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13.9 The Pochhammer curve

In this final section we deal with an interesting curve: the Pochhammer contour. First we
need the result that the winding number is invariant under homotopies.

Proposition 13.84. Let X ⊆ C be a subset. Suppose that for j = 0, 1, fj : T→ X are two
continuous maps that are homotopic in X. Let Γj = fj(T) be the associated closed curves.
Then, for every a ∈ C \X,

n(Γ1, a) = n(Γ2, a).

Proof. Let H : T × [0, 1] → X be a homotopy with H(ξ, 0) = f0(ξ) and H(ξ, 1) = f1(ξ)
for every ξ ∈ T. Put ft(ξ) = H(ξ, t) and Γt = ft(T). Then all the Γt are closed curves
and, for every a ∈ C \ X, the map t 7→ n(Γt, a) is continuous. In fact, if t → t0, then
the uniform continuity of H implies that ||ft − ft0 ||∞ → 0. Thus, by Corollary 6.39,
n(Γt, a)→ n(Γt0 , a). As n(Γt, a) is an integer-valued map, the connectivity of [0, 1] implies
that n(Γt, a) is constant.

Corollary 13.85. If γ is a null-homotopic closed curve in the domain D ⊆ C, then γ is
null-homologous in D.

Proof. Since for constant maps f , n(f, a) = 0 for every a ∈ C \D, we deduce from Propo-
sition 13.84 that n(γ, a) = 0, too. Hence γ is null-homologous in D.

Corollary 12.11 and Theorem 13.83 show that for D = C\{0} and each simply connected
domain D ⊆ C a closed curve Γ in D is null-homologous if and only if Γ is null-homotopic
in D. The following example of the Pochhammer contour shows that this no longer holds
for D = C \ {0, 2} 311.

Example 13.86. Let γ1 be the unit circle e2πis, 0 ≤ s ≤ 1, and γ2 the circle 2 − e2πis,
0 ≤ s ≤ 1. Then the Pochhammer curve γ0 in D = C \ {0, 2}, given by

γ0 = γ1 ⊕ γ2 ⊕ γ−1 ⊕ γ
−
2 ,

is null-homologous, but not null-homotopic in D. Equivalently, γ1⊕ γ2 is not D-homotopic
to γ2 ⊕ γ1.

See figure 75, where Γ1 = γ1([0, 1]),Γ2 = γ2([0, 1]),Γ3 = γ3([0, 1]) := γ−1 ([0, 1]), and
Γ4 = γ4([0, 1]) := γ−2 ([0, 1]). The Pochhammer contour γ is a curve which surrounds
counterclockwise the point 0, then counterclockwise the point 2, then clockwise the point
0, and finally clockwise the point 2 (see figure 75).

Proof. Let Γ0 = γ0([0, 4]), where we use the parametrization

γ0(s) =


γ1(s) if 0 ≤ s ≤ 1

γ2(s− 1) if 1 ≤ s ≤ 2

γ3(s− 2) if 2 ≤ s ≤ 3

γ4(s− 3) if 3 ≤ s ≤ 4.

311 We thank B. Burckel for several E-mail exchanges on this curve.
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Figure 75: The Pochhammer curve: null-homologous but not null-homotopic in the twice
punctured domain C \ {0, 2}.

Since n(γ0, 0) = n(γ0, 2) = 0, we see that n(γ0, a) = 0 for every a ∈ C \ Γ0, and so γ0 is
null-homologous in D. Now suppose that γ0 is null-homotopic in D = C \ {0, 2}. Then, by
Corollary 13.64(13.64) there exists a (1, 1)-homotopy H : [0, 4]× [0, 1]→ D of closed curves
such that H(s, 0) = γ0(s) and H(s, 1) = 1 ∈ D for every s ∈ [0, 4].

Due to Corollary 7.343 (7.343) 312, H = eh for some h ∈ C([0, 4]× [0, 1],C) (note that
by Example 7.338, the convex set K = [0, 4]× [0, 1] is contractible).

Let log denote the principal branch of the logarithm on C\ ]−∞, 0]. Since 2 is not in
the image of H, log 2 + 2kπi does not belong to the image of h.

Now for (s, t) = (0, 0) we have 1 = γ0(0) = H(0, 0) = eh(0,0). So we may assume that
h(0, 0) = 0.

Claim 1 The function h(·, 0) necessarily is given by

h(s, 0) =


2πis if 0 ≤ s ≤ 1

log(2− e2πis) + 2πi if 1 ≤ s ≤ 2

2πi(3− s) if 2 ≤ s ≤ 3

log
(
2− e2πi(4−s)) if 3 ≤ s ≤ 4.

(see figure 76).
For the proof, we distinguish four cases.
Case 1. If 0 ≤ s ≤ 1, H(s, 0) = eh(s,0) and H(s, 0) = γ0(s) = e2πis imply that

h(s, 0) = 2πis + 2kπi for some k independent of s ∈ [0, 1]. Since h(0, 0) = 0 we conclude
that h(s, 0) = 2πis for s ∈ [0, 1].

Case 2. Now let s ∈ [1, 2] and put L(s) = log(2− e2πis) + 2πi. Note that this is well
defined, since all values of 2− e2πis are contained in the right-half plane.

Now H(s, 0) = eh(s,0), H(s, 0) = γ0(s) = 2 − e2πis and eL(s) = 2 − e2πis imply that
h(s, 0) = L(s) + 2kπi for some k ∈ Z. Now, by the first case, h(1, 0) = 2πi. Hence k = 0.

312 One may also use Borsuk’s Theorem 12.5, a more advanced tool.
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Figure 76: The logarithm of the Pochhammer curve in the domain C\{log 2+2kπi : k ∈ Z}.

Case 3. If s ∈ [2, 3], then γ0(s) = γ3(s− 2) = γ−1 (s− 2). Now a parametrization of γ−1
is given by θ : [0, 1] 7→ e2πi(1−θ). So γ0(s) = e2πi(3−s). Now γ0(s) = H(s, 0) = eh(s,0) implies
h(s, 0) = 2πi(3− s) + 2kπi for some k ∈ Z. But by Case 2, h(2, 0) = 2πi. Thus k = 0.

Case 4. Let s ∈ [3, 4], and put L̃(s) = log(2− e2πi(4−s)). Note that this is well defined,
since all values of 2− e2πi(4−s) are contained in the right-half plane.

Next note that γ0(s) = γ4(s− 3) = γ−2 (s− 3). Now a parametrization of γ−2 is given by

θ : [0, 1] 7→ 2− e2πi(1−θ). Hence γ0(s) = 2− e2πi(4−s). Now γ0(s) = H(s, 0) = eh(s,0) implies
h(s, 0) = L̃(s) + 2kπi for some k ∈ Z. By Case 3, h(3, 0) = 0. As L̃(3) = 0, we deduce
again that k = 0. This proves Claim 1.

Now we use that H is a (1, 1)-loophomotopy. This implies, in particular, that eh(0,t) =
H(0, t) = 1 for every t ∈ [0, 1]. Hence h(0, t) = 2kπi for some k ∈ Z. Since h(0, 0) = 0, we
deduce that k = 0 and so eh(s,1) = 1 implies that h(s, 1) = 0. We conclude that h is a (0, 0)-
homotopy in C \ {log 2 + 2kπi : k ∈ Z} between the curve h0(s) := h(s, 0) and the constant
0. As the winding numbers for curves are invariant under loophomotopies (Proposition
13.84), n(h0, log 2) would coincide with n(δ0, log 2) = 0, an obvious contradiction to the
fact that n(h0, log 2) = −1 (see figure 76).


