Michael Jury, (USA)

 C^* -algebras generated by composition operators

We discuss some recent work addressing the following general question: given a set of composition operators on a Hilbert function space H, what can be said about the C*-algebra they generate? We discuss the particular example of the C*-algebra C_{Γ} , generated by the composition operators $\{C_{\gamma} : \gamma \in \Gamma\}$ acting on the Hardy space, where Γ is a discrete group of Möbius transformations. We prove that C_{Γ} contains the unilateral shift (and hence the compact operators \mathcal{K}), and there is an exact sequence

$$0 \to \mathcal{K} \to \mathcal{C}_{\Gamma} \to C(\partial \mathbb{D}) \times \Gamma \to 0$$

This result has many interesting consequences, for example by applying techniques from noncommutative geometry one can obtain index theorems for sums of weighted composition operators $\sum T_{f_{\gamma}}C_{\gamma}$.