Laboratoire de Mathématiques Université du Luxembourg

Prof. Dr. Raymond Mortini

année académique 2007-2008

Analyse fonctionnelle, S6

Exercice 14

Soit E un ensemble métrique compact. Montrer que E est séparable. En déduire que l'image d'un opérateur linéaire compact entre deux espaces normés est séparable.

Exercice 15

Soit k(s,t) une fonction continue sur $[0,1] \times [0,1]$. Posons $E = (C[0,1], ||\cdot||_{\infty})$. Montrer que l'opérateur de Fredholm $T:E\to E$ défini par

$$(Tf)(s) := \int_0^1 k(s,t)f(t) dt$$

est un opérateur linéaire compact.

Exercice 16

- a) Soit $x=(x_n)\in \ell^p, 1\leq p<\infty$, et soit $a=(a_n)\in c_0$. Montrer que l'opérateur $T:\ell^p\to \ell^p$ définie par $Tx = a \cdot x := (a_j x_j)_j$ est un opérateur linéaire compact. Déterminer la norme de T et les spectres $\sigma_p(T)$ et $\sigma(T)$ de T.
- b) Soit $h \in C(\mathbb{R})$ borné. Est-ce que l'opérateur $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ défini par $Tf = h \cdot f$ est continu respectivement compact? Quelle est la norme de T?

Exercice 17

Soit E un espace de Banach et $T \in L(E)$. Soit $\sigma(T)$ le spectre de T,

$$\sigma_p(T) = \{\lambda \in \mathbb{K} : T - \lambda I \text{ non injective}\}\$$

$$\sigma_c(T) = \{\lambda \in \mathbb{K} : T - \lambda I \text{ injective, } \underline{\text{non surjective, }} \overline{R(T - \lambda I)} = E\}$$

$$\sigma_r(T) = \{\lambda \in \mathbb{K} : T - \lambda I \text{ injective, } \overline{R(T - \lambda I)} \neq E\}.$$

$$\sigma_{ap}(T) = \{\lambda \in \mathbb{K} : \wedge (x_n) \in E^{\mathbb{N}} : ||x_n|| = 1, ||(T - \lambda I)x_n|| \to 0\}.$$

$$\sigma_r(T) = \{\lambda \in \mathbb{K} : T - \lambda I \text{ injective}, R(T - \lambda I) \neq E\}.$$

$$\sigma_{an}(T) = \{ \lambda \in \mathbb{K} : \wedge (x_n) \in E^{\mathbb{N}} : ||x_n|| = 1, ||(T - \lambda I)x_n|| \to 0 \}.$$

a) Montrer que $\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$.

Quelles relations y a t'il entre $\sigma_{ap}(T)$ et les autres spectres ci-dessus?

- b) Montrer que les assertions suivantes sont équivalentes:
- i) $\lambda \notin \sigma_{ap}(T)$,
- ii) $\land c > 0, \forall x \in E : ||(T \lambda I)(x)|| \ge c||x||,$
- iii) $\operatorname{Ker}(T \lambda I) = \{0\}$ et $R(T \lambda I)$ fermé.
- c) Montrer que $\partial \sigma(T) \subseteq \sigma_{ap}(T)$.

Exercice 18

a) Soit E = C([0,1]) et $T: E \to E$ l'opérateur de Volterra défini par

$$(Tf)(x) = \int_0^x f(t) dt, \quad f \in E, x \in [0, 1].$$

Montrer que T est un opérateur linéaire compact. Déterminer $\sigma_p(T)$ et montrer que $\sigma(T)$ $\sigma_r(T) = \{0\}$. Calculer $\sigma_c(T)$ et $\sigma_{ap}(T)$.

- b) Si $S = \{ f \in C([0,1]) : f(0) = 0 \}$, alors $\sigma(T|S) = \sigma_c(T|S) = \{ 0 \}$. Déterminer aussi $\sigma_p(T|_S)$, $\sigma_r(T|_S)$ et $\sigma_{ap}(T|_S)$.
- c) Soit

$$X = \{f : [0,1] \to \mathbb{K} : f \text{ born\'e}, f \text{ continue en } 0 \text{ et } 1, f(0) = 0\}.$$

Montrer que l'opérateur $T: X \to X$ défini par (Tf)(x) = xf(x) est continue, que $\sigma_p(T) =$ $]0,1[,\sigma_c(T)=\{0\} \text{ et } \sigma_r(T)=\{1\}. \text{ Déterminer } \sigma(T) \text{ et } \sigma_{ap}(T).$

Exercice 19

Soit $1 \le p < \infty$. On définit le shift $S_p : \ell^p \to \ell^p$ par $S_p(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots)$.

- a) Montrer que $S_p \in L(\ell^p)$ et déterminer l'opérateur dual $T_q := (S_p)^*$ de S_p ainsi que $||T_q||_{op}$.
- b) Montrer que $\sigma_p(S_p) = \emptyset$.
- c) Déterminer les spectres $\sigma_p(T_q), \sigma_c(T_q), \sigma_r(T_q)$ et $\sigma(T_q)$. En déduire que $\sigma(S_p) = \overline{\mathbb{D}}$. Calculer $\sigma_r(S_p)$ et $\sigma_c(S_p)$.
- c) Montrer que si $|\lambda| < 1$, alors $R(S_p \lambda I)$ est fermé et $\operatorname{codim}(S_p \lambda I) = 1$.
- d) Montrer que $\sigma_{ap}(S_p) = \{z \in \mathbb{C} : |z| = 1\}.$
- e) Est-ce que $(S_p)^*$ est compact?
- f) Soit $M(x_1, x_2, \cdots) = (x_1, x_2/2, x_3/3, \cdots)$. Est-ce que dans ℓ^p , $T = MS_p$ est compact? Calculer $\sigma_p(T)$ et $\sigma(T)$.

Exercice 20

Soit $X = L^2([0, 2\pi])$ et

$$(Tf)(s) = \int_0^{2\pi} \cos(s-t)f(t) dt, \quad f \in X.$$

- a) Montrer que $(Tf)(s)=\int_0^{2\pi}f(s-t)\cos t\,dt.$ b) Montrer que T est continue et déterminer le rang (=dim R(T)) de T.
- c) Est-ce que T est compact?
- d) Déterminer les spectres $\sigma_p(T)$ et $\sigma(T)$. Chercher explicitement des vecteurs propres de T.

Exercice 21

Soit E = C([0,1]) et $T: E \to E$ défini par

$$Tf(x) = \int_0^{1-x} f(t) dt.$$

Montrer que T est compact et déterminer le spectre ainsi que les valeurs propres λ de T. Chercher les vecteurs propres associés à λ . Quelle est la dimension des sous-espaces propres de T?