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Large linear manifolds of noncontinuable boundary-regular holomorphic func-
tions

Let G be a domain in the complex plane. We denote by He(G) the set of
all holomorphic functions on G having G as its domain of holomorphy.
In 1884 Mittag–Leffler discovered that He(G) is not empty. In 1933 Kierst
and Szpilrajn [4] showed that for the unit disc D the above property is
generic, in the sense that He(D) is residual. Recently Kahane [3] and Bernal
[1] have generalized this result to any domain G and to subspaces X of
holomorphic functions on G satisfying some conditions. In particular X
can be considered as the space A∞(G) of boundary-regular holomorphic
functions on G.
In 2005 Bernal, Calderón and Luh [2] prove that if G is a domain in the
complex plane satisfying adequate topological or geometrical conditions then
there exists a large (dense or closed infinite-dimensional) linear submanifold
of A∞(G) all of whose nonzero members are not continuable across any
boundary point of G.
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[1] L. Bernal-González, Linear Kierst-Szpilrajn theorems, Studia Math. 166
(2005), 55–69.
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