William Ross, (USA)

Common cyclic vectors for normal operators
For a measure μ in the plane, consider the class S_{μ} of cyclic multiplication operators on $L^{2}(\mu)$, i.e., the set of multilication operators M_{ϕ} such that the symbol is one-to-one on a set of full μ-measure. For what measures μ does S_{μ} have a common cyclic vector? When μ is a discrete measure, S_{μ} has a common cyclic vector while if μ has a continuous part, then S_{μ} does not. When μ has a continuous part, what is a natural subset of S_{μ} that has a common cyclic vector. This is recent joint work with Warren Wogen.

