+\cdots\right)\right)+a_0x_0\right)=0,$$
 (2)

Theorem (Coquand-Lombardi)

Let **R** be a commutative unital ring, $R \neq \{0\}$. The following assertions are equivalent:

- (1) The Krull dimension of R is at most N.
- (2) For all $(a_0, \ldots, a_N) \in \mathbb{R}^{N+1}$ there exists $(x_0, \ldots, x_N) \in \mathbb{R}^{N+1}$ and $(n_0, \ldots, n_N) \in \mathbb{N}^{N+1}$ such that

$$a_0^{n_0}\left(a_1^{n_1}\left(\cdots\left(a_N^{n_N}(1+a_Nx_N)+\cdots\right)\right)+a_0x_0\right)=0,$$
 (2)

in other words

$$L_0 \circ \cdots \circ L_N(1) = 0, \tag{3}$$

where for $a, x \in R$ and $n \in \mathbb{N}$, $L_{a,n,x}(y) = a^n(y + ax)$. If

Proposition (Coquand-Lombardi)

Let *F* be a field and $R \neq \{0\}$ a commutative unital algebra over *F*. If any (n + 1)-tupel $(f_0, \ldots, f_n) \in R^{n+1}$ is algebraically dependent over *F*,

Proposition (Coquand-Lombardi)

Let *F* be a field and $R \neq \{0\}$ a commutative unital algebra over *F*. If any (n+1)-tupel $(f_0, \ldots, f_n) \in \mathbb{R}^{n+1}$ is algebraically dependent over *F*, ^a then the Krull dimension of *R* is at most *n*.

^aIn other words, if there is a non-zero polynomial $Q \in F[y_0, ..., y_n]$ such that $Q(f_0, ..., f_n) = 0$.

Proof

Let $Q(f_0, \ldots, f_n) = 0$ for some nonzero polynomial $Q \in F[y_0, \ldots, y_n]$.

・ロ・・ (型・・ (目・・)

э.

Proof

Let $Q(f_0, \ldots, f_n) = 0$ for some nonzero polynomial $Q \in F[y_0, \ldots, y_n]$. We assume that these monomials are ordered lexicographically with respect to the powers $(i_0, i_1, \ldots, i_n) \in \mathbb{N}^{n+1}$.

Proof

Let $Q(f_0, \ldots, f_n) = 0$ for some nonzero polynomial $Q \in F[y_0, \ldots, y_n]$. We assume that these monomials are ordered lexicographically with respect to the powers $(i_0, i_1, \ldots, i_n) \in \mathbb{N}^{n+1}$. Let

$a_{i_0,\ldots,i_n}f_0^{i_0}f_1^{i_1}\ldots f_n^{i_n}$

be the "first" monomial appearing in the relation above (here the coefficient $a_{i_0,...,i_n}$ belongs to F and $(i_0,...,i_n) \in \mathbb{N}^n$).

Proof

Let $Q(f_0, \ldots, f_n) = 0$ for some nonzero polynomial $Q \in F[y_0, \ldots, y_n]$. We assume that these monomials are ordered lexicographically with respect to the powers $(i_0, i_1, \ldots, i_n) \in \mathbb{N}^{n+1}$. Let

$a_{i_0,\ldots,i_n}f_0^{i_0}f_1^{i_1}\ldots f_n^{i_n}$

be the "first" monomial appearing in the relation above (here the coefficient $a_{i_0,...,i_n}$ belongs to F and $(i_0,...,i_n) \in \mathbb{N}^n$). Without loss of generality we may assume that the coefficient of this monomial is 1.

Proof

Let $Q(f_0, \ldots, f_n) = 0$ for some nonzero polynomial $Q \in F[y_0, \ldots, y_n]$. We assume that these monomials are ordered lexicographically with respect to the powers $(i_0, i_1, \ldots, i_n) \in \mathbb{N}^{n+1}$. Let

$a_{i_0,\ldots,i_n}f_0^{i_0}f_1^{i_1}\ldots f_n^{i_n}$

be the "first" monomial appearing in the relation above (here the coefficient $a_{i_0,...,i_n}$ belongs to F and $(i_0,...,i_n) \in \mathbb{N}^n$). Without loss of generality we may assume that the coefficient of this monomial is 1. Then Q can be written as

$$Q = f_0^{i_0} \dots f_{n-1}^{i_{n-1}} f_n^{i_n} + f_0^{i_0} \dots f_{n-1}^{i_{n-1}} f_n^{1+i_n} R_n + f_0^{i_0} \dots f_{n-1}^{1+i_{n-1}} R_{n-1} + \dots + f_0^{i_0} f_1^{1+i_1} R_1 + f_0^{1+i_0} R_0$$

where R_j belongs to $F[f_j, f_{j+1}, \ldots, f_n], j = 0, 1, \ldots, n$.

Hence Q has been written in the form given by equation 2 (with $a_j := f_j$ and $x_j := R_j$), that is

$$f_0^{i_0}\left(f_1^{i_1}\left(\cdots\left(f_n^{i_n}(1+f_nR_n)+\cdots\right)\right)+f_0R_0\right)=0.$$

э

Hence Q has been written in the form given by equation 2 (with $a_j := f_j$ and $x_j := R_j$), that is

$$f_0^{i_0}\left(f_1^{i_1}\left(\cdots\left(f_n^{i_n}(1+f_nR_n)+\cdots\right)\right)+f_0R_0\right)=0.$$

We conclude from Theorem 10, that the Krull dimension of R is at most n.

Theorem

If **F** is a field then the Krull dimension of $F[x_1, \ldots, x_n]$ is **n**.

æ.

Theorem

If **F** is a field then the Krull dimension of $F[x_1, \ldots, x_n]$ is **n**.

Beweis.

By Perron's Theorem, $R := F[x_1, ..., x_n]$ satisfies the assumption of Proposition 11. Hence the Krull dimension of R is less or equal to n.

- E

Theorem

If **F** is a field then the Krull dimension of $F[x_1, \ldots, x_n]$ is **n**.

Beweis.

By Perron's Theorem, $R := F[x_1, ..., x_n]$ satisfies the assumption of Proposition 11. Hence the Krull dimension of *R* is less or equal to *n*. But we have the chain of prime ideals

 $\{0\} \subset I_{\mathcal{R}}(x_1) \subset I_{\mathcal{R}}(x_1, x_2) \subset \cdots \subset I_{\mathcal{R}}(x_1, \ldots, x_n).$

Theorem

If **F** is a field then the Krull dimension of $F[x_1, \ldots, x_n]$ is **n**.

Beweis.

By Perron's Theorem, $R := F[x_1, ..., x_n]$ satisfies the assumption of Proposition 11. Hence the Krull dimension of R is less or equal to n. But we have the chain of prime ideals

 $\{0\} \subset I_R(x_1) \subset I_R(x_1, x_2) \subset \cdots \subset I_R(x_1, \ldots, x_n).$

Since $\{0\}$ is a prime ideal too, this chain has length *n*. Thus the Krull dimension of *R* is *n*.

< ロ > < 回 > < 回 > < 回 > < 回 > <