13.9 The Pochhammer curve

In this final section we deal with an interesting curve: the Pochhammer contour. First we need the result that the winding number is invariant under homotopies.

Proposition 13.84. Let $X \subseteq \mathbb{C}$ be a subset. Suppose that for $j=0,1, f_{j}: \mathbb{T} \rightarrow X$ are two continuous maps that are homotopic in X. Let $\Gamma_{j}=f_{j}(\mathbb{T})$ be the associated closed curves. Then, for every $a \in \mathbb{C} \backslash X$,

$$
n\left(\Gamma_{1}, a\right)=n\left(\Gamma_{2}, a\right)
$$

Proof. Let $H: \mathbb{T} \times[0,1] \rightarrow X$ be a homotopy with $H(\xi, 0)=f_{0}(\xi)$ and $H(\xi, 1)=f_{1}(\xi)$ for every $\xi \in \mathbb{T}$. Put $f_{t}(\xi)=H(\xi, t)$ and $\Gamma_{t}=f_{t}(\mathbb{T})$. Then all the Γ_{t} are closed curves and, for every $a \in \mathbb{C} \backslash X$, the map $t \mapsto n\left(\Gamma_{t}, a\right)$ is continuous. In fact, if $t \rightarrow t_{0}$, then the uniform continuity of H implies that $\left\|f_{t}-f_{t_{0}}\right\|_{\infty} \rightarrow 0$. Thus, by Corollary 6.39, $n\left(\Gamma_{t}, a\right) \rightarrow n\left(\Gamma_{t_{0}}, a\right)$. As $n\left(\Gamma_{t}, a\right)$ is an integer-valued map, the connectivity of $[0,1]$ implies that $n\left(\Gamma_{t}, a\right)$ is constant.

Corollary 13.85. If γ is a null-homotopic closed curve in the domain $D \subseteq \mathbb{C}$, then γ is null-homologous in D.

Proof. Since for constant maps $f, n(f, a)=0$ for every $a \in \mathbb{C} \backslash D$, we deduce from Proposition 13.84 that $n(\gamma, a)=0$, too. Hence γ is null-homologous in D.

Corollary 12.11 and Theorem 13.83 show that for $D=\mathbb{C} \backslash\{0\}$ and each simply connected domain $D \subseteq \mathbb{C}$ a closed curve Γ in D is null-homologous if and only if Γ is null-homotopic in D. The following example of the Pochhammer contour shows that this no longer holds for $D=\mathbb{C} \backslash\{0,2\}^{311}$.

Example 13.86. Let γ_{1} be the unit circle $e^{2 \pi i s}, 0 \leq s \leq 1$, and γ_{2} the circle $2-e^{2 \pi i s}$, $0 \leq s \leq 1$. Then the Pochhammer curve γ_{0} in $D=\mathbb{C} \backslash\{0,2\}$, given by

$$
\gamma_{0}=\gamma_{1} \oplus \gamma_{2} \oplus \gamma_{1}^{-} \oplus \gamma_{2}^{-}
$$

is null-homologous, but not null-homotopic in D. Equivalently, $\gamma_{1} \oplus \gamma_{2}$ is not D-homotopic to $\gamma_{2} \oplus \gamma_{1}$.

See figure 75 , where $\Gamma_{1}=\gamma_{1}([0,1]), \Gamma_{2}=\gamma_{2}([0,1]), \Gamma_{3}=\gamma_{3}([0,1]):=\gamma_{1}^{-}([0,1])$, and $\Gamma_{4}=\gamma_{4}([0,1]):=\gamma_{2}^{-}([0,1])$. The Pochhammer contour γ is a curve which surrounds counterclockwise the point 0 , then counterclockwise the point 2 , then clockwise the point 0 , and finally clockwise the point 2 (see figure 75).

Proof. Let $\Gamma_{0}=\gamma_{0}([0,4])$, where we use the parametrization

$$
\gamma_{0}(s)= \begin{cases}\gamma_{1}(s) & \text { if } 0 \leq s \leq 1 \\ \gamma_{2}(s-1) & \text { if } 1 \leq s \leq 2 \\ \gamma_{3}(s-2) & \text { if } 2 \leq s \leq 3 \\ \gamma_{4}(s-3) & \text { if } 3 \leq s \leq 4\end{cases}
$$

[^0]

Figure 75: The Pochhammer curve: null-homologous but not null-homotopic in the twice punctured domain $\mathbb{C} \backslash\{0,2\}$.

Since $n\left(\gamma_{0}, 0\right)=n\left(\gamma_{0}, 2\right)=0$, we see that $n\left(\gamma_{0}, a\right)=0$ for every $a \in \mathbb{C} \backslash \Gamma_{0}$, and so γ_{0} is null-homologous in D. Now suppose that γ_{0} is null-homotopic in $D=\mathbb{C} \backslash\{0,2\}$. Then, by Corollary $13.64(13.64)$ there exists a $(1,1)$-homotopy $H:[0,4] \times[0,1] \rightarrow D$ of closed curves such that $H(s, 0)=\gamma_{0}(s)$ and $H(s, 1)=1 \in D$ for every $s \in[0,4]$.

Due to Corollary $7.343(7.343){ }^{312}, H=e^{h}$ for some $h \in C([0,4] \times[0,1], \mathbb{C})$ (note that by Example 7.338, the convex set $K=[0,4] \times[0,1]$ is contractible).

Let \log denote the principal branch of the logarithm on $\mathbb{C} \backslash]-\infty, 0]$. Since 2 is not in the image of $H, \log 2+2 k \pi i$ does not belong to the image of h.

Now for $(s, t)=(0,0)$ we have $1=\gamma_{0}(0)=H(0,0)=e^{h(0,0)}$. So we may assume that $h(0,0)=0$.

Claim 1 The function $h(\cdot, 0)$ necessarily is given by

$$
h(s, 0)= \begin{cases}2 \pi i s & \text { if } 0 \leq s \leq 1 \\ \log \left(2-e^{2 \pi i s}\right)+2 \pi i & \text { if } 1 \leq s \leq 2 \\ 2 \pi i(3-s) & \text { if } 2 \leq s \leq 3 \\ \log \left(2-e^{2 \pi i(4-s)}\right) & \text { if } 3 \leq s \leq 4\end{cases}
$$

(see figure 76).
For the proof, we distinguish four cases.
Case 1. If $0 \leq s \leq 1, H(s, 0)=e^{h(s, 0)}$ and $H(s, 0)=\gamma_{0}(s)=e^{2 \pi i s}$ imply that $h(s, 0)=2 \pi i s+2 k \pi i$ for some k independent of $s \in[0,1]$. Since $h(0,0)=0$ we conclude that $h(s, 0)=2 \pi i s$ for $s \in[0,1]$.

Case 2. Now let $s \in[1,2]$ and put $L(s)=\log \left(2-e^{2 \pi i s}\right)+2 \pi i$. Note that this is well defined, since all values of $2-e^{2 \pi i s}$ are contained in the right-half plane.

Now $H(s, 0)=e^{h(s, 0)}, H(s, 0)=\gamma_{0}(s)=2-e^{2 \pi i s}$ and $e^{L(s)}=2-e^{2 \pi i s}$ imply that $h(s, 0)=L(s)+2 k \pi i$ for some $k \in \mathbb{Z}$. Now, by the first case, $h(1,0)=2 \pi i$. Hence $k=0$.

[^1]

Figure 76: The logarithm of the Pochhammer curve in the domain $\mathbb{C} \backslash\{\log 2+2 k \pi i: k \in \mathbb{Z}\}$.

Case 3. If $s \in[2,3]$, then $\gamma_{0}(s)=\gamma_{3}(s-2)=\gamma_{1}^{-}(s-2)$. Now a parametrization of γ_{1}^{-} is given by $\theta:[0,1] \mapsto e^{2 \pi i(1-\theta)}$. So $\gamma_{0}(s)=e^{2 \pi i(3-s)}$. Now $\gamma_{0}(s)=H(s, 0)=e^{h(s, 0)}$ implies $h(s, 0)=2 \pi i(3-s)+2 k \pi i$ for some $k \in \mathbb{Z}$. But by Case $2, h(2,0)=2 \pi i$. Thus $k=0$.

Case 4. Let $s \in[3,4]$, and put $\tilde{L}(s)=\log \left(2-e^{2 \pi i(4-s)}\right)$. Note that this is well defined, since all values of $2-e^{2 \pi i(4-s)}$ are contained in the right-half plane.

Next note that $\gamma_{0}(s)=\gamma_{4}(s-3)=\gamma_{2}^{-}(s-3)$. Now a parametrization of γ_{2}^{-}is given by $\theta:[0,1] \mapsto 2-e^{2 \pi i(1-\theta)}$. Hence $\gamma_{0}(s)=2-e^{2 \pi i(4-s)}$. Now $\gamma_{0}(s)=H(s, 0)=e^{h(s, 0)}$ implies $h(s, 0)=\tilde{L}(s)+2 k \pi i$ for some $k \in \mathbb{Z}$. By Case $3, h(3,0)=0$. As $\tilde{L}(3)=0$, we deduce again that $k=0$. This proves Claim 1 .

Now we use that H is a $(1,1)$-loophomotopy. This implies, in particular, that $e^{h(0, t)}=$ $H(0, t)=1$ for every $t \in[0,1]$. Hence $h(0, t)=2 k \pi i$ for some $k \in \mathbb{Z}$. Since $h(0,0)=0$, we deduce that $k=0$ and so $e^{h(s, 1)}=1$ implies that $h(s, 1)=0$. We conclude that h is a $(0,0)$ homotopy in $\mathbb{C} \backslash\{\log 2+2 k \pi i: k \in \mathbb{Z}\}$ between the curve $h_{0}(s):=h(s, 0)$ and the constant 0 . As the winding numbers for curves are invariant under loophomotopies (Proposition 13.84), $n\left(h_{0}, \log 2\right)$ would coincide with $n\left(\delta_{0}, \log 2\right)=0$, an obvious contradiction to the fact that $n\left(h_{0}, \log 2\right)=-1$ (see figure 76).

[^0]: ${ }^{311}$ We thank B. Burckel for several E-mail exchanges on this curve.

[^1]: ${ }^{312}$ One may also use Borsuk's Theorem 12.5, a more advanced tool.

