13.9 The Pochhammer curve

In this final section we deal with an interesting curve: the Pochhammer contour. First we need the result that the winding number is invariant under homotopies.

Proposition 13.84. Let $X \subseteq \mathbb{C}$ be a subset. Suppose that for $j = 0, 1, f_j : \mathbb{T} \to X$ are two continuous maps that are homotopic in X. Let $\Gamma_j = f_j(\mathbb{T})$ be the associated closed curves. Then, for every $a \in \mathbb{C} \setminus X$,

$$n(\Gamma_1, a) = n(\Gamma_2, a).$$

Proof. Let $H : \mathbb{T} \times [0,1] \to X$ be a homotopy with $H(\xi,0) = f_0(\xi)$ and $H(\xi,1) = f_1(\xi)$ for every $\xi \in \mathbb{T}$. Put $f_t(\xi) = H(\xi,t)$ and $\Gamma_t = f_t(\mathbb{T})$. Then all the Γ_t are closed curves and, for every $a \in \mathbb{C} \setminus X$, the map $t \mapsto n(\Gamma_t, a)$ is continuous. In fact, if $t \to t_0$, then the uniform continuity of H implies that $||f_t - f_{t_0}||_{\infty} \to 0$. Thus, by Corollary 6.39, $n(\Gamma_t, a) \to n(\Gamma_{t_0}, a)$. As $n(\Gamma_t, a)$ is an integer-valued map, the connectivity of [0, 1] implies that $n(\Gamma_t, a)$ is constant.

Corollary 13.85. If γ is a null-homotopic closed curve in the domain $D \subseteq \mathbb{C}$, then γ is null-homologous in D.

Proof. Since for constant maps f, n(f, a) = 0 for every $a \in \mathbb{C} \setminus D$, we deduce from Proposition 13.84 that $n(\gamma, a) = 0$, too. Hence γ is null-homologous in D.

Corollary 12.11 and Theorem 13.83 show that for $D = \mathbb{C} \setminus \{0\}$ and each simply connected domain $D \subseteq \mathbb{C}$ a closed curve Γ in D is null-homologous if and only if Γ is null-homotopic in D. The following example of the Pochhammer contour shows that this no longer holds for $D = \mathbb{C} \setminus \{0, 2\}^{311}$.

Example 13.86. Let γ_1 be the unit circle $e^{2\pi i s}$, $0 \leq s \leq 1$, and γ_2 the circle $2 - e^{2\pi i s}$, $0 \leq s \leq 1$. Then the Pochhammer curve γ_0 in $D = \mathbb{C} \setminus \{0, 2\}$, given by

$$\gamma_0 = \gamma_1 \oplus \gamma_2 \oplus \gamma_1^- \oplus \gamma_2^-,$$

is null-homologous, but not null-homotopic in D. Equivalently, $\gamma_1 \oplus \gamma_2$ is not D-homotopic to $\gamma_2 \oplus \gamma_1$.

See figure 75, where $\Gamma_1 = \gamma_1([0,1]), \Gamma_2 = \gamma_2([0,1]), \Gamma_3 = \gamma_3([0,1]) := \gamma_1^-([0,1])$, and $\Gamma_4 = \gamma_4([0,1]) := \gamma_2^-([0,1])$. The Pochhammer contour γ is a curve which surrounds counterclockwise the point 0, then counterclockwise the point 2, then clockwise the point 0, and finally clockwise the point 2 (see figure 75).

Proof. Let $\Gamma_0 = \gamma_0([0,4])$, where we use the parametrization

$$\gamma_0(s) = \begin{cases} \gamma_1(s) & \text{if } 0 \le s \le 1\\ \gamma_2(s-1) & \text{if } 1 \le s \le 2\\ \gamma_3(s-2) & \text{if } 2 \le s \le 3\\ \gamma_4(s-3) & \text{if } 3 \le s \le 4 \end{cases}$$

 $^{^{311}}$ We thank B. Burckel for several E-mail exchanges on this curve.

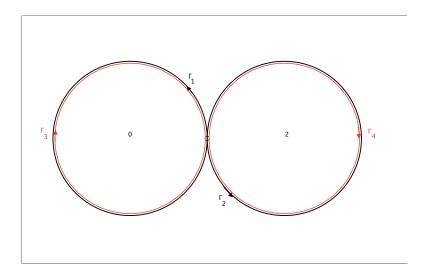


Figure 75: The Pochhammer curve: null-homologous but not null-homotopic in the twice punctured domain $\mathbb{C} \setminus \{0, 2\}$.

Since $n(\gamma_0, 0) = n(\gamma_0, 2) = 0$, we see that $n(\gamma_0, a) = 0$ for every $a \in \mathbb{C} \setminus \Gamma_0$, and so γ_0 is null-homologous in D. Now suppose that γ_0 is null-homotopic in $D = \mathbb{C} \setminus \{0, 2\}$. Then, by Corollary 13.64(13.64) there exists a (1, 1)-homotopy $H : [0, 4] \times [0, 1] \to D$ of closed curves such that $H(s, 0) = \gamma_0(s)$ and $H(s, 1) = 1 \in D$ for every $s \in [0, 4]$.

Due to Corollary 7.343 (7.343) ³¹², $H = e^h$ for some $h \in C([0, 4] \times [0, 1], \mathbb{C})$ (note that by Example 7.338, the convex set $K = [0, 4] \times [0, 1]$ is contractible).

Let log denote the principal branch of the logarithm on $\mathbb{C} \setminus [-\infty, 0]$. Since 2 is not in the image of H, log $2 + 2k\pi i$ does not belong to the image of h.

Now for (s,t) = (0,0) we have $1 = \gamma_0(0) = H(0,0) = e^{h(0,0)}$. So we may assume that h(0,0) = 0.

Claim 1 The function $h(\cdot, 0)$ necessarily is given by

$$h(s,0) = \begin{cases} 2\pi i s & \text{if } 0 \le s \le 1\\ \log(2 - e^{2\pi i s}) + 2\pi i & \text{if } 1 \le s \le 2\\ 2\pi i (3 - s) & \text{if } 2 \le s \le 3\\ \log\left(2 - e^{2\pi i (4 - s)}\right) & \text{if } 3 \le s \le 4. \end{cases}$$

(see figure 76).

For the proof, we distinguish four cases.

Case 1. If $0 \le s \le 1$, $H(s,0) = e^{h(s,0)}$ and $H(s,0) = \gamma_0(s) = e^{2\pi i s}$ imply that $h(s,0) = 2\pi i s + 2k\pi i$ for some k independent of $s \in [0,1]$. Since h(0,0) = 0 we conclude that $h(s,0) = 2\pi i s$ for $s \in [0,1]$.

Case 2. Now let $s \in [1, 2]$ and put $L(s) = \log(2 - e^{2\pi i s}) + 2\pi i$. Note that this is well defined, since all values of $2 - e^{2\pi i s}$ are contained in the right-half plane.

Now $H(s,0) = e^{h(s,0)}$, $H(s,0) = \gamma_0(s) = 2 - e^{2\pi i s}$ and $e^{L(s)} = 2 - e^{2\pi i s}$ imply that $h(s,0) = L(s) + 2k\pi i$ for some $k \in \mathbb{Z}$. Now, by the first case, $h(1,0) = 2\pi i$. Hence k = 0.

³¹² One may also use Borsuk's Theorem 12.5, a more advanced tool.

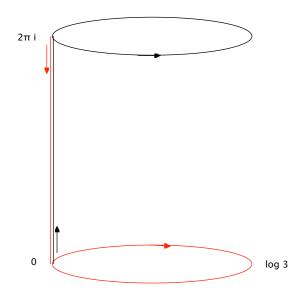


Figure 76: The logarithm of the Pochhammer curve in the domain $\mathbb{C} \setminus \{\log 2 + 2k\pi i : k \in \mathbb{Z}\}$.

Case 3. If $s \in [2,3]$, then $\gamma_0(s) = \gamma_3(s-2) = \gamma_1^-(s-2)$. Now a parametrization of γ_1^- is given by $\theta : [0,1] \mapsto e^{2\pi i(1-\theta)}$. So $\gamma_0(s) = e^{2\pi i(3-s)}$. Now $\gamma_0(s) = H(s,0) = e^{h(s,0)}$ implies $h(s,0) = 2\pi i(3-s) + 2k\pi i$ for some $k \in \mathbb{Z}$. But by Case 2, $h(2,0) = 2\pi i$. Thus k = 0. Case 4. Let $s \in [3,4]$, and put $\tilde{L}(s) = \log(2 - e^{2\pi i(4-s)})$. Note that this is well defined,

Case 4. Let $s \in [3,4]$, and put $L(s) = \log(2 - e^{2\pi i(4-s)})$. Note that this is well defined, since all values of $2 - e^{2\pi i(4-s)}$ are contained in the right-half plane.

Next note that $\gamma_0(s) = \gamma_4(s-3) = \gamma_2^-(s-3)$. Now a parametrization of γ_2^- is given by $\theta : [0,1] \mapsto 2 - e^{2\pi i(1-\theta)}$. Hence $\gamma_0(s) = 2 - e^{2\pi i(4-s)}$. Now $\gamma_0(s) = H(s,0) = e^{h(s,0)}$ implies $h(s,0) = \tilde{L}(s) + 2k\pi i$ for some $k \in \mathbb{Z}$. By Case 3, h(3,0) = 0. As $\tilde{L}(3) = 0$, we deduce again that k = 0. This proves Claim 1.

Now we use that H is a (1, 1)-loophomotopy. This implies, in particular, that $e^{h(0,t)} = H(0,t) = 1$ for every $t \in [0,1]$. Hence $h(0,t) = 2k\pi i$ for some $k \in \mathbb{Z}$. Since h(0,0) = 0, we deduce that k = 0 and so $e^{h(s,1)} = 1$ implies that h(s,1) = 0. We conclude that h is a (0,0)-homotopy in $\mathbb{C} \setminus \{\log 2 + 2k\pi i : k \in \mathbb{Z}\}$ between the curve $h_0(s) := h(s,0)$ and the constant 0. As the winding numbers for curves are invariant under loophomotopies (Proposition 13.84), $n(h_0, \log 2)$ would coincide with $n(\delta_0, \log 2) = 0$, an obvious contradiction to the fact that $n(h_0, \log 2) = -1$ (see figure 76).