Möbius Estimates

11684 [2013, 76]. Proposed by Raymond Mortini, Université Paul Verlaine, Metz, France, and Rudolf Rupp, Georg-Simon-Ohm Hochschule Nürnberg, Nuremberg, Germany. For complex a and z, let

$$\phi_a(z) = \frac{a-z}{1-\overline{a}z}, \quad \rho(a,z) = \frac{|a-z|}{|1-\overline{a}z|}.$$

(a) Show that whenever -1 < a, b < 1,

$$\max_{|z|<1} |\phi_a(z) - \phi_b(z)| = 2\rho(a, b)$$

$$\max_{|z|<1} |\phi_a(z) + \phi_b(z)| = 2.$$

(b) For complex α , β with $|\alpha| = |\beta| = 1$, let

$$m(z) = m_{a,b,\alpha,\beta}(z) = |\alpha \phi_a(z) - \beta \phi_b(z)|.$$

Determine the maximum and minimum, taken over z with |z| = 1, of m(z).

Solution by the proposers.

(b) Observe that ϕ_a is its own inverse. Let $c = (b - a)/(1 - a\overline{b})$ and let

$$\lambda = -\frac{1 - a\overline{b}}{1 - \overline{a}b}.$$

Since ϕ_b is a bijection of the unit circle onto itself,

$$\max_{|z|=1} \left| \alpha \phi_a(z) - \beta \phi_b(z) \right| = \max_{|z|=1} \left| \alpha \overline{\beta} \phi_a(\phi_b(z)) - z \right| = \max_{|z|=1} \left| \alpha \overline{\beta} \lambda \phi_c(z) - z \right|.$$

The same identities hold when the maximum is replaced by the minimum. Put $\gamma = \alpha \overline{\beta} \lambda$, and let $-\pi < \arg \gamma \le \pi$. For |z| = 1, let $H(z) = |\gamma \phi_{\varepsilon}(z) - z|$. We have

$$H(z) = \left| \gamma \frac{z(c\overline{z} - 1)}{1 - \overline{c}z} - z \right| = \left| \gamma \frac{1 - c\overline{z}}{1 - \overline{c}z} - 1 \right| = \left| \gamma \frac{w}{\overline{w}} + 1 \right|,$$

where $w=1-c\overline{z}=1-c/z$. As z moves around the unit circle, w moves around the circle |w-1|=|c|. Write $w=|w|e^{i\theta}$. Note that θ varies on the interval $[-\theta_m,\theta_m]$, where $|\theta_m|<\pi/2$ and $\sin\theta_m=|c|=\rho(a,b)$. Now

$$H(z) = \left| \gamma e^{2i\theta} + 1 \right| = 2 \left| \cos \left(\frac{\arg \gamma}{2} + \theta \right) \right|.$$

Hence

$$\max_{|z|=1} H(z) = 2 \max \left\{ \left| \cos \left(\frac{\arg \gamma}{2} + \theta \right) \right| : |\theta| \le \arcsin \rho(a, b) \right\}$$
 (*)

and

$$\min_{|z|=1} H(z) = 2 \min \left\{ \left| \cos \left(\frac{\arg \gamma}{2} + \theta \right) \right| : |\theta| \le \arcsin \rho(a, b) \right\}.$$

(a) Specialize (*) by taking $a, b \in (-1, 1)$ and $\alpha = \beta = 1$, so that $\gamma = -1$. By the maximum principle, the maximum on the disk is achieved on the boundary, so

$$\max_{|a| \le 1} |\phi_a(z) - \phi_b(z)| = 2 \max \{ |\sin \theta| : |\theta| \le \arcsin \rho(a, b) \} = 2\rho(a, b).$$

For the other part of (a), instead specialize (*) by taking $a, b \in (-1, 1)$ and $\alpha = 1$, $\beta = -1$, so that $\gamma = 1$. This gives

$$\max_{|z| \le 1} |\phi_a(z) + \phi_b(z)| = 2 \max \{ |\cos \theta| : |\theta| \le \arcsin \rho(a, b) \} = 2.$$

Also solved by P. P. Dályay (Hungary) and R. Stong. Part (a) only by A. Alt, D. Beckwith, D. Fleischman, O. P. Lossers (Netherlands), and T. Smotzer.