Raymond Mortini, (Metz, France)

Countably generated prime ideals in H^{∞}

The talk concerns joint work with Pamela Gorkin on the structure of prime ideals in the algebra H^{∞} of bounded analytic functions in the open unit disk. In 1984 Gorkin and the speaker independently confirmed a conjecture of J. Kelleher and F. Forelli by showing that a nonzero prime ideal in H^{∞} is finitely generated if and only if it is a maximal ideal of the form $M(z_0) =$ $\{f \in H^{\infty} : f(z_0) = 0\}$ for some $z_0 \in \mathbb{D}$. These maximal ideals actually are principal ideals; they are generated by the single function $z - z_0$. In Mortini's thesis an example of a non-maximal, countably generated prime ideal is given: it is the ideal $I = I(S, S^{1/2}, S^{1/3}, ...)$ generated prime roots of the atomic inner function $S(z) = \exp\left(-\frac{1+z}{1-z}\right)$. This was the first explicit example of a non-maximal prime ideal in H^{∞} . Are there any other countably generated prime ideals in H^{∞} , apart from those given by inner rotations of the function S? For $|\sigma| = 1$, let $S_{\sigma}(z) = S(\overline{\sigma}z)$ be the atomic inner function with singularity at the point σ . In our latest joint paper (to appear in Math. Z.) we confirm the conjecture that a nonzero prime ideal I in H^{∞} is countably generated if and only if either $I = M(z_0)$ for some $z_0 \in \mathbb{D}$ or if $I = I(S_{\sigma}, S_{\sigma}^{1/2}, S_{\sigma}^{1/3}, \dots)$ for some $\sigma \in \mathbb{C}$ with $|\sigma| = 1$. The proof uses maximal ideal space techniques and is based on some factorization theorems and on Suarez's result that H^{∞} is a separating algebra.