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An analyst’s perspective

z:=(z1,....,zn)and z := (Z1,...,Zn). Associated with
R[X1,...,Xn] is the following algebra of real-symmetric
polynomials:

Coymlz] = {f € Clz]: f(z) =f(Z) vz € C" }
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An analyst’s perspective

z:=(z1,....,zn)and z := (Z1,...,Zn). Associated with
R[X1,...,Xn] is the following algebra of real-symmetric
polynomials:

Coymlz] = {f € Clz]: f(z) =f(Z) vz € C" }

Csym[Z1. ..., zn] is a real algebra of complex-valued polynomials
that is real-isomorphic to R[xy, ..., Xp].
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2127

An analyst’s perspective

z:=(z1,....,zn)and z := (Z1,...,Zn). Associated with
R[X1,...,Xn] is the following algebra of real-symmetric
polynomials:

Coymlz] = {f € Clz]: f(z) =f(Z) vz € C" }

Csym[Z1. ..., zn] is a real algebra of complex-valued polynomials
that is real-isomorphic to R[xy,...,Xn]. Fora € C" let

Ma :={p € Clzy,...,zn] : p(a) = 0}.

By Hilbert's Nullstellensatz an ideal in C|[zy, . .., z,] is maximal if
and only if it has the form M, for some a € C".
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Maximal ideals

Theorem

The class of maximal ideals of Csym[z1, ..., ] coincides with
the class of ideals of the form

Sa = Ma ﬁ Ma ﬁ Csym[Zl7 PPN ,Zn]7

where a € C". The set {a, a} is uniquely determined for a given
maximal ideal.
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Maximal ideals

Theorem

The class of maximal ideals of Csym[z1, ..., ] coincides with
the class of ideals of the form

Sa = Ma ﬁ Ma ﬁ Csym[Zl7 PPN ,Zn]7

where a € C". The set {a, a} is uniquely determined for a given
maximal ideal.

Note that Ma N Mgz N Csym[z] = Ma N Csym(z], because for every
polynomial p in Csym[z] it holds that p(a) = O if and only if
p(a) = 0.
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Maximal ideals

Beweis.

i) Sa Is maximal:
to see this, suppose that f € Csym[z] does not vanish at a. Then

(f —f(a)) (f —f(a)) =%~ (2Ref(a)) f +|f(a)® € Sa

and
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Maximal ideals

Beweis.

i) Sa Is maximal:
to see this, suppose that f € Csym[z] does not vanish at a. Then

(f —f(a)) (f —f(a)) =%~ (2Ref(a)) f +|f(a)® € Sa

and

(f - f(2) (f ~T(2)
f(a)? f(@)?

1=
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Maximal ideals

Beweis.

i) Sa Is maximal:
to see this, suppose that f € Csym[z] does not vanish at a. Then

(f —f(a)) (f —f(a)) =%~ (2Ref(a)) f +|f(a)® € Sa

and

(@) (f-f@) f-(f(a)+f(a)

f(a)[? f(a)

Hence the ideal, I¢,, [,)(Sa, ), generated by S, and f is the
whole algebra and so S; is maximal.
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Maximal ideals

Beweis.

i) Sa Is maximal:
to see this, suppose that f € Csym[z] does not vanish at a. Then

(f —f(a)) (f —f(a)) =%~ (2Ref(a)) f +|f(a)® € Sa

and

(@) (f-f@) f-(f(a)+f(a)

f(a)l? f(a)l?
Hence the ideal, I¢,, [,)(Sa, ), generated by S, and f is the
whole algebra and so S; is maximal.
i) if f (a) is real, we simply could have argued as follows, since
the constant function z — f(a) then belongs to Csym[z]:

ff(a) | f

f(a) * f(a) € legniz)(Sa, ).
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Maximal ideals

i) M maximal — M = S, for some a € C"
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i) M maximal — M = S, for some a € C" Suppose, to the
contrary, that M is not contained in any ideal of the form S,.
Hence, for every a € C", there is p, € M such that pa(a) # 0.
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5127

i) M maximal — M = S, for some a € C" Suppose, to the
contrary, that M is not contained in any ideal of the form S,.
Hence, for every a € C", there is p, € M such that pa(a) # 0.
By Hilbert’'s Nullstellensatz, the ideal generated by the set

S = {pa :a € C"}in C[z] coincides with C[z].
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i) M maximal — M = S, for some a € C" Suppose, to the
contrary, that M is not contained in any ideal of the form S,.
Hence, for every a € C", there is p, € M such that pa(a) # 0.
By Hilbert’'s Nullstellensatz, the ideal generated by the set

S = {pa :a € C"}in C[z] coincides with C[z]. Hence there are
g; € C[z] and finitely many a; € C", (j = 1,...,N), such that
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Hence , with

we conclude that

N
qu* paj =1
=1
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Hence , with

we conclude that
N
Z Oj Pa; = 1.
=1

Since qj* € Csym[z] and Pa, € M we obtain the contradiction that
1€ M. Thus M C S, for some a € C". The maximality of M now
implies that M = S;.
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Maximal ideals

Generators for the maximal ideals in R[x1, ..., X].
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Maximal ideals

Generators for the maximal ideals in R[xy,
Nullstellensatz the maximal ideals in C[z;,
generated by z;, — a,,...,z, — an, where
a:=(ag,...,an) € C".

R. Mortini

..., Xp]. By Hilbert’s
...,Zn| are
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Maximal ideals

7127

Generators for the maximal ideals in R[xy, ..., Xp]. By Hilbert’s
Nullstellensatz the maximal ideals in C[z;, ..., z,] are
generated by z;, — a,,...,z, — an, where

a:=(as,...,an) € C".The situation for the real algebra

R[x1,...,Xn] is quite different. Here are some examples. We
identify R[X1, ..., Xn] With Csym[z1, ..., Zn].
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Maximal ideals

(1) Letc cC\Randrj €R,j=1,2,...,n— 1. Then the ideal
generated by

x2 — (2Rec) Xy + |02 = (Xn — 0)(Xn — 7)

andx; —rj, (j =1,...,n— 1), is maximal in R[xq, ..., Xp]. It
corresponds to the ideal S,

7...7rn7170')'
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Maximal ideals

(1) Letc cC\Randrj €R,j=1,2,...,n— 1. Then the ideal
generated by

x2 — (2Rec) Xy + |02 = (Xn — 0)(Xn — 7)

andx; —rj, (j =1,...,n— 1), is maximal in R[xq, ..., Xp]. It
corresponds to the ideal S, . | ).

(2) The ideal Igy y;(1 + x?,1 +y?) generated by 1 + x? and
1+vy?is
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Maximal ideals

(1) Letc cC\Randrj €R,j=1,2,...,n— 1. Then the ideal
generated by

x2 — (2Rec) Xy + |02 = (Xn — 0)(Xn — 7)

andx; —rj, (j =1,...,n— 1), is maximal in R[xq, ..., Xp]. It
corresponds to the ideal S, . | ).

(2) The ideal Igy y;(1 + x?,1 +y?) generated by 1 + x? and
1 4 y? is not maximal.
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Maximal ideals

(1) Letc cC\Randrj €R,j=1,2,...,n— 1. Then the ideal
generated by

x2 — (2Rec) Xy + |02 = (Xn — 0)(Xn — 7)

andx; —rj, (j =1,...,n— 1), is maximal in R[xq, ..., Xp]. It
corresponds to the ideal S, . | ).
(2) The ideal Igy y;(1 + x?,1 +y?) generated by 1 + x? and
1 4 y? is not maximal.
(3) Theideal M := Igpy y)(1 + X%, 14+ Y2, 1+Xxy,x —y)is
maximal and corresponds to S ;).
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Maximal ideals

(1) Letc cC\Randrj €R,j=1,2,...,n— 1. Then the ideal
generated by

x2 — (2Rec) Xy + |02 = (Xn — 0)(Xn — 7)

andx; —rj, (j =1,...,n— 1), is maximal in R[xq, ..., Xp]. It
corresponds to the ideal S, . | ).
(2) The ideal Igy y;(1 + x?,1 +y?) generated by 1 + x? and
1 4 y? is not maximal.
(3) Theideal M := Igpy y)(1 + X%, 14+ Y2, 1+Xxy,x —y)is
maximal and corresponds to S ;).
(4) M= I[R[x,y](:L + XZ» 1+ y27X - y)
M = Igpyp (1 +x2,1+y% 1 +xy)
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Maximal ideals

(1) Letc cC\Randrj €R,j=1,2,...,n— 1. Then the ideal
generated by

x2 — (2Rec) Xy + |02 = (Xn — 0)(Xn — 7)

andx; —rj, (j =1,...,n— 1), is maximal in R[xq, ..., Xp]. It
corresponds to the ideal S, . | ).
(2) The ideal Igy y;(1 + x?,1 +y?) generated by 1 + x? and
1 4 y? is not maximal.
(3) Theideal M := Igpy y)(1 + X%, 14+ Y2, 1+Xxy,x —y)is
maximal and corresponds to S ;).
(4) M= I[R[x,y](:L + XZ» 1+ y27X - y)
M = Igpyp (1 +x2,1+y% 1 +xy)
M = gy (1 + Xy, X —y).
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| = legmzw (1 + 2%, 1+w? 1+2zw,z —w). Then | C S; ;). We need to show
that| = S ;). Todo so, letf € S ;.
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Maximal ideals

| = legmzw (1 + 2%, 1+w? 1+2zw,z —w). Then | C S; ;). We need to show
that| = S ). Todo so, letf € S ;). Then

f = (2" 4+ 1)01(z,w) + (W? + 1)z, W) +r(z,w) (1)

for some qj,r € Csym[z, W] with deg, r < 2 and deg,, r < 2.
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Maximal ideals

| = legmzw (1 + 2%, 1+w? 1+2zw,z —w). Then | C S; ;). We need to show
that| = S ). Todo so, letf € S ;). Then

f = (2" 4+ 1)01(z,w) + (W? + 1)z, W) +r(z,w) (1)

for some qj,r € Csym[z, W] with deg, r < 2 and deg,, r < 2.
Moreover, r(i,i) = 0. Now r has the form

r(z,w)=a+bz +cw +dzw

for some (a,b,c,d) € R*. Hence a + bi + ci —d = 0 from which we deduce
thata =d and b = —c.
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Maximal ideals

| = legmzw (1 + 2%, 1+w? 1+2zw,z —w). Then | C S; ;). We need to show
that| = S ). Todo so, letf € S ;). Then

f = (2" 4+ 1)01(z,w) + (W? + 1)z, W) +r(z,w) (1)

for some qj,r € Csym[z, W] with deg, r < 2 and deg,, r < 2.
Moreover, r(i,i) = 0. Now r has the form

r(z,w)=a+bz +cw +dzw

for some (a,b,c,d) € R*. Hence a + bi + ci —d = 0 from which we deduce
thata = d and b = —c. Therefore

r(z,w)=a(l+zw)+b(z —w).

R. Mortini Real polynomials



9127

Maximal ideals

| = legmzw (1 + z?,1+w? 1+2zw,z —w). Then | C S; ;). We need to show
that | = S ;). Todo so, letf € S;; ;). Then

f = (2" 4+ 1)01(z,w) + (W? + 1)z, W) +r(z,w) (1)

for some qj,r € Csym[z, W] with deg, r < 2 and deg,, r < 2.
Moreover, r(i,i) = 0. Now r has the form

r(z,w)=a+bz +cw +dzw

for some (a,b,c,d) € R*. Hence a + bi + ci — d = 0 from which we deduce
thata = d and b = —c. Therefore

r(z,w)=a(l+zw)+b(z —w).
We conclude that

f e (z2°+1) Coymlz, W] + (W? + 1) Cym[z, W] + (L +2W) R+ (z —W) R C I.
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Maximal ideals

| = legmzw (1 + 2%, 1+w? 1+2zw,z —w). Then | C S; ;). We need to show
that| = S ). Todo so, letf € S ;). Then

f = (2" 4+ 1)01(z,w) + (W? + 1)z, W) +r(z,w) (1)

for some qj,r € Csym[z, W] with deg, r < 2 and deg,, r < 2.
Moreover, r(i,i) = 0. Now r has the form

r(z,w)=a+bz +cw +dzw

for some (a,b,c,d) € R*. Hence a + bi + ci —d = 0 from which we deduce
thata = d and b = —c. Therefore

r(z,w)=a(l+zw)+b(z —w).
We conclude that
f € (22 +1) Coymlz, W] + (W? + 1) Coym[z, W] + (L +2W) R+ (z —W) R C I.

Thus, in view of the maximality of S ;), S(; iy = |. Hence | is maximal
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Maximal ideals

Theorem

Letric R, c C\R,k+m=n,a ¢ {ay,...,am}
Then the maximal ideal M = S, 1 a, . a.) Of
R := R[x4,...,Xq] is generated by the polynomials
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Maximal ideals

Theorem

Letric R, c C\R,k+m=n,a ¢ {ay,...,am}
Then the maximal ideal M = S, 1 a, . a.) Of
R := R[x4,...,Xq] is generated by the polynomials

Pj =X — 1, (J:]—«vk)q
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Maximal ideals

Theorem

Letric R, c C\R,k+m=n,a ¢ {ay,...,am}
Then the maximal ideal M = S, 1 a, . a.) Of
R := R[x4,...,Xq] is generated by the polynomials

Pj =X — 1, (J:]—«vk)q

Pk+j = Xfﬂ' — (2Red)) Xy + &%, (i=1,...,m)
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Maximal ideals

Theorem

Letric R, c C\R,k+m=n,a ¢ {ay,...,am}
Then the maximal ideal M = S, 1 a, . a.) Of
R := R[x4,...,Xq] is generated by the polynomials

Pj =X — 1, (J:]—«vk)q

Pk+j = Xfﬂ' — (2Red)) Xy + &%, (i=1,...,m)

and 2"K — 2 multilinear polynomials qj in R[Xk41,. .-, Xn]
vanshing at ay 1,...,an.
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Maximal ideals

Theorem

Letric R, c C\R,k+m=n,a ¢ {ay,...,am}
Then the maximal ideal M = S, 1 a, . a.) Of
R := R[x4,...,X,] is generated by the polynomlals

Pj =X — 1, (J:]—«vk)q

2 2 (i
Pk+j == Xk+j 7(2Reaj)xk+j + ‘aJ| ) (J = 17‘-~7m)
and 2"K — 2 multilinear polynomials qj in R[Xk41,. .-, Xn]
vanshing at ay .1, ..., a,. More precisely, we have
=2

M = ij X)R + Z 0y (%11, - - -, Xn) R.
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Lemma

Leti =(i,...,i) € C™. The a (vector-space) basis of

vi={i@)= Y gzl 2 i €{0,1}, G € R, F(i) =0
Iilgreos

..... im

is given by
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v ={i(z) = ) G2l A € (0.1}, G R, £() =0

is given by
X1 — X 1<j<m

14+x,%, 1<ji<jz<m
X1—|-XJ'1XJ'2XJ'3 1§j1<j2<j3§m

4
1_ijé 1§j1<---<j4§m
=il

5
x1—[[x 1<h<--<js<m
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The last element has exactly one of the following forms:

12/27

X1 — Hjm:l X]
1 + Hjm:1 X]
X1 + Hjnll X]
1 - Hjmzl Xj

R. Mortini

fm=1
ifm=2
ifm=3
ifm=0

mod 4
mod 4
mod 4
mod 4

Real polynomials



Maximal ideals

Letm+k =n, m > 2, and
a:= (ia'-'-/iarerla---arm_t,_k)E(DmX[Rk.
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Theorem

Letm+k =n,m > 2, and

a:=(i,....1,Imy1, ..., fmek) € C™ x R¥. The maximal ideal S,
of R[X1, ..., Xn] is generated by the 2™ — 2 multilinear
polynomials in Lemma 4 and the polynomials
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Maximal ideals

Theorem

Letm+k =n,m > 2, and

a:=(i,....1,Imy1, ..., fmek) € C™ x R¥. The maximal ideal S,
of R[X1, ..., Xn] is generated by the 2™ — 2 multilinear
polynomials in Lemma 4 and the polynomials

v

The general case of an arbitrary maximal ideal S, is easily deduced by using
the transformation

Z1 — Q1 Zm — Qm
Z1,...,2 =
Moz = (250, B e

of C™ onto C™, whenever

a=(c1+iB1,...,am+iBm,Mmi1,...,Mmx) € CT x RC C C",
with g #0forj=1,...,m.
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Perron’s Theorem

Theorem

Let p1,...,pnr1 be polynomials in F[xy, ..., Xx,]|. Then there
exists a non-zero polynomial P € Fly1,....yh1]inn+1
variables such that
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Perron’s Theorem

Theorem

Let p1,...,pnr1 be polynomials in F[xy, ..., Xx,]|. Then there
exists a non-zero polynomial P € Fly1,....yh1]inn+1
variables such that

Proof Letk := 1 4 max;<j<n41 degp;. Forbig L € N, to be
determined later, we are looking for P € F[ys,...,yn.1] with
0 <degP <LandP(p1,...,pn+1) =0.
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Perron’s Theorem

Theorem

Let p1,...,pnr1 be polynomials in F[xy, ..., Xx,]|. Then there
exists a non-zero polynomial P € Fly1,....yh1]inn+1
variables such that

Proof Letk := 1 4 max;<j<n41 degp;. Forbig L € N, to be

determined later, we are looking for P € F[ys,...,yn.1] with
0 <degP <LandP(p1,...,pn+1) =0.
Let V be the vector space of all polynomials p in F[xq,...,X]

with degp < kL. Then dimV = (=) =: A(L).

n
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Perron’s Theorem

Theorem

Let p1,...,pnr1 be polynomials in F[xy, ..., Xx,]|. Then there
exists a non-zero polynomial P € Fly1,....yh1]inn+1
variables such that

Proof Letk := 1 4 max;<j<n41 degp;. Forbig L € N, to be

determined later, we are looking for P € F[ys,...,yn.1] with
0 <degP <LandP(p1,...,pn+1) =0.
Let V be the vector space of all polynomials p in F[xq,...,X]

with degp < kL. Then dimV = (*-"") =: A(L).Consider now

n
the following collection C of (wlog distinct) polynomials:
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Perron’s Theorem

. . n+l
pr..prth i €N, Zji <L
i—1
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Perron’s Theorem

. . n+l
pr..prth i €N, Zji <L
i—1

Note that each of the B(L) := (“}7}") members of C belongs to

V, because for p € C,

16/27

degp < k(j1 + - +jnt1) < KL.
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Perron’s Theorem

. . n+l
pr..prth i €N, Zji <L
i—1

Note that each of the B(L) := (“}7}") members of C belongs to
V, because for p € C,

degp < k(jp + - +in+1) < KL.
Then cardC = B(L). Note also that C C V.

16/27 R. Mortini Real polynomials



Perron’s Theorem

. . n+l
pr..prth i €N, Zji <L
i—1

Note that each of the B(L) := (“}7}") members of C belongs to
V, because for p € C,

degp < k(j1 + - +jnt1) < KL.

Then cardC = B(L). Note also that C C V. We claim that

B(L) > A(L) for some L (depending on n). In fact, looking upon B(L) and
A(L) as polynomials in L, we have that degB = n + 1 and deg A = n. Thus,
for large L, we obtain that B(L) > A(L).
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17127

Thus the cardinal of set C is strictly bigger than the dimension
of the vector space V it belongs to. Hence C is a linear
dependent set in V. In other words, there is a linear
combination of the elements from S that is identically zero. This
implies that there is a nonzero polynomial P € Fly1,...,Yn1]
of degree at most L such that P(p1,...,pns1) = 0.

R. Mortini Real polynomials



stable rank

Let R be a commutative unital ring with identity element 1.

(1) An n-tuple (fy,...,fy) € R" is said to be invertible (or
unimodular), if there exists (xi,...,%y) € R" such that the
Bézout equation Y-, xif = 1is satisfied.
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stable rank

Let R be a commutative unital ring with identity element 1.

(1) An n-tuple (fy,...,fy) € R" is said to be invertible (or
unimodular), if there exists (xi,...,%y) € R" such that the
Bézout equation Y-, xif = 1is satlsfled The set of all

invertible n-tuples is denoted by Un(R). Note that
Uy (R) =R
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stable rank

Let R be a commutative unital ring with identity element 1.

(1) An n-tuple (fy,...,fy) € R" is said to be invertible (or
unimodular), if there exists (xi,...,%y) € R" such that the
Bézout equation Y-, xif = 1is satlsfled The set of all
invertible n-tuples is denoted by Un(R). Note that
Ui (R) =R~1 An (n + 1)-tuple (fy, ..., fn,g) € Up1(R) is
called reducible if there exists (a;,...,a,) € R" such that
(f1 +a10,...,fn +ang) € Un(R).
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stable rank

Let R be a commutative unital ring with identity element 1.

(1) An n-tuple (fy,...,fy) € R" is said to be invertible (or
unimodular), if there exists (xi,...,%y) € R" such that the
Bézout equation Y-, xif = 1is satlsfled The set of all
invertible n-tuples is denoted by Un(R). Note that
Ui (R) =R~1 An (n + 1)-tuple (fy, ..., fn,g) € Up1(R) is
called reducible if there exists (a;,...,a,) € R" such that
(f1 +a10,...,fn +ang) € Un(R).

(2) The Bass stable rank of R, denoted by bsrR, is the
smallest integer n such that every elementin U,.1(R) is
reducible. If no such n exists, then bsrR = cc.
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stable rank

Let R be a commutative unital ring with identity element 1.

(1) An n-tuple (fy,...,fy) € R" is said to be invertible (or
unimodular), if there exists (xi,...,%y) € R" such that the
Bézout equation Y-, xif = 1is satlsfled The set of all
invertible n-tuples is denoted by Un(R). Note that
Ui (R) =R~1 An (n + 1)-tuple (fy, ..., fn,g) € Up1(R) is
called reducible if there exists (a;,...,a,) € R" such that
(f1 +a10,...,fn +ang) € Un(R).

(2) The Bass stable rank of R, denoted by bsrR, is the
smallest integer n such that every elementin U,.1(R) is
reducible. If no such n exists, then bsrR = cc.

Note that if bsrR = n, n < oo, and m > n, then every invertible
(m + 1)-tuple (f,g) € R™*1 is reducible.
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Theorem (Vasershtein)

bsrR[Xs,...,Xn] =N+ 1.
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stable rank

Theorem (Vasershtein)

Proof bsrR[xi,...,xn] > n+ 1.

Consider the invertible (n + 1)-tuple (x1,...,%n, 1 — >, x%) in
R[X1, ..., Xn].
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stable rank

Theorem (Vasershtein)

Proof bsrR[xi,...,xn] > n+ 1.

Consider the invertible (n + 1)-tuple (x1,...,%n, 1 — >, x%) in

R[X1,...,Xn]. This tuple cannot be reducible in
R[X1,...,%Xn] € C(R",R), since otherwise the n-tuple
(X1,...,Xn), restricted to the unit sphere 0. in R", would have

a zero-free extension e to 4, where e is given by

n n
<x1+u1 : (1—ij2), oo Xp+ Up - (1—ij2)>
i—1 i—1

for some uj € R[x1, ..., Xy].

)
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This contradicts Brouwer’s result that the identity map
(X1,...,Xn) : 0B — 0A

defined on the boundary of the closed unit ball % in R" does
not admit a zero-free continuous extension to %.
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Next we prove that bsrR[xq,...,Xn] < n+ 1.
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stable rank

Next we prove that bsrR[xq,...,Xn] < n+ 1.
This follows from a combination of Bass Theorem telling us that

the Bass stable rank of a Noetherian ring with Krull dimension n
is less than or equal to n + 1, and Theorem below, according to

which the Krull dimension of R[x, ..., Xn] is n.
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Krull dimension

Let R be a commutative unital ring, R # {0}.

(1) Achain € = {lp, l1,...,l,} of ideals in R is said to have
length n if
loCly C---Cly,

the inclusions being strict.
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Krull dimension

Let R be a commutative unital ring, R # {0}.
(1) Achain € = {lp, l1,...,l,} of ideals in R is said to have
length n if
lpClyC---Clp,
the inclusions being strict.

(2) The Krull dimension of R is defined to be the supremum of
the lengths of all increasing chains of prime ideals

PoC - - CPpn.

22127 R. Mortini Real polynomials



Krull dimension

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, R # {0}. The following
assertions are equivalent:
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Krull dimension

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, R # {0}. The following
assertions are equivalent:

(1) The Krull dimension of R is at most N.
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Krull dimension

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, R # {0}. The following
assertions are equivalent:

(1) The Krull dimension of R is at most N.

(2) Forall (ag,...,ay) € RN*! there exists
(Xo0,-..,%n) € RNTL and (ng, ..., ny) € NN+ such that

ag’ (a?(m (AR (1 + anxn) +)) +aoxo> =0, (2
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Krull dimension

Theorem (Coquand-Lombardi)

Let R be a commutative unital ring, R # {0}. The following
assertions are equivalent:

(1) The Krull dimension of R is at most N.

(2) Forall (ag,...,ay) € RN*! there exists
(Xo0,-..,%n) € RNTL and (ng, ..., ny) € NN+ such that

ag’ (a?(m (AR (1 + anxn) +)) +aoxo> =0, (2

in other words
Loo---oLy(1) =0, (3)

where fora,x €e Randn e N, Lanx(y) =a"(y + ax). If
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Krull dimension

Proposition (Coquand-Lombardi)

Let F be afield and R # {0} a commutative unital algebra over
F.Ifany (n + 1)-tupel (fo, ..., f,) € R""! is algebraically
dependent over F,
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Proposition (Coquand-Lombardi)

Let F be afield and R # {0} a commutative unital algebra over
F.Ifany (n + 1)-tupel (fo, ..., f,) € R""! is algebraically
dependent over F, 2 then the Krull dimension of R is at most n.

2In other words, if there is a non-zero polynomial Q € Flyo, . .., Yn] such
that Q(fo,...,fn) = 0.
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Krull dimension

Let Q(fo,...,fn) = O for some nonzero polynomial
Q€ Flyo,---,Yyn]
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Krull dimension

Let Q(fo,...,fn) = O for some nonzero polynomial

Q € Flyo,...,Yn].- We assume that these monomials are
ordered lexicographically with respect to the powers

(io, i,..., In) e N+
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Krull dimension

Let Q(fo,...,fn) = O for some nonzero polynomial

Q € Flyo,...,Yn].- We assume that these monomials are
ordered lexicographically with respect to the powers

(io, i,..., In) e N Let

iofi i
ajg,.info f -

be the "first’'monomial appearing in the relation above (here the
coefficient a;, _;, belongs to F and (ig,....in) € N").
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Krull dimension

Let Q(fo,...,fn) = O for some nonzero polynomial

Q € Flyo,...,Yn].- We assume that these monomials are
ordered lexicographically with respect to the powers
(io, i,..., In) e N Let

iofi i
ajg,.info f -

be the "first’'monomial appearing in the relation above (here the
coefficient a;, _;, belongs to F and (i, ...,in) € N"). Without
loss of generality we may assume that the coefficient of this
monomial is 1.
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Krull dimension

Let Q(fo,...,fn) = O for some nonzero polynomial

Q € Flyo,...,Yn].- We assume that these monomials are
ordered lexicographically with respect to the powers
(io, i,..., In) e N Let

iofi i
ajg,.info f -

be the "first’'monomial appearing in the relation above (here the
coefficient a;, _;, belongs to F and (i, ...,in) € N"). Without
loss of generallty we may assume that the coefficient of this
monomial is 1. Then Q can be written as

Q=flo  fnifh 4 gl ghotglbng gl gl g
+ f(i)off+llRl+f(Jl+loRO

where R; belongs to F[fi,fi 1,....,f],j =0,1,....n
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Krull dimension

Hence Q has been written in the form given by equation 2 (with
g = fiand x; := R;), thatis

flo (f}(- (L foRn) + ) +foRo> 0.
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Krull dimension

Hence Q has been written in the form given by equation 2 (with
g = fiand x; := R;), thatis

flo (f}(- (L foRn) + ) +foRo> 0.

We conclude from Theorem 10, that the Krull dimension of R is
at most n.
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Krull dimension

If F is a field then the Krull dimension of F[x4, ..., X,] is n.
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Krull dimension

If F is a field then the Krull dimension of F[x4, ..., X,] is n.

Beweis.

By Perron’s Theorem, R := F[xy, ..., Xp| satisfies the
assumption of Proposition 11. Hence the Krull dimension of R
is less or equal to n.
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Krull dimension

If F is a field then the Krull dimension of F[x4, ..., X,] is n.

Beweis.

By Perron’s Theorem, R := F[xy, ..., Xp| satisfies the
assumption of Proposition 11. Hence the Krull dimension of R
is less or equal to n. But we have the chain of prime ideals

{0} C Ir(x1) C Ir(X1,%X2) C -+ CIR(X1,- .-, Xn).
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Krull dimension

If F is a field then the Krull dimension of F[x4, ..., X,] is n.

Beweis.

By Perron’s Theorem, R := F[xy, ..., Xp| satisfies the
assumption of Proposition 11. Hence the Krull dimension of R
is less or equal to n. But we have the chain of prime ideals

{0} C Ir(x1) C Ir(X1,%X2) C -+ CIR(X1,- .-, Xn).

Since {0} is a prime ideal too, this chain has length n. Thus the
Krull dimension of R is n. O

27127 R. Mortini Real polynomials



Krull dimension

28127 R. Mortini




	Maximal ideals
	Perron's Theorem
	stable rank
	Krull dimension

