Wayne Smith, (USA)

Brennan's conjecture for weighted composition operators

Brennan's conjecture concerns integrability of the derivative of a conformal map τ of the unit disk **D**. The conjecture is that, for all such τ ,

$$\int_{\mathbf{D}} (1/|\tau'|)^p dA < \infty$$

holds for -2/3 . This is known for <math>-2/3 . $We show Brennan's conjecture is equivalent to a statement about weighted composition operators. Let <math>\tau$ be as above and let φ be an analytic self-map of **D**. Define, for f analytic on **D**,

$$(A_{\varphi,p}f)(z) = \left(\frac{\tau'(\varphi(z))}{\tau'(z)}\right)^p f(\varphi(z)).$$

There are always choices of φ that make $A_{\varphi,p}$ bounded on the Bergman space $L^2_a(\mathbb{D})$. We are interested in the set of p for which there is a choice of φ (depending on τ) that makes $A_{\varphi,p}$ compact on $L^2_a(\mathbb{D})$. We show this happens if and only if $(1/\tau')^p \in L^2_a(\mathbb{D})$. Thus Brennan's conjecture is equivalent to such a choice of φ existing for the range -1/3 , and this is known for <math>-1/3 .