Stefan Richter , (USA)

Analytic contractions, nontangential limits, and the index of invariant subspaces

(joint work with Alexandru Aleman and Carl Sundberg)

Let \mathcal{H} be a Hilbert space of analytic functions on the open unit disc \mathbb{D} such that the operator M_{ζ} of multiplication with the identity function ζ defines a contraction operator. Let k denote the reproducing kernel of \mathcal{H} and let g be a nonzero function in \mathcal{H} . It turns out that up to sets of linear Lebesgue measure 0 the set

$$\Delta(\mathcal{H}) = \{ z \in \partial \mathbb{D} : \text{ nt-} \limsup_{\lambda \to z} (1 - |\lambda|^2) \frac{||k_\lambda||^2}{|g(\lambda)|^2} < \infty \}$$

is independent of the choice of g. It is one of our results that $\Delta(\mathcal{H})$ is the largest subset of $\partial \mathbb{D}$ such that for each $f, g \in \mathcal{H}, g \neq 0$ the meromorphic function f/g has nontangential limits a.e. on $\Delta(\mathcal{H})$. Furthermore, we will see that the question of whether or not $\Delta(\mathcal{H})$ has linear Lebesgue measure 0 is related to questions about the invariant subspace structure of M_{ζ} .

We further associate with \mathcal{H} a second set $\Sigma(\mathcal{H}) \subseteq \partial \mathbb{D}$ which is defined in terms of the norm on \mathcal{H} (or equivalently by use of the minimal co-isometric extension of M_{ζ}). For example, $\Sigma(\mathcal{H})$ has the property that $||\zeta^n f|| \to 0$ for all $f \in \mathcal{H}$ if and only if $\Sigma(\mathcal{H})$ has linear Lebesgue measure 0.

It turns out that $\Delta(\mathcal{H}) \subseteq \Sigma(\mathcal{H})$ a.e. and $\Delta(\mathcal{H}) \neq \Sigma(\mathcal{H})$ in general. We will present conditions that imply that $\Delta(\mathcal{H}) = \Sigma(\mathcal{H})$ a.e.. For example, one corollary to our results states that if dim $\mathcal{H}/\zeta\mathcal{H} = 1$ and if there is a c > 0 such that for all $f \in \mathcal{H}$ and all $\lambda \in \mathbb{D}$ we have $||\frac{\zeta-\lambda}{1-\lambda\zeta}f|| \geq c||f||$, then $\Delta(\mathcal{H}) = \Sigma(\mathcal{H})$ a.e. and the following four conditions are equivalent:

(1) $||\zeta^n f|| \to 0$ for some $f \in \mathcal{H}$,

(2) $||\zeta^n f|| \not\rightarrow 0$ for all $f \in \mathcal{H}, f \neq 0$,

(3) $\Delta(\mathcal{H})$ has nonzero linear Lebesgue measure in $\partial \mathbb{D}$,

(4) every nonzero invariant subspace \mathcal{M} of M_{ζ} has index 1, i.e. satisfies dim $\mathcal{M}/\zeta \mathcal{M} = 1$.