UNIVERSAL FUNCTIONS ON $H^{\infty}(B^n)$

RICHARD ARON

ABSTRACT. We will report on a fairly recent paper with Pamela Gorkin, whose principal result is a theorem about universal functions on $H^{\infty}(B^n)$, where B^n is the ℓ_2 -ball in \mathbb{C}^n . P. S. Chee showed that there is a sequence (L_k) of automorphisms of B^n to which one can associate a universal function $f \in H^{\infty}(B^n)$, ||f|| = 1. That is, the set $\{f \circ L_k \mid k \in \mathbb{N}\}$ is dense in $H^{\infty}(B^n)$ when this space is endowed with the compact-open topology. Here, each L_k corresponds to a point $z_k \in B^n$.

The topic addressed here is the *size* of the set of such universal functions f. Theorem: There is a sequence $(z_k) \subset B^n$ for which one can find an infinite dimensional closed subspace $V \subset H^{\infty}(B^n)$ with the following property: Every $f \in V$, ||f|| = 1, is universal with respect to the sequence (L_k) .

(joint work with Pamela Gorkin)