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The Pythagorian school: the beginning of mathematics
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Chapter 1

The Jordan curve Theorem,
logarithms and fixed points

1.1 Logarithms of holomorphic functions

Definition 1.1. i) A cycle Γ is a finite union of closed, piecewise C1-curves 1. The index (or
winding number) of a cycle with respect to the point z /∈ Γ is given by

n(Γ, z) =
1

2πi

∫
Γ

1

ζ − z
dζ.

It coincides with the number of times the cycle surrounds the point z.

ii) A cycle Γ in a domain G ⊆ C is called null-homologous with respect to G if n(Γ, a) = 0
for every a ∈ C \G.

iii) A domain D in C is called a Cauchy domain if every cycle in D is null-homologous.

iv) A Jordan curve J is the homeomorphic image of the unit circle T.

We note that n(Γ, z) is constant on the components of C \ Γ and 0 on the unbounded
component.

Theorem 1.2. Let D be a domain in C. The following assertions are equivalent:

(1) D is a Cauchy domain; that is n(γ, a) = 0 for every a ∈ C \D and every cycle γ in D. In
other words, every cycle in D is null-homologous.

(2) Every f ∈ H(D) admits a primitive.

(3) Every f ∈ H(D) with Z(f) = ∅ admits a holomorphic logarithm in D; that is there is
F ∈ H(D) such that f = eF .

(4) Every f ∈ H(D) with Z(f) = ∅ admits a holomorphic square-root in D; that is there is
G ∈ H(D) such that G2 = f .

1Where we made the usual convention of “identifying” the curve γ = φ([0, 1]) with the path φ itself.
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Proof. (1) =⇒ (2): Fix z0 ∈ D and let γz be a path in D joining z0 with z. Then the integral
F (z) :=

∫
γz
f(ξ)dξ is a well defined function in D, because by Cauchy’s global integral theorem,∫

Γ f(ξ)dξ = 0 for every closed curve Γ in D. It is now easy to verify that

lim
h→0

F (z + h)− F (z)

h
= f(z).

Hence F ′ = f .
(2) =⇒ (3): Since Z(f) = ∅, the quotient f ′/f belongs to H(D). By hypothesis (2), f ′/f

admits a primitive; that is, there is h ∈ H(D) with h′ = f ′/f . Consider the function H := fe−h.
Then

H ′ = f ′e−h − fe−hh′ ≡ 0 on D.

Since D is connected, H ≡ const. := c on D. Since c 6= 0, we may write c as c = ea for some
a ∈ C. Then

f = ehea = ea+h.

The function F := a+ h is now the desired logarithm of f .
(3) =⇒ (4): Let f = eF with F ∈ H(D) and put G = eF/2. Then G ∈ H(D) and

G2 = eF = f .
(4) =⇒ (1): Let us suppose, to the contrary, that there exists a cycle γ in D and a ∈ C \D

such that N := n(γ, a) 6= 0. Consider the function f(z) = z − a. Then ZD(f) = ∅ and so, by
hypothesis (4), we successively have:

(i) There is f1 ∈ H(D) with ZD(f1) = ∅ such that f2
1 = f ;

(ii) There is f2 ∈ H(D) with ZD(f2) = ∅ such that f2
2 = f1. Hence f22

2 = f .

(iii) · · · · · · · · ·

(iv) There is fn ∈ H(D) with ZD(fn) = ∅ such that f2
n = fn−1. Hence f2n

n = f .

By taking logarithmic derivatives we deduce that

1

z − a
=
f ′(z)

f(z)
=

2f1f
′
1

f2
1

= 2
f ′1
f1

= 2

(
2
f ′2
f2

)
= · · · = 2n

f ′n
fn
.

Hence

N =
1

2πi

∫
γ

1

z − a
dz =

1

2πi

∫
γ

2n
f ′n(z)

fn(z)
dz

= 2n
1

2πi

∫
γ

f ′n(z)

fn(z)
dz︸ ︷︷ ︸

:=Nn

= 2nNn.

Since 1
2πi

∫
γ
f ′n(z)
fn(z) dz = n(fn ◦ γ, 0), Nn ∈ Z for every n ∈ N∗. Thus Nn → 0 and so Nn = 0 for

every n ≥ n0. But, by assumption, N 6= 0. This is a contradiction. Thus we have shown that
D is a Cauchy domain.
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Proposition 1.3.

i) Let f ∈ C(T,C∗) satisfy f(−z) = −f(z) for all z ∈ T. Then f has no square root in
C(T,C).

ii) No odd function f ∈ C(T,C∗) has a continuous logarithm in C(T,C),

Proof. i) Suppose that there is g ∈ C(T,C) such that g2 = f . Since, by hypothesis, f has
no zeros, g has no zeros. Hence q(z) := g(z)/g(−z) ∈ C(T,C∗) from which we conclude that
q2(z) = f(z)/f(−z) = −1. Because T is connected, q ≡ i or q ≡ −i. Therefore, since q is
constant,

−1 = q2(z)
!

= q(z)q(−z) =
g(z)

g(−z)
g(−z)
g(z)

= 1.

An obvious contradiction.

ii) This immediately follows from (i), since otherwise eL = f implies that
(
e

L
2

)2
= eL = f ;

in other words f would have a square root, contradicting i).

1.2 The Jordan curve theorem

Lemma 1.4. Let K ⊆ Rn be compact and C a component of Kc := Rn \K. Then C is open
and ∂C ⊆ ∂K ⊆ K.

Proof. It is easy to see that C is open. Now suppose, to the contrary, that there exists x ∈
∂C \ ∂K. Since every neighborhood of x meets C and K ∩ C = ∅, x cannot be an interior
point of K. Thus x ∈ Kc and so x belongs to some component C̃ of Kc. Let xn → x, xn ∈ C.
Because C̃ is open, xn ∈ C̃ for almost all n. But components are either disjoint or coincide.
Thus C̃ = C. So x ∈ C. This contradicts the assumption that x ∈ ∂C (note that, due to
openness, ∂C ∩ C = ∅).

Theorem 1.5 (The Jordan curve Theorem). Let J = φ(T ) be a Jordan curve in C. Then C \J
has exactly two components: the unbounded one, C∞, and the bounded component C1. Moreover
J = ∂C∞ = ∂C1.

Proof. First we show that J has at least one bounded component. Suppose, to the contrary,
that C \ J is connected. Let f : J → T be the inverse of φ. By Theorem 3.9, f has a continuous
logarithm on J ; say f = eh for some h ∈ C(J).

Since f is the left-inverse of φ we get

ξ = f(φ(ξ)) = eh(φ(ξ)), |ξ| = 1.

Let H be a Tietze extension of h ◦ φ : T → C to C. Then eH is a zero-free extension of the
identity on T; a contradiction to Corollary 1.12 to Brouwer’s fixed point theorem.

Next we show that there are at most two components. Suppose to the contrary that C \ J
has two bounded components, C1 and C2. Let aj ∈ Cj and consider the function

f(z) = (z − a1)s2/(z − a2)s1 , (z ∈ J).
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Here the sj ∈ Z are chosen so that for ξ ∈ T

φ(ξ)− a1 = ξs1eh1(ξ) and φ(ξ)− a2 = ξs2eh2(ξ),

where h1, h2 ∈ C(T,C) (see Theorem 3.19). Hence, with z = φ(ξ) ∈ J , |ξ| = 1,

f(z) = es2(h1◦φ−1)(z)−s1(h2◦φ−1)(z).

Hence f has a continuous logarithm on J . By Theorem 3.16, s2 = s1 = 0. Therefore
φ(ξ)− a1 = eh1(ξ) and so z − a1 = e(h1◦φ−1)(z) (z ∈ J) is an exponential. In particular, applying
Tietze to h1 ◦ φ−1, we see that (z − a1)|J has a continuous zero-free extension to C. This is a
contradiction to Corollary 1.12. Hence, C \ J has exactly one bounded component, which we
denote by C1.

Now let C∞ be the unbounded component of C \ J . We conclude that C \ J = C∞ ∪ C1.

Next we show the assertion that J = ∂C∞ = ∂C1. By Lemma 1.4, for j = 1 or j = ∞,
∂Cj ⊆ J . Now

C \ ∂Cj = C \ (Cj \ Cj) = (C \ Cj) ∪ Cj .

Hence C \ ∂Cj is a disjoint union of open sets; so it is disconnected. Now, if ∂Cj would be a
proper subset of J , then, by Lemma 1.6, C \ ∂Cj would be connected. A contradiction. Thus
∂Cj = J .

The unbounded component C∞ of C \ J is called the exterior domain and the bounded
component C1 the interior domain associated with the Jordan curve J . One also says that C1

is the interior of J and C∞ the exterior of J .

Lemma 1.6. Let J be a Jordan curve in C, If K is a proper subset of J , then C\K is connected.

Proof. We shall use Borsuk’s Theorem 3.9 to conclude. So let f : K → C∗ be a continuous
zero-free function on K. Let S := φ−1(K). Since φ : T→ J is a homeomorphism, S is a proper
compact subset of T. Hence C \ S is connected.

For ξ ∈ T, let h(ξ) = f(φ(ξ)). Then h is a zero-free continuous function on S. By Theorem
3.9, h has a continuous logarithm L on S. Thus, for z ∈ K,

f(z) = exp(L(φ−1(z)),

and so f has a continuous logarithm on K. By Borsuk’s Theorem again, C\K is connected.

1.3 Brouwer’s fixed point theorem

Let Bn = {x = (x1, . . . , xn) ∈ Rn : ||x|| :=
√∑n

j=1 |xj |2 ≤ 1} be the closed unit ball in Rn and

Sn−1 := ∂Bn the unit sphere (boundary of Bn).
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Lemma 1.7. There is no C1-map f : Bn → Sn−1 such that f(x) = x for all x ∈ Sn−1; in other
words, the closed ball does not admit a (smooth) retract to its boundary 2.

Proof. Let us suppose that there does exist such a map f : Bn → Sn−1 . Consider the convex-
combination ft of the identity on Bn and f ; that is, let ft(x) = (1− t)x+ tf(x), 0 ≤ t ≤ 1. Since
||ft(x)|| ≤ 1 we have that ft is a self-map of Bn that fixes every point in Sn−1, too. Moreover,
ft writes as ft(x) = x + t(f(x) − x). With g(x) := f(x) − x, we see that g is a C1-map of Bn

and so, due to the convexity of Bn, g satisfies a Lipschitz condition there. That is, there is a
constant C > 0 such that for every x, y ∈ Bn

||g(x)− g(y)|| ≤ C||x− y||.

We claim that there is t0 > 0 such that for all t ∈ [0, t0], the function ft is a bijection of Bn

onto Bn. First we show injectivity.

Suppose that ft(x1) = ft(x2) for some points x1, x2 ∈ Bn. Then x2 − x1 = t(g(x1)− g(x2))
and therefore

||x2 − x1|| = t||g(x1)− g(x2)|| ≤ Ct||x2 − x1||.

Hence, for Ct < 1, we get that x1 = x2. Thus ft is injective on Bn whenever 0 ≤ t < 1/C.

To show surjectivity, we look at the Jacobian matrix Jft(x). Note that Jft(x) = In + tJg(x),
where In is the identity matrix in Mn(R). Let

p(t, x) := det Jft(x) = det(In + tJg(x))

be the determinant of the Jacobian. Obviously, for each x ∈ Bn, p(t, x) is a polynomial in t. As
g is C1, we see that p(t, x) is a uniformly continuous function on [0, 1] × Bn with p(0, x) = 1.
Thus there exists t0 ∈]0, 1/C[ such that p(t, x) > 0 for all t ∈ [0, t0] and x ∈ Bn. By the inverse
function theorem, Gt := ft((Bn)◦) is an open set in Rn for these t. Note that Gt ⊆ Bn, and that,
due to continuity, Gt = ft(Bn). Assuming that Gt 6= Bn, the boundary ∂Gt of Gt intersects Bn

at some point y0 with ||y0|| < 1. Let x0 ∈ Bn satisfy ft(x0) = y0. Since Gt is open, y0 /∈ Gt and
so x0 ∈ Bn \ (Bn)◦ = Sn−1. Hence

y0 = ft(x0) = x0

has norm one; a contradiction. We conclude that ft is a surjection of Bn onto itself.

Let us now consider the polynomial F (t) =
∫
Bn

p(t, x)dx. Since for t ∈ [0, t0], ft : Bn → Bn

is a bijection, we obtain from the change of variable formula for multiple integrals that F (t) is the
volume σn of the image ft(Bn). But ft(Bn) = Bn. Hence F (t) is constant for t ∈ [0, t0]. Since
F (t) is a polynomial, F (t) must be constant σn for each t ∈ [0, 1]. In particular, F (1) = σn > 0.

But on the other hand, ||f(x)|| = 1 for each x ∈ Bn implies that
∑n

j=1 φ
2
j (x) ≡ 1, where

f = (φ1, . . . , φn). Hence, by taking the partial derivatives,

n∑
j=1

∂φj
∂xk

φj ≡ 0.

2 In Corollary 1.11 it will be shown that one can replace “smooth” by “continuous”.
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Thus each column of the Jacobian

Jf (x) =


∂φ1(x)
∂x1

. . . ∂φ1(x)
∂xn

...
...

∂φn(x)
∂x1

. . . ∂φn(x)
∂xn


is orthogonal to the column vector f(x) itself; hence the rank of Jf (x) is less than n− 1 and so
its determinant det Jf (x) is zero for every x ∈ Bn. But f(x) = f1(x) and so

F (1) =

∫
Bn

det Jf1(x)dx = 0.

This contradicts the fact that F (1) > 0.

Theorem 1.8 (Brouwer’s fixed point theorem). Every continuous map f : Bn → Bn has a fixed
point.

Proof. By the Stone-Weierstrass theorem there exists a sequence (pj) of polynomials pj ∈
R[x1, . . . , xn] converging uniformly to f on Bn. Say

max
x∈Bn

||pj(x)− f(x)|| ≤ 1/j.

Now qj = (1 + 1/j)−1pj converges uniformly to f , too, and ||qj(x)|| ≤ 1. Hence each qj is a
C1 self-map of Bn. We claim that qj has a fixed point in Bn. For if not, consider the map
Qj : Bn → Sn−1 that sends x ∈ Bn to the unique intersection point of the ray from qj(x) to x
that meets Sn−1; that is Qj(x) = x+ s(x)n(x) where n(x) = (x− qj(x))/||x− qj(x)|| and

s(x) = −x · n(x) +
√

1− ||x||2 + (x · n(x))2.

Then Qj is a continuous map from Bn to Sn−1 that fixes each point in Sn−1. In order to
apply Lemma 1.7, we need still to show that Qj is a C1-map. To see this, it suffices to show
that 1− ||x||2 + 〈x, n(x)〉2 is never zero.

Figure 1.1: qj(x)− x orthogonal to x

This actually holds, since otherwise 1 + 〈x, n(x)〉2 = ||x||2 ≤ 1 implies 〈x, n(x)〉 = 0 and
||x|| = 1 for some x ∈ Bn. Hence x is orthogonal to x − qj(x). By elementary geometry
||qj || > 1, a contradiction (see figure 1.1).
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This can also be seen as follows: Since 0 = 〈x− qj(x), x〉 = ||x||2 − 〈qj(x), x〉, we see that

1 = ||x||2 = 〈qj(x), x〉 = | 〈qj(x), x〉 | ≤ ||x|| ||qj(x)|| ≤ 1.

Thus, by the equality case in the Cauchy-Schwarz inequality, qj(x) = λx for some λ > 0.
Consequently |λ| = 1 and so qj(x) = x; a contradiction to the assumption that qj does not
admit a fixed point. Hence we have found a C1-retract of Bn into Sn−1; a contradiction to
Lemma 1.7. Thus, each of our maps qj has a fixed point xj ∈ Bn. By passing to a subsequence,
we may assume that xj converges to some ξ ∈ Bn. Due to the uniform convergence of (qj) to
f , we therefore have that f(ξ) = ξ, too.

Corollary 1.9. Every bounded continuous map f : Rn → Rn has a fixed point.

Proof. Since f is bounded, there is a ball B = {x ∈ Rn : ||x|| ≤ r}, r > 0, such that f(Rn) ⊆ B.
Hence the restriction f : B → B is a continuous selfmap of B. Brouwer’s fixed point Theorem
1.8 applied to the map

F :

{
Bn → Bn

x 7→ r−1f(r x)

yields the desired fixed point of f in B.

One of our major applications of Brouwer’s fixed point theorem is the following result on the
non-existence of invertible extensions of a certain vector-valued map in Rn.

Theorem 1.10. Let K ⊆ Rn be compact, C a bounded component of Rn \K and a ∈ C. Then
the n-tuple x− a, defined on K, is invertible, but does not admit a continuous extension to an
invertible n-tuple on K ∪ C.

Proof. Let f(x) = x − a. Since f · f
t

|f |2
= 1, we see that f is invertible. Next we use that, by

Lemma 1.4, ∂C ⊆ ∂K. Let L = K ∪ C. Suppose that F1 ∈ C(L,Rn) is an invertible n-tuple
extending f . Let

F2(x) =

{
x− F1(x) if x ∈ C
a if x ∈ Rn \ C.

Since

(Rn \ C) ∩ C ⊆ ∂C ⊆ ∂K ⊆ K,

we see that F2 is well-defined, because on this intersection both expressions are equal. Since F2

is bounded, there is a closed ball B ⊆ Rn with C ⊆ B such that F2 is a continuous self-map of
B. By Brouwer’s fixed point theorem ( Theorem 1.8) there is a point w ∈ B with F2(w) = w.
Because a ∈ C, the second case in the definition for F2(w) is not possible. Hence, w ∈ C ⊆ L
and w = F2(w) = w − F1(w). Thus F1(w) would be the zero vector, a contradiction to the
invertibility of the n-tuple F1 on L. We conclude that f cannot be extended to an invertible
continuous n-tuple on L.
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Corollary 1.11. Let Bn be the closed unit ball in Rn. Then the identity map

(x1, . . . , xn) : ∂Bn → ∂Bn

does not admit a zero-free 3, continuous extension to Bn.

Proof. Immediate from Theorem 1.10.

Later, in Theorem 1.14, it will be shown that Corollary 1.11 is, indeed, equivalent to
Brouwer’s fixed-point theorem.

By identifying R2 with C, we immediately obtain the next Corollary.

Corollary 1.12. Let K ⊆ C be compact, C a bounded component of C\K and a ∈ C. Then the
function f(z) = z − a defined on K is zero-free on K, but does not admit a zero-free extension
to K ∪ C.

Later on (see Lemma 3.15) we will prove the same result for integer powers of z − a.

Definition 1.13. A Hausdorff space X is said to be contractible to the point x0 ∈ X, if there
is a continuous map H : X × [0, 1]→ X such that H(x, 0) = x and H(x, 1) = x0 for all x ∈ X.
Such a map is said to be a homotopic contraction.

Thus we have that X is contractible to the point x0 if the identity map on X is homotopic
to the constant map x 7→ x0.

Every convex set in Rn is contractible; in fact, if K is a convex set, then we use the map
H(x, t) = (1− t)x+ tN , 0 ≤ t ≤ 1, where N is any fixed point of K and x ∈ K.

Theorem 1.14. Let E = (E, || · ||) be a normed space, B = {x ∈ E : ||x|| ≤ 1} the unit ball,
and S = {x ∈ E : ||x|| = 1} the unit sphere in E. Then the following assertions are equivalent:

(1) Each continuous function f : B → B has a fixed point;

(2 The sphere S is no retract for B; that is there does not exist a continuous function r :
B → S such that r(x) = x for every x ∈ S;

(3) The sphere S is not contractible.

Proof. (1) =⇒ (2) Suppose that r : B → S is a retract. Then f = −r is a selfmap of B; By (1)
f admits a fixed point x0 ∈ B. Since f(B) ⊆ S, we have that x0 ∈ S. Hence

x0 = f(x0) = −r(x0) = −x0.

This is a contradiction, since ||x0|| = 1. Thus (2) holds.

3meaning that (0, . . . , 0) does not belong to the image
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(2) =⇒ (3) Suppose that H : [0, 1] × S → S is a homotopy in S with H(x, 0) = x and
H(x, 1) = x0 for every x ∈ S. Let

r(x) =

{
x0 if ||x|| ≤ 1/2

H( x
||x|| , 2− 2||x||) if 1/2 ≤ ||x|| ≤ 1.

Then r is well defined (since for ||x|| = 1/2 we have r(x) = H(2x, 1) = x0), hence r is a
continuous map on B into S. Now for x ∈ S we see that r(x) = H(x, 2 − 2) = H(x, 0) = x.
Thus r is a retract of B to S; a contradiction to (2).

(3) =⇒ (1)
Suppose that there exists a continuous selfmap f of B without any fixed points. Consider

the function H : [0, 1]× S → S defined by

H(x, t) =

{
x−2tf(x)
||x−2tf(x)|| if 0 ≤ t < 1/2
2x−2tx−f(2x−2tx)
||2x−2tx−f(2x−2tx)|| if 1/2 ≤ t ≤ 1

Then H is well defined and continuous. ( In fact, if 2x−2tx−f(2x−2tx) = 0, then 2x−2tx
would be a fixed point of f , and if x − 2tf(x) = 0, then 1 > 2t||f(x)|| = ||x|| = 1. Twice a
contradiction.) Moreover, H(x, 0) = x and H(x, 1) = x0, where x0 := −f(0)/|f(0)| ∈ S. Thus
H is a homotopy shrinking the sphere to a point. A contradiction to (3).
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Chapter 2

The ∂-calculus

In this chapter we present some advanced function theoretic tools that we need several times later
on. The main feature is to derive explicit solutions to the ∂-equation ∂v = f in C (also called
inhomogeneous Cauchy-Riemann differential equation) and to derive in a simple and elegant
way the Gauss-Green-Stokes formulas in the plane. We also include a purely computational
section giving the explicit values of several Cauchy-type integrals

∫
D f(ζ)/(ζ − z) dσ2(ζ). The

set of all holomorphic functions on an open set Ω will be denoted by H(Ω).

2.1 The Wirtinger derivatives

Whereas in real analysis the partial derivatives fxj := ∂f/∂xj play a central role, their counter-

parts in complex analysis are the so-called Wirtinger derivatives ∂f = ∂f/∂z and ∂f = ∂f/∂z.
So suppose that f : Ω → C is R-differentiable at z0 = x0 + iy0 ∈ Ω, Ω ⊆ C open. Then, by

writing x− x0 = 1
2

(
(z − z0) + (z − z0)

)
and y − y0 = 1

2i

(
(z − z0)− (z − z0)

)
we arrive at

f(z) = f(z0) + fx(z0)(x− x0) + fy(z0)(y − y0) + O(z − z0)

= f(z0) +
1

2

(
fx(z0)− ify(z0)

)
(z − z0) +

1

2

(
fx(z0) + ify(z0)

)
(z − z0) + O(z − z0).

The Wirtinger derivatives are now defined by

fz := ∂f/∂z := ∂f :=
1

2

(
fx − ify)

fz := ∂f/∂z := ∂f :=
1

2

(
fx + ify).

It is easy to see that the Cauchy-Riemann equations take the form ∂f = 0. Also, if f is
holomorphic at z0, then f ′(z0) = fz(z0) = fx(z0).

Here is a couple of useful formulas.

Proposition 2.1.
Let f(z), g(z) and h(w) be C1-functions in C. Then

(1) (fg)z = fgz + fz g; (fg)z = fg z + f z g;

15
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(2) (fz) = fz and (fz) = fz;

(3) (h ◦ f)z = (hw ◦ f) fz + (hw ◦ f) fz; (h ◦ f)z = (hw ◦ f) fz + (hw ◦ f) fz;

(4) If s(t) is a C1-path in C, then

(f ◦ s)′(t) = fz(s(t)) s
′(t) + fz(s(t)) s′(t).

(5) If ϕ(θ, r) = f(reiθ), r > 0, then

ϕr(θ, r) = eiθfz + e−iθ fz

ϕθ(θ, r) = i reiθ fz + re−iθ(−i) fz;

(6) ∂f(z) =
1

2
eiθ
(
∂

∂r
+
i

r

∂

∂θ

)
ϕ(θ, r);

(7) If f ∈ C1(R,R) and h ∈ C1(C,R), then

(f ◦ h)z = (f ′ ◦ h)hz and (f ◦ h)z = (f ′ ◦ h)hz.

(8) Let u(z, w) be a C1-function in C2, h1(t) and h2(t) two C1-paths in C, and h(t) :=
u(h1(t), h2(t)). Then

h′(t) = uz(h1(t), h2(t)) · h′1(t) + uz(h1(t), h2(t)) · h′1(t)

+ uw(h1(t), h2(t)) · h′2(t) + uw(h1(t), h2(t)) · h′2(t).

The proof is purely computational. Note that (5) is best done if one writes ϕ(θ, r) =
f(r cos θ, r sin θ). Let us point out that the second exponential factor in the partial derivatives
for ϕ is e−iθ and not eiθ. Applying formula (6), we immediately see that the logarithm

logDj
(z) := log |z|+ i arg z

is a holomorphic function on D1 := C \ [0,∞[ or D2 = C\ ]−∞, 0] for example.

Here are two formulas envolving the Laplace operator ∆u = uxx + uyy on C:

Remark 2.2. Let u be a C2-function in C, and f ∈ H(C). Then:

(1) ∆u = 4 uzz.

(2) ∆(u ◦ f) =
(
(∆u) ◦ f

)
|f ′|2.

Proof. (1) uzz = 1
2(ux − iuy)z = 1

4 (uxx + iuxy)− 1
4 i(uyx + iuyy) = 1

4 ∆u.
(2) Here we use Proposition 2.1 (3) and (2):

4∆(u ◦ f) = (u ◦ f)zz =
(
(uw ◦ f)fz

)
z

= (uww ◦ f)fz fz

= 4
(
(∆u) ◦ f

)
|f ′|2.
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2.2 Planar Cauchy-integrals and the ∂-equation

One of our main tools will be the following Cauchy-type representation theorem for smooth
functions with compact support. Planar Lebesgue measure is denoted by σ2.

Theorem 2.3. Let f be continuously R-differentiable in C and suppose that f has compact
support. Then

f(z) = − 1

π

∫
C

∂f(ζ)

ζ − z
dσ2(ζ).

Proof. Fix z ∈ C and Let φ(r, θ) = f(z + reiθ). Then, by 2.1 (6), the integral above coincides
with the limit, as ε→ 0, of

I(ε) := − 1

2π

∫ ∞
ε

∫ 2π

0

(
∂φ

∂r
+
i

r

∂φ

∂θ

)
dθ dr. (2.1)

Since φ and its partial derivatives are periodic in θ with period 2π, the integral of ∂φ/∂θ is 0.
Hence

I(ε) = − 1

2π

∫ 2π

0

∫ ∞
ε

∂φ

∂r
dr dθ =

1

2π

∫ 2π

0
φ(ε, θ) dθ.

Since φ(ε, θ) tends uniformly (in θ) to f(z) as ε→ 0, we see that limε→0 I(ε) = f(z).

The existence of the integral

− 1

π

∫
C

∂f(ζ)

ζ − z
dσ2(ζ)

with a singularity at z also follows from the fact that the convolution integral of a locally
L1(dσ2)-function, here 1/ζ, with a continuous function, converges.

The following result is an analogue of the Cauchy-integral formula.

Proposition 2.4. Let α ∈ C∞c (C) and f continuous on C. Suppose that f is holomorphic in
Ω, where Ω is an open neighborhood of the support of α. Then∫

C
(∂α) f dσ2 = 0. (2.2)

Proof. Let U be an open set such that supp α ⊆ U ⊆ U ⊆ Ω. Let φ ∈ C∞c (C) satisfy φ = 1 on
U and supp φ ⊆ Ω. Fix a ∈ C and define

F (z) =

{
φ(z)f(z)(z − a) if z ∈ Ω

0 if z /∈ Ω.

Then F ∈ C∞c (C). Since F is holomorphic in U ⊇ supp(α), we have ∂(αF ) = F∂α on U . Thus,
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by Theorem 2.3,

− 1

π

∫
C
∂α(ζ)f(ζ) dσ2(ζ) = − 1

π

∫
U

∂α(ζ)F (ζ)

ζ − a
dσ2(ζ)

= − 1

π

∫
U

∂(αF )(ζ)

ζ − a
dσ2(ζ)

= − 1

π

∫
C

∂(αF )(ζ)

ζ − a
dσ2(ζ)

= α(a)F (a) = 0.

A second proof of Proposition 2.4 will be given later 2.21 as an application of the complex
version of Gauss’ Theorem.

It is interesting to note that if we merely assume that f is holomorphic in a neighborhood
of supp ∂α, then formula (2.2) does no longer hold, although the values of f outside supp ∂α
do not play any role, as what is demonstrated by the following integral equality:∫

C
(∂α)fdσ2 =

∫
supp ∂α

(∂α)fdσ2.

Here is an example. Given a ∈ C, choose α ∈ C∞c (C) so that

R := (supp α)◦ \ supp ∂α 6= ∅,

a ∈ R and α(a) = 1.
Let U be an open neighborhood of supp ∂α and W an open set containing a with U ∩W = ∅.

Let g ∈ C∞c (C) be chosen so that g = 0 in a neighborhood of W and g(z) = 1 if z ∈ U . Define
f by

f(z) =


1

z − a
g(z) if z ∈ C \W

0 if z ∈W.
(2.3)

Then f ∈ C∞c (C) and f is holomorphic in the neighborhood U of supp ∂α. By Theorem 2.3,

− 1

π

∫
C

∂α(ζ) f(ζ)dσ2 = − 1

π

∫
supp ∂α

∂α(ζ) f(ζ) dσ2

= − 1

π

∫
supp ∂α

∂α(ζ)
1

ζ − a
dσ2

= − 1

π

∫
C

∂α(ζ)

ζ − a
dσ2

= α(a) 6= 0.
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In view of Proposition 2.4 and the fact that
∫
γ f(z)dz = 0 whenever f is the derivative of a

holomorphic function and γ a closed C1-path in Ω, it is tempting to conjecture that the following
is true:

Desideratum 2.5. Let α ∈ C∞c (C) and f ∈ C(C). Suppose that in a neighborhood U of the
support of ∂α, f is the derivative of a holomorphic function g. Then

∫
C(∂α)f dσ2 = 0.

Unfortunately, the assertion above is not true. Here is an example. Note that functions built
on 1/(z − a) (as in the formula (2.3)) cannot be taken, since they do not have primitives on
annuli surrounding a.

Let V be an open set containing supp ∂α with smooth boundary and such that ∂g = 0 and
∂g = f on U ⊇ V ⊇ V . Then ∫

C
(∂α) f dσ2 =

∫
V

(∂α) ∂g dσ2

=

∫
V
∂(α∂g) dσ2 −

1

4

∫
V
α∆g dσ2

=
1

2i

∫
∂V
α∂g dz − 0.

Now let α(z) = z for |z| < 2 and α = 0 for |z| ≥ 3. Then

supp ∂α ⊆ {2 ≤ |z| ≤ 3}.

Choose g ∈ C(C) such that g(z) = 1/z for |z| ≥ 1 and g(z) = z for |z| ≤ 1. Then g is
holomorphic on |z| > 1, a neighborhood of supp ∂α. As V we may take

V = {3/2 < |z| < 7/2}.

Then V is a neighborhood of supp ∂α. But∫
∂V
α∂g dz = 0−

∫
{|z|=3/2}

z
(−1)

z2
dz = 2πi 6= 0.

We are now ready to solve the ∂-equation in the plane.

Theorem 2.6. For k = 1, 2, . . . ,∞, let g ∈ Ck(C) and suppose that g has compact support.
Then the Cauchy transform G := C[g] of g, given by

G(z) := − 1

π

∫
C

g(ζ)

ζ − z
dσ2(ζ),

has the following properties:

1. G ∈ Ck(C) and limz→∞G(z) = 0;

2. ∂G = g.
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Proof. Let ζ = z + reiθ. Then

G(z) = − 1

π

∫ 2π

0

∫ ∞
0

g(z + reiθ)e−iθdr dθ.

This is a proper Riemann integral because g has compact support. Since g ∈ C1
c (C), the integral

J := − 1

π

∫ 2π

0

∫ ∞
0

∂g(z + reiθ)e−iθdr dθ

exists and, by interchanging the differential operators d
dx and d

dy with the integral operator, we

see that G ∈ Ck(C) and ∂G = J . Since

J = − 1

π

∫
C

∂g(ζ)

ζ − z
dσ2(ζ),

we may use Theorem 2.3 to conclude that J = g. Hence ∂G = g. That limz→∞G(z) = 0,
follows immediately from the definition of G.

Whereas the preceding results only used the Riemann integral, we must now deal with
Lebesgue integration of continuous functions on compacta. We note that we can no longer
use Riemann integrals (as above), since the compact sets K we are considering are not Jordan
measurable; their boundaries will have positive Lebesgue measure in general.

Lemma 2.7. Let X ⊆ C be a Borel set of finite planar measure. Then for all z ∈ C∫
X

1

|ζ − z|
dσ2(ζ) ≤ 2

√
πσ2(X).

In particular, 1/ζ is in L1(K,σ2) for each compact set K ⊆ C.

Proof. Let R =
√
σ2(X)/π, so σ2(X) = πR2. For fixed z ∈ C, let D be the closed disk

D(z,R) = {ζ ∈ C : |z − ζ| ≤ R}.

Because σ2(X) = σ2(D), we conclude from

X ∪D = (X \D) ∪D = (D \X) ∪X

that σ2(X \D) = σ2(D \X). Since |ζ − z| ≤ R for ζ ∈ D \X and |ζ − z| ≥ R for ζ ∈ X \D, it
follows that ∫

X\D

1

|ζ − z|
dσ2(ζ) ≤

∫
D\X

1

|ζ − z|
dσ2(ζ).

Now X = (X ∩D) ∪ (X \D). Hence∫
X

1

|ζ − z|
dσ2(ζ) =

∫
X\D

1

|ζ − z|
dσ2(ζ) +

∫
X∩D

1

|ζ − z|
dσ2(ζ)
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≤
∫
D\X

1

|ζ − z|
dσ2(ζ) +

∫
D∩X

1

|ζ − z|
dσ2(ζ)

=

∫
D

1

|ζ − z|
dσ2(ζ) =

∫ 2π

0

∫ R

0

1

r
r drdθ

= 2πR = 2
√
πσ2(X).

As a special case we obtain that for all z ∈ C�
�

�
I :=

1

π

∫
{|ζ|≤R}

1

|ζ − z|
dσ2(ζ) ≤ 2R. (2.4)

A computation of the exact value of I is rather difficult (in form of infinite series) and involves
Legendre polynomials. On the other hand it is very easy to determine the explicit value of

− 1

π

∫
{|ζ|≤R}

1

ζ − z
dσ2(ζ)

(see below).

Theorem 2.8. Let K ⊆ C be compact, f ∈ C(K,C)∩Ck(K◦), (k = 1, 2, . . . ,∞), and for z ∈ C
let

v(z) = − 1

π

∫
K

f(ζ)

ζ − z
dσ2(ζ).

Then the following assertions hold:

(i) v ∈ C(Ĉ), v holomorphic in C \K, and limz→∞ v(z) = 0;

(ii) v ∈ Ck(K◦);

(iii) ∂v = f in K◦.

Proof. (i)is easy. To show (ii) and (iii), let z0 ∈ K◦. Choose a closed disk D(z0, r) of radius r
centered at z0 such that D(z0, 2r) ⊆ K◦. Let α ∈ C∞c (C) satisfy α ≡ 1 on D(z0, r) and α ≡ 0
outside D(z0, 2r). Then for every z ∈ D(z0, r/2) we have

−π v(z) =

∫
D(z0,r)

f(ζ)

ζ − z
dσ2(ζ) +

∫
K\D(z0,r)

f(ζ)

ζ − z
dσ2(ζ)

=

∫
D(z0,r)

(αf)(ζ)

ζ − z
dσ2(ζ) +

∫
K\D(z0,r)

f(ζ)

ζ − z
dσ2(ζ)

=

∫
C

(αf)(ζ)

ζ − z
dσ2(ζ)−

∫
D(z0,2r)\D(z0,r)

(αf)(ζ)

ζ − z
dσ2(ζ)

+

∫
K\D(z0,r)

f(ζ)

ζ − z
dσ2(ζ)
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Using Theorem 2.6 for the first integral and interchanging the differentiation operators ∂
and ∂ with the integral operator in the remaining two integrals, allows us to conclude that
v ∈ Ck(K◦). Moreover, by Theorem 2.6

∂v(z0) = αf(z0) + 0 + 0 = f(z0).

Theorem 2.9. Let Ω be a domain in C and let k ∈ {1, 2, . . . ,∞}. If v ∈ Ck(Ω), then there
exists u ∈ Ck(Ω) such that ∂u = v.

Proof. Let (Kn) be an exhaustion sequence of Ω with Ω-convex sets. For j = 1, 2, . . . , choose
αj ∈ C∞c (C) so that suppαj ⊆ K◦j+1 and αj ≡ 1 on Kj and let α0 ≡ 0. Let

vj(z) =

{
(αj(z)− αj−1(z)) v(z) if z ∈ Kj+1

0 if z ∈ C \Kj+1.

Then vj ∈ Ck(C) and vj ≡ 0 on Kj−1, j ≥ 2, and
∑N

j=1 vj = αNv on Ω. Hence, if N →∞, we
see that on Ω,

∑∞
j=1 vj = v, the convergence being pointwise. Moreover, on KN , we have

N∑
j=1

vj = v.

Since vj ∈ Ckc (C), there is uj ∈ Ck(C) such that ∂uj = vj (see Theorem 2.6). In particular,

uj is holomorphic on K◦j−1 for j ≥ 2. (2.5)

By Theorem ??, applied to the Ω-convex set Kj−2, there is fj ∈ H(Ω) such that for j = 3, 4, . . .

sup
Kj−2

|uj − fj | < 2−j . (2.6)

Now let

u =

∞∑
n=1

(un − fn).

We claim that u is the solution we are looking for.
In fact, using (2.6), we see that the series defining u converges locally uniformly on Ω. Moreover,
by (2.5) and Weierstrass’ convergence theorem, the remainder term

∞∑
n=N+1

(un − fn)
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is holomorphic on K◦N . Thus u ∈ Ck(K◦N ) and, on K◦N ,

∂u = ∂
N∑
n=1

(un − fn) + ∂
∞∑

n=N+1

(un − fn)

=

N∑
n=1

∂un + 0

=

N∑
n=1

vn

= v.

Since
⋃∞
j=1K

◦
j = Ω, we obtain the assertion that ∂u = v on Ω and that u ∈ Ck(Ω).

2.3 Explicit values of some integrals

In this supplementary section we derive the explicit values of some Cauchy-type integrals. To
deal with integrals of the form

∫
D h(w, z)dσ2(w), we use polar-coordinates (r, θ), 0 < r < 1,

0 ≤ θ < 2π, and replace integration with respect to θ by complex integration on the unit circle;

that is we put dθ =
dξ

iξ
where |ξ| = 1. As usual, the orientation of the circle in

∫
|ξ|=1 is always

to be taken counterclockwise (that is the positive orientation).

Proposition 2.10. Let f ∈ H∞. Then�
�

�


1

π

∫
D
f(w) dσ2(w) = f(0) (2.7)

and �

�

�

�
− 1

π

∫
D

f(w)

w − z
dσ2(w) =


−f ′(0) if z = 0

(|z|2 − 1)f(z)−f(0)
z + f(0)z if 0 < |z| < 1

f(0)
z if |z| ≥ 1.

(2.8)

Remark 2.11. By the results in section 2.2 (in particular Theorem 2.6), the value u(z) of the
integral 2.8 is a function that is continuous on C, holomorphic in C \ D and that satisfies the
inhomogeneous Cauchy-Riemannn equation ∂u = f in D. In particular, u = zf + h, where
h ∈ H(D). It turns out that h(z) = −f(z)−f(0)

z if z 6= 0 and h(0) = −f ′(0).

Proof. Let J = 1
π

∫
D f(w) dσ2(w). Since f is bounded, the integral exists and we may use

Fubini’s theorem. Hence

J = 2

∫ 1

r=0

[ 1

2πi

∫
|ξ|=1

f(rξ)
dξ

ξ

]
rdr = f(0)

∫ 1

r=0
(2r)dr = f(0).



24 CHAPTER 2. THE ∂-CALCULUS

(This also follows from the fact that harmonic functions (here f) enjoy the planar mean-value
property on disks. Moreover, instead of using Cauchy’s integral formula, one could have used
the power series representation

∑∞
n=0 anr

neinθ of f , to derive the result.)

Let u(z) = − 1

π

∫
D

f(w)

w − z
dσ2(w). By Theorem ??, u converges absolutely and so we may

apply Fubini’s theorem. Since σ2({w ∈ C : |w| = r}) = 0, we have
∫
D =

∫
D\{w∈C:|w|=r}.

Henceforth, for fixed z, we may integrate only on curves |ζ| = r where r 6= |z|. 4 Thus

u(z) = − 1

2πi

1∫
r=0
r 6=|z|

[ ∫
|ξ|=1

2
f(rξ)

rξ − z
dξ

ξ

]
rdr = −

1∫
r=0
r 6=|z|

[ 1

2πi

∫
|ξ|=1

2
f(rξ)

ξ − z
r

dξ

ξ

]
dr.

Let 0 < |z| < 1. Then

u(z) = −
∫

0<r<|z|

[ 1

2πi

∫
|ξ|=1

2
f(rξ)

(ξ − z
r ) ξ

dξ
]
dr −

∫
|z|<r<1

[ 1

2πi

∫
|ξ|=1

2
f(rξ)

(ξ − z
r ) ξ

dξ
]
dr

If |z/r| < 1, then two singularities are surrounded: 0 and z/r; otherwise only 0 is sourrounded.
By the residue theorem,

u(z) = −2

|z|∫
0

f(0)

(− z
r )
dr − 2

1∫
|z|

(
f(r zr )

z
r

+
f(0)

(− z
r )

)
dr

=
f(0)

z
|z|2 − f(z)

z
(1− |z|2) +

f(0)

z
(1− |z|2)

= (|z|2 − 1)
f(z)− f(0)

z
+ f(0)z.

If z = 0, then

u(z) = −2

1∫
r=0

[ 1

2πi

∫
|ξ|=1

f(rξ)

ξ2
dξ
]
dr

= −2

1∫
0

rf ′(0) dr = −f ′(0).

Now let |z| ≥ 1. Then, for 0 < r < 1, |z/r| > 1; hence only the singularity 0 is surrounded.
Thus

u(z) = −2

1∫
0

f(0)

− z
r

dr =
f(0)

z
.

4 This is necessary in order to avoid singularities on the integration curve.
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An analysis of the proof shows that the iterated integral

1∫
r=0

2π∫
θ=0

f(reiθ)

reiθ − z
dθ rdr

exists for every function f ∈ H(D), f not necessary bounded, and that its value is deduced from
(2.8).

As a particular case we obtain:

Example 2.12. �
�

�
�− 1

π

∫
D

1

w − z
dσ2(w) =

{
z if |z| < 1
1
z if |z| ≥ 1

(2.9)

Note that the case |z| ≥ 1 also follows directly from the case |z| < 1 without calculus; in
fact, we know that I(z) is continuous in C and holomorphic for |z| > 1. Now 1/z is the only
holomorphic function outside the closed unit disk that has the boundary values z.

2.4 The Cauchy, Gauss, Green, Stokes and
Pompeiu formulas

In this section we give a very simple proof of Gauss’ divergence theorem. We shall base our
proof on the ∂-calculus. For a better visualization, we exceptionally use here the double integral
sign to denote planar integrals.

Lemma 2.13. Let φ : [0, 1] → C be a C1-path. Then its image, Γ := φ([0, 1]), has two-
dimensional Lebesgue measure zero.

Proof. Since φ′ is bounded on [0, 1], we see that φ satisfies a Lipschitz condition on [0, 1]; that
is |φ(s) − φ(t)| ≤ M |s − t| for every s, t ∈ [0, 1]. Fix N ∈ N and consider the decomposition
0 = t0 < t1 < · · · < tN−1 < tN = 1 of [0, 1] into N intervals Ij = [tj−1, tj ] of length 1/N . Then

Γ ⊆
N⋃
j=1

φ(Ij).

Now for zj ∈ φ(Ij) and dj := 2 diam φ(Ij), we see that φ(Ij) ⊆ D(zj , dj). Hence

σ2(φ(Ij)) ≤ πdj2.

But

dj = 2 sup
s,t∈Ij

|φ(s)− φ(t)| ≤ 2M |Ij | ≤
2M

N
.

So we conclude that

σ2(Γ) ≤
N∑
j=1

σ2(φ(Ij)) ≤ Nπ
4M2

N2
=

4M2

N
→ 0.

Thus σ2(Γ) = 0.
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Theorem 2.14. Let Ω ⊆ C be an open set and suppose that Γ is a null-homologous cycle in Ω.
Then the following formula holds for every f ∈ C1(Ω): 5∫

Γ
f(z) dz = 2i

∫∫
Ω
∂f(ζ) n(Γ, ζ)dσ2(ζ).

Proof. Let S = Γ ∪ {z ∈ Ω \ Γ : n(Γ, z) 6= 0}. Then S ⊆ Ω and since n(Γ, z) is locally constant
on C \ Γ, we see that S is compact. Choose ψ ∈ C∞c (C) such that ψ ≡ 1 in a neighborhood U
of S with S ⊆ U ⊆ Ω, and suppψ ⊆ Ω. Let g : C→ C be defined by

g(z) =

{
ψ(z)f(z) if z ∈ Ω

0 if z /∈ Ω.

Then g ∈ C1
c (C) and supp g ⊆ Ω. By Theorem 2.3

g(z) = − 1

π

∫∫
C

∂g(ζ)

ζ − z
dσ2(ζ).

Note that g = f on Γ. Hence

I :=

∫
Γ
f(z) dz =

∫
Γ
g(z) dz = − 1

π

∫
Γ

(∫∫
C

∂g(ζ)

ζ − z
dσ2(ζ)

)
dz.

Since Γ has planar measure zero (Lemma 2.13), we conclude that

I = − 1

π

∫
Γ

(∫∫
C\Γ

∂g(ζ)

ζ − z
dσ2(ζ)

)
dz.

By Lemma 2.7 we see that

1

π

∫
Γ

(∫∫
C

∣∣∣∣∂g(ζ)

ζ − z

∣∣∣∣ dσ2(ζ)

)
|dz| ≤ 2L(Γ) ||∂g||∞

√
σ2(supp g)/π.

Hence we may use Fubini’s Theorem to conclude that

I = 2i

∫∫
C\Γ

∂g(ζ)

(
1

2πi

∫
Γ

1

z − ζ
dz

)
dσ2(ζ) = 2i

∫∫
C\Γ

∂g(ζ) n(Γ, ζ) dσ2(ζ).

By construction, n(Γ, ζ) = 0 for ζ /∈ S. But on U ⊇ S, f = g. In particular, since U is open,
∂f = ∂g on U . Hence, since S ⊆ U ⊆ Ω,

I = 2i

∫∫
S\Γ

∂g(ζ) n(Γ, ζ) dσ2(ζ) = 2i

∫∫
S\Γ

∂f(ζ) n(Γ, ζ) dσ2(ζ).

Defining n(Γ, z) = 0 whenever z ∈ Γ, and using again that σ2(Γ) = 0 we obtain

I = 2i

∫∫
Ω
∂f(ζ) n(Γ, ζ) dσ2(ζ).

5 Here we use that σ2(Γ) = 0; so that actually
∫∫

Ω
=
∫∫

Ω\Γ.
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If Ω ⊆ C is open, then we denote the set of all complex-valued functions f that are continu-
ously R-differentiable on Ω and for which f and the partial derivatives fx and fy are continuously
extendable to Ω, by C1(Ω).

Definition 2.15. i) Let Ω ⊆ C be a bounded domain (=connected open set). We call Ω
admissible if the boundary of Ω consists of finitely many closed, positively orientated, pairwise
disjoint, piecewise-C1 Jordan curves γj , (j = 0, 1, . . . , n).

Recall that the boundary curve γj is positively orientated, if the domain lies to the left of
the curve. Moreover, γ0 denotes the outer boundary of the domain. It follows from the Jordan
curve Theorem 1.5, that the cycle Γ =

⋃n
j=0 γj satisfies 6

n(Γ, z) = 0 for every z ∈ C \ Ω and n(Γ, z) = 1 for every z ∈ Ω. (2.10)

We note that instead of the piecewise smoothness, we could have stipulated the rectifiability
of the curves.

Figure 2.1: An admissible domain

Theorem 2.16 (Gauss’ Theorem, complex version). Let Ω be an admissible domain. Suppose
that f is continuously R-differentiable in a neighborhood U of Ω. Then∫

∂Ω
f(z) dz = 2i

∫∫
Ω
∂f(ζ) dσ2(ζ).

Proof. This follows immediately from Theorem 2.14 by noticing that the cycle Γ =
∑n

j=0 γj is
null-homologuous in U and that n(Γ, ζ) = 1 for every ζ ∈ Ω.

Corollary 2.17. Let Ω be an admissible domain. Then the area of Ω (respectively Ω) is given
by

σ2(Ω) =
1

2i

∫
∂Ω
z dz.

6 Readers who do not want to use, at this point, the Jordan curve Theorem 1.5, must additionally assume the
conditions (2.10).
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We are now able to deduce the classical Green-Riemann-Stokes formula and Gauss’ diver-
gence theorem:

Proposition 2.18 (Green-Riemann-Stokes). Let Ω be an admisible domain. Then, for every
pair of real-valued functions P,Q ∈ C1(Ω),∫

∂Ω
Pdx+Qdy =

∫∫
Ω

(Qx − Py)dxdy.

Proof. For z = x+ iy, identified with (x, y), let f(z) = P (z)− iQ(z). Then

f dz = (P − iQ)(dx+ idy) = Pdx+Qdy + i(Pdy −Qdx).

Moreover,

∂f = (1/2)(fx + ify) = (1/2)(Px − iQx + i(Py − iQy)) = (1/2)(Px +Qy + i(Py −Qx)).

Hence

Re

∫
∂Ω
f(z)dz =

∫
∂Ω
Pdx+Qdy

and

Re

[
2i

∫∫
Ω
∂f(ζ)dσ2(ζ)

]
=

∫∫
Ω

(Qx − Py)dxdy.

Proposition 2.19 (Gauss). Let Ω be an admissible domain. Then, for every vector-valued
function f = (u, v) ∈ C1(Ω,R2) and div f = ux + vy,∫∫

Ω
div f dxdy =

∫
∂Ω
f · n ds,

where n is the outer normal to ∂Ω and ds is integration with respect to arc-length.

Proof. If (x(t), y(t)) is a parametrization of one of the boundary curves, then ds =
√
ẋ2 + ẏ2 dt

and the non-orientated normal n is given by

n =
(ẏ,−ẋ)√
ẋ2 + ẏ2

,

where the derivative with respect to t is denoted by the dot. By Proposition 2.18,∫∫
Ω

(ux + vy) dxdy =

∫
∂Ω

(−vdx+ udy) =

∫
∂Ω

(u, v) · n ds.

Corollary 2.20 (Green). Let Ω be an admissible domain. Then, for any h ∈ C2(Ω,R) and
∆ = hxx + hyy, ∫∫

Ω
∆h dxdy =

∫
∂Ω

∂h

∂n
ds,

where
∂h

∂n
:= ∇h · n is the derivative along the outer normal n.
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Proof. Use Proposition 2.19 and the fact that ∆h = div(∇h).

Here are several corollaries to Gauss’ Theorem 2.16. The first one coincides with Proposition
2.4. 7

Corollary 2.21. Let α ∈ C∞c (C) and f ∈ C(C). Suppose that f is holomorphic in an neigh-
borhood of the support of α. Then ∫

C
(∂α)f dσ2 = 0.

In particular,
∫∫

C ∂α dσ2 =
∫∫

C ∂α dσ2 = 0.

Proof. Let D be an open disk such that suppα ⊆ D. Then

I :=

∫∫
C

(∂α) f dσ2 =

∫∫
C
∂(αf) dσ2 −

∫∫
C
α∂f dσ2

=

∫∫
D
∂(αf) dσ2 −

∫∫
suppα

α∂f dσ2.

Since ∂f = 0 on supp ∂α and α = 0 on ∂D we conclude from Theorem 2.16 that

I =
1

2i

∫
∂D

(αf)(z)dz − 0 = 0.

The special case immediately follows when chosing f ≡ 1 and by noticing that ∂α = ∂α (Propo-
sition 2.1).

Corollary 2.22. Let f ∈ C1(D(z0, R)). If the boundary of the disk Dr := D(z0, r) is surrounded
counter-clockwise, then 8

∂f(z0) = lim
r→0

1

2πi r2

∫
∂Dr

f(z) dz. (2.11)

Proof. Since the disk is an admissible domain, we obtain from Theorem 2.16 that∫
∂Dr

f(z) dz = 2i

∫∫
Dr

∂f(ζ) dσ2(ζ).

By the mean-value theorem for the planar integral of a continuous function u,

1

σ2(Dr)

∫∫
Dr

u(ζ) dσ2(ζ)→ u(z0) (2.12)

as r → 0. Applying this to u = ∂f yields the desired equality.

7 This second proof runs under the heading “integration by parts”
8 This limit is called the “aerolar derivative” or “areal derivative” (by Pompeiu).
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Remark 2.23. • A different proof can be given by using directly the representation

f(z) = f(z0) + ∂f(z0)(z − z0) + ∂f(z0)(z − z0) + O(z − z0)

and integrating along the circles ∂Dr. To handle the little O-term, just note that if O(z − z0) =
r(z), then ∫

∂Dr

r(z)dz =

∫
∂Dr

r(z)

z − z0
(z − z0) dz = O(1)

∫
∂Dr

r|dz| = O(1)r2.

• The limit (2.11) may exist without f being a C1-function. For example if f(z) = |z|, then

lim
r→0

1

2πi r2

∫
∂Dr

f(ζ) dζ = 0.

If we raise the denominator of the integrand ∂f(ζ)/(ζ − a) to certain integer powers, then
the integral

∫
C ∂f(ζ)/(ζ − a)n dσ2(ζ) is, in general, divergent for a ∈ supp ∂f . On the other

hand, Theorem 2.16 will allow us to determine the explicit value whenever a /∈ supp ∂f .

Corollary 2.24. Let f ∈ C1(C) have compact support and let n ∈ N. Then, for every a /∈
supp ∂f 9

I := − 1

π

∫
C

∂f(ζ)

(ζ − a)n+1
dσ2(ζ) =

f (n)(a)

n!
.

Proof. Let D := D(a, ε) be a small disk centered at a, so that f is holomorphic in D and let
R > 0 be chosen so that D ∪ supp f ⊆ D(0, R). If Ω = D(0, R) \D, then, by Theorem 2.16,

I = − 1

π

∫
Ω

∂f(ζ)

(ζ − a)n+1
dσ2(ζ) = − 1

π

∫
Ω
∂

(
f(ζ)

(ζ − a)n+1

)
dσ2(ζ)

= − 1

2πi

∫
∂Ω

f(z)

(z − a)n+1
dz =

1

2πi

∫
|z−a|=ε

f(z)

(z − a)n+1
dz

=
f (n)(a)

n!

The methods above also allow us to give an analogue to Morera’s theorem for disks.

Theorem 2.25 (Carleman). Let f ∈ C(Ω), where Ω ⊆ C is an open set. Suppose that for every
disk D with D ⊆ Ω ∫

∂D
f(z) dz = 0.

Then f is holomorphic in Ω.

9 Note that f is holomorphic in a neighborhood of a.
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Proof. We first prove the assertion under the condition that f ∈ C1(Ω). By Corollary 2.22,

∂f(z0) = lim
r→0

1

2πi r2

∫
∂Dr

f(z) dz = 0

for every z0 ∈ Ω. Hence f is holomorphic in Ω.

If f is merely continuous, we shall use an approximation argument. Fix z0 ∈ Ω and consider
a disk D = D(z0, 2r) with D ⊆ Ω. By Theorem ??, let φ ∈ C∞c (C) satisfy 0 ≤ φ ≤ 1, φ = 1 on
D(z0, r) and suppφ ⊆ D. Then the function F given by

F (z) =

{
φ(z)f(z) if z ∈ D
0 if z /∈ D

is continuous in C. Let ψ ∈ C∞c (C) be chosen so that 0 ≤ ψ ≤ 1, suppψ ⊆ D and such that∫
C ψ(ζ) dσ2 = 1 (for example we could take ψ = φ/

∫
C φ(ζ)dσ2 with z0 = 0 and r = 1/2). For

ε > 0, let ψε = ε−2ψ(z/ε) be the associated C∞-approximate identity. Consider the convolution

Fε(z) = F ∗ ψε(z) :=

∫∫
C
F (ζ − z)ψε(ζ) dσ2(ζ).

Then, by Theorem ??, Fε ∈ C∞c (C) and by Theorem ??,

lim
ε→0

sup
z∈C
|Fε(z)− F (z)| = 0.

We claim that Fε is holomorphic in D(z0, r/2) whenever ε < r/2. Let z1 ∈ D(z0, r/2). By
Fubini’s Theorem,

I :=

∫
|z−z1|=1/n

Fε(z)dz =

∫
|z−z1|=1/n

∫ ∫
|ζ|≤ε

f(z − ζ)ψε(ζ) dσ2(ζ)

 dz

=

∫ ∫
|ζ|≤ε

( ∫
|z−z1|=1/n

f(z − ζ) dz
)
ψε(ζ) dσ2(ζ).

Next we do a change of variables. Let ξ = z− ζ. Then, when z moves on the circle ∂D(z1, 1/n),
ξ moves on the circle S := ∂D(z1 − ζ, 1/n). Hence

I =

∫ ∫
|ζ|≤ε

(∫
S

f(ξ)dξ
)
ψε(ζ) dσ2(ζ).

In order to apply the assumption of the Theorem, we need to show that for every ζ with |ζ| ≤ ε,
D(z1 − ζ, 1/n) ⊆ D(z0, r) whenever n is large. To see this, let w ∈ D(z1 − ζ, 1/n). Then

|w − z0| ≤ |w − (z1 − ζ)|+ |ζ|+ |z1 − z0| < 1/n+ ε+ r/2 < r.



32 CHAPTER 2. THE ∂-CALCULUS

Hence the inner integral
∫
S f(ξ)dξ = 0. It follows that

I =

∫
|z−z1|=1/n

Fε(z) dz = 0

for large n. Since Fε is smooth, we conclude from Corollary 2.22 that ∂Fε(z1) = 0. Thus ∂Fε = 0
on D(z0, r/2).
Since Fε converges uniformly to F on D(z0, r) and since f = F on D(z0, r), we conclude from
Weierstrass’ Theorem that f is holomorphic in D(z0, r/2). Since z0 was arbitrarily chosen,
f ∈ H(Ω).

We conclude this section with the Cauchy-Pompeiu formula.

Theorem 2.26. Let Ω be an admissible domain. Then the following formula holds for every
F ∈ C1(Ω) and z ∈ Ω:

F (z) =
1

2πi

∫
∂Ω

F (ξ)

ξ − z
dξ − 1

π

∫∫
Ω

∂F (ζ)

ζ − z
dσ2(ζ),

Proof. First we note that both integrals exist Fix z ∈ Ω and consider a small disk D(z, ε)
centered at z such that D(z, ε) ⊆ Ω. The new domain Ωε := Ω \D(z, ε) is admissible again. We
orientate the circle |ξ − z| = ε negatively. Hence, by Theorem 2.16,

I2(ε) :=
1

π

∫∫
Ωε

∂F (ζ)

ζ − z
dσ2(ζ) =

1

π

∫∫
Ωε

∂

(
F (ζ)

ζ − z

)
dσ2(ζ)

=
1

2πi

∫
∂Ωε

F (ξ)

ξ − z
dξ

=
1

2πi

∫
∂Ω

F (ξ)

ξ − z
dξ − 1

2πi

∫
∂D(z,ε)

F (ξ)

ξ − z
dξ.

Since the integral

J :=
1

π

∫∫
Ω

∂F (ζ)

ζ − z
dσ2(ζ)

converges absolutely, and limε→0 I2(ε) = J , it remains to show that

I1(ε) :=

∫
∂D(z,ε)

F (ξ)

ξ − z
dξ → 2πiF (z) as ε→ 0.

By using the parametrization ξ(t) = z + ε eit, we obtain

I1(ε) =

2π∫
0

F (ξ(t))

ε eit
εeiti dt = i

2π∫
0

F (z + ε eit) dt
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→ i

2π∫
0

F (z) dt = 2πiF (z).

As special cases we obtain Cauchy’s integral formula (note that ∂F = 0 in that case) and
Theorem 2.3 whenever F has its support contained in Ω.

2.5 The Bézout equation in H(U)

Let R be a commutative unital ring. Then

Un(R) := {f ∈ Rn : f · x = 1 for some x ∈ Rn}

is the set of all invertible n-tuples.

Theorem 2.27. Let R be a commutative unital ring. Suppose that a = (a1, . . . , an) is an
invertible n-tuple in Rn (that is a ∈ Un(R)), and let x = (x1, . . . , xn) satisfy 1 =

∑n
j=1 xjaj;

that is xat = 1. Then every other representation 1 =
∑n

j=1 yjaj of 1 can be deduced from the
former by letting y = x + aH, where H is an antisymmetric (n × n)−matrix over R; that is
H = −Ht, where Ht is the transpose of H.

Proof. Suppose that 1 = xat and 1 = yat. For k = 1, . . . , n, multiply the first equation by yk
and the second by xk. Then

xk − yk =
∑
j 6=k

aj(yjxk − ykxj).

Thus y = x + aH for some antisymmetric matrix H. To prove the converse, let 1 = xat. Note
that

uvt = vut ∈ R (2.13)

for any u,v ∈ Rn. Since H is antisymmetric we have (due to the transitivity of matrix multi-
plication)

(aH)at = a(Hat) = a(aHt)t

= a(−aH)t
(2.13)

= (−aH)at.

Thus (aH)at = 0. Hence

yat = (x + aH)at = xat + (aH)at = 1 + 0 = 1.

Proposition 2.28. Let Ω be open in C and let fj ∈ H(Ω) be different from the zero-function,
(j = 1, . . . , n). 10 Then the Bézout equation

∑n
j=1 ujfj = 1 admits a solution in H(Ω) if and

only if the functions fj do not have a common zero in Ω.

10 Note that fj can be identically zero on some components of Ω
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We would like to present an entirely different proof here, based on the Hörmander-Wolff
method to solve a system of ∂-equations. Consider f = (f1, . . . , fn) as a row matrix and let f t

be its transpose. Then |f |2 =
∑n

j=1 |fj |2; that is |f |2 = ff t.

Proof. Since the condition on the zeros of the functions fj obviously holds whenever uf t = 1, it
remains to prove the converse. So assume that

⋂n
j=1 Z(fj) = ∅; that is |f | > 0. Let x = f/|f |2.

Then all the coordinates of x belong to C∞(Ω) and xf t = 1. By Theorem 2.27, any other
solution u ∈ C∞(Ω) to the Bézout equation uf t = 1 is given by

ut = xt +Hf t,

or equivalently
u = x− fH,

where H is an n× n antisymmetric matrix over C∞(Ω); that is Ht = −H.
Let

F =
((
∂xt · f

)t − ∂xt · f) 1

|f |2
.

Since x ∈ C∞(Ω)n, we see that F is an antisymmetric matrix over C∞(Ω). Thus, by Theorem
2.9 (applied to each component of Ω), the system ∂H = F admits a matrix solution H over
C∞(Ω). Since F is antisymmetric, H can be chosen to be antisymmetric, too.

It is now easy to check that on Ω, ∂u = 0. In fact

∂u = ∂x− f · ∂H = ∂x− f ·
(
f
t · ∂x− ∂xt · f

) 1

|f |2

=
(f · ∂xt) f
|f |2

=

(
∂(f · xt)

)
f

|f |2
=

(
∂(x · f t)t

)
f

|f |2
= 0. (2.14)

Thus u = x − fH is holomorphic in Ω. Hence u is a solution to the Bézout equation in
H(Ω).
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Continuous logarithms

3.1 Some Banach algebras

Lemma 3.1. Let A = (A, || · ||) be a unital Banach algebra over K, not necessarily commutative.
We assume that || · || is submultiplicative, but ||1|| may be bigger than 1.

a) Let f ∈ A satisfy ||1− f || < 1. Then f ∈ A−1 and

f−1 =
∞∑
n=0

(1− f)n

(Neumann series). Moreover,

||f−1|| ≤ 1

1− ||1− f ||
.

b) Actually f ∈ expA.

Proof. Since ||
∑M

n=N (1 − f)n|| ≤
∑M

n=N ||1 − f ||n → 0 as N,M → ∞, the completeness of
the norm implies that the Neumann series is convergent; that is there is g ∈ A such that
g =

∑∞
n=0(1− f)n. Since ||1− f ||N → 0,

f ·
( N∑
n=0

(1− f)n
)

=
(
1− (1− f)

) N∑
n=0

(1− f)n

=
N∑
n=0

(1− f)n −
N+1∑
n=1

(1− f)n

= 1− (1− f)N+1 → 1.

Hence fg = 1. Similarily, gf = 1. The norm estimate of the inverse is clear (geometric series).
b) By Proposition 3.2, there is L ∈ A such that u = 1 + (u− 1) = eL.

Proposition 3.2. Let A = (A, || · ||) be a unital (not necessarily commutative) Banach algebra
over K, the norm || · || being submultiplicative. 11

11 We do not assume that the norm of the identity element is one.

35
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i) Suppose that f ∈ A satisfies ||f || < 1. Then 1 + f admits a logarithm in A; that is there
is L ∈ A such that 1 + f = exp L. Moreover, L is given by

L = Lf :=
∞∑
j=1

(−1)j−1

j
f j ,

the series being unconditionnally/absolutely convergent. Finally, if fn → 0, then Lfn → 0.
ii) If u ∈ A is nilpotent , that is us = 0 for some s ∈ N∗, then 1 + u admits a logarithm L̃

in A, too. In that case L̃ is given by

L̃ =
s−1∑
j=1

(−1)j−1

j
uj .

iii) Assertion ii) holds in any unital algebra, not necessarily bearing a norm.

Proof. We first note that due to the submultiplicativity of the algebra norm, the series for L
converges absolutely in the Banach space (A, || · ||). Now if x ∈ R, |x| < 1, then the Taylor series
of the logarithm is given by

L(x) := log(1 + x) =
∞∑
n=0

(−1)n

n+ 1
xn+1.

By taking Cauchy-products, L(x)k =
∑∞

n=0 ak,nx
n for some uniquely determined coefficients

ak,n ∈ R, n ∈ N. Hence, by reordering the absolute converging series,

1 + x = elog(1+x) =
∞∑
k=0

1

k!
L(x)k

=
∞∑
k=0

1

k!

( ∞∑
n=0

ak,nx
n

)

=
∞∑
n=0

( ∞∑
k=0

1

k!
ak,n

)
xn

By the uniqueness of the coefficients,
∑∞

k=0
1
k!ak,n = 0 if n ≥ 2 and

∑∞
k=0

1
k!ak,n = 1 if n = 0

or n = 1. Therefore, due to absolute convergence,

eL =
∞∑
n=0

( ∞∑
k=0

1

k!
ak,n

)
fn = 1 + f.

This formula remains valid if one replaces f by the nilpotent element u. Hence ii) holds.
If fn → 0, then ||fn|| ≤ ε ≤ 1/2 for all n ≥ n0. Hence, for these n,

||Lfn || ≤
∞∑
j=1

||fn||j ≤
ε

1− ε
≤ 2ε.
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Lemma 3.3. Let A be a unital Banach algebra over K and f, g ∈ A. The following equality
holds:

ef = lim
n→∞

(
1 +

f

n

)n
.

Moreover, if f and g commute, then ef+g = efeg.

Proof. Let SN =
∑N

n=0 f
n/n! and aN = (1 + f/N)N . Then

SN − aN =
N∑
n=0

(
1

n!
−
(
N

n

))
fn.

Hence, by noticing that 1
n! ≤

(
N
n

)
,

||Sn − aN || ≤
N∑
n=0

((
N

n

)
− 1

n!

)
||f ||n =

(
1 +
||f ||
N

)N
−

N∑
n=0

1

n!
||f ||n → 0.

The rest is a straightforward application of the Cauchy-product to represent efeg.

Theorem 3.4. Let A = (A, ||·||) be a commutative unital Banach algebra over K and GA := A−1

the group of invertible elements. The following assertions hold:

(1) GA is an open subset of A;

(2) exp A is open-closed in GA, path-connected, and coincides with the connected component
in GA of the identity element 1 in A;

Proof. (1) GA = A−1 is an open set in A. In fact, let f ∈ A−1 and let g ∈ A satisfy ||f − g|| <
||f−1||−1. Then

||1− f−1g|| = ||f−1(f − g)|| ≤ ||f−1|| ||f − g|| < 1.

Hence, by Lemma 3.1, f−1g ∈ A−1 and so, by (1), g = f(f−1g) ∈ A−1. We conclude that A−1

is open
(2) • Let a ∈ A. Consider the map Γ : [0, 1]→ exp A, t 7→ eta. Using that

||esa − eta|| ≤ ||esa|| ||1− e(t−s)a|| ≤ C e||sa||
∣∣1− e|t−s| ||a||∣∣,

where C = max{1, ||1||}, we see that Γ is a continuous path between the identity and ea.
Whence, exp A is path-connected.
• Next we show that exp A is an open set in A. Let f = ea ∈ expA and let g ∈ A satisfy

||f − g|| < ||f−1||−1. Then, as we know, ||1− f−1g|| < 1 and so, by Lemma 3.1, f−1g ∈ expA;
say f−1g = eb for some b ∈ A. Since A was assumed to be commutative, we may use Lemma
3.3 to conclude that

g = f(f−1g) = eaeb = ea+b ∈ expA.

• Next we show that exp A is (relatively) closed in U1(A). To this end, let (an) be a
sequence in A and u ∈ U1(A) such that ||ean − u|| → 0. Then

||eanu−1 − 1|| = ||(ean − u)u−1|| ≤ ||u−1|| ||ean − u|| → 0.



38 CHAPTER 3. CONTINUOUS LOGARITHMS

By Proposition 3.2, eanu−1 ∈ exp A for n sufficiently large. Since exp A is a subgroup of U1(A),
we conclude that u−1 ∈ exp A and so u ∈ exp A.

In summary, we have shown that exp A is the connected component of the identity element
within U1(A).

Corollary 3.5. Let X be a compact, contractible Hausdorff space. Then every continuous, zero-
free C-valued function on X admits a continuous logarithm in A = C(X,C), that is expA = GA.

Proof. Consider the following path Γ induced by the homotopic contraction H:

Γ : [0, 1]→ U1(C(X,C)), Γ(t) = f ◦H(·, t).

This path connects f and f(x0). Hence both invertible tuples belong to the same component of
U1(C(X,C)). Thus f = egf(x0) = ep. and note that C∗ · 1 ⊆ expC(X,C) = GC(X,C).

3.2 Zero-free extensions, logarithms and Eilenberg’s Theorem

We introduce the following notation.

Notation 3.6. Let K ⊆ C be compact and let f, g be continuous and zero-free on K. Then we

say that f is homotopic to g within C(K,C∗), denoted by f
K∼ g, if there is a continuous map

H : K × [0, 1]→ C∗ such that H(z, 0) = f(z) and H(z, 1) = g(z) for z ∈ K.

Theorem 3.7 (Borsuk). Let K ⊆ C be compact and let f ∈ C(K,C∗) be a zero-free continuous
function. Then the following assertions are equivalent:

1. f is homotopic in C(K,C∗) to a constant;

2. f has a continuous logarithm; that is there is L ∈ C(K,C) such that f = eL;

3. f has a zero-free continuous extension to C.

Proof. (1) =⇒ (2): Let H : K× [0, 1]→ C∗ be a homotopy with H(z, 0) = f(z) and H(z, 1) ≡ c,
(z ∈ K). The path Γ : [0, 1]→ U1(C(K,C)), given by

Γ(t) = H(·, t)

connects the invertible function f with the (invertible) constant function c. Thus f belongs
to the principal component of U1(C(K,C)). Using Theorem 3.4, we conclude that f is an
exponential.

(2) =⇒ (3): Let f = eL, L ∈ C(K,C). By Tietze’s theorem applied to R2 ∼ C, we may
extend L to a function L∗ continuous in C. Hence eL

∗
is the desired zero-free extension of f .

(3) =⇒ (2): Let D be a closed disk centered at 0 such that K ⊆ D◦. If F is a zero-free
continuous extension of f : K → C∗, then F |D is invertible in C(D,C). But D is contractible
(look at the homotopy H(z, t) = tz, 0 ≤ t ≤ 1, z ∈ D.) By Corollary 3.5, each zero-free
g ∈ C(D,C) has a logarithm; in particular there is L ∈ C(K,C) such that eL = f .
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(2) =⇒ (1): If eL = f , then we only have to consider the homotopy H : K × [0, 1] → C∗
given by

H(z, t) = etL(z).

Corollary 3.8. Let K ⊆ C be compact and let f, g ∈ C(K,C∗) be two zero-free continuous
functions. Then the following assertions are equivalent:

1. f and g are homotopic in C(K,C∗);

2. there is h ∈ C(K,C) such that f = geh.

In particular, if f and g are homotopic in C(K,C∗), then f has a continuous logarithm on K if
and only if g has one.

Proof. This is an immediate consequence of Theorem 3.7 by using that f
K∼ g if and only

if f/g
K∼ 1. Note that if H(z, t) : K × [0, 1] → C∗ is a homotopy between f and g, then

H̃(z, t) := H(z, t)/H(z, 1) is a homotopy between f/g and 1.

Theorem 3.9 (Borsuk). For a compact set K ⊆ C, the following assertions are equivalent:

1. Every continuous, zero-free function f ∈ C(K,C) has a continuous logarithm;

2. C \K is connected.

Proof. (1) =⇒ (2): If K has a hole G and a ∈ G, then Corollary 1.12 shows that the function
f(z) = z−a (z ∈ K), has no invertible continuous extension to K∪G, and a fortiori no invertible
extension to C. Hence, by Theorem 3.7, f does not have a continuous logarithm.

(2) =⇒ (1): Special case of Theorem 3.19.

Remark 3.10. This result does no longer hold in higher dimensions: let K = {(x, y, t) ∈ R3 :
t = 0, x2 + y2 = 1} (in other words, K is the embedded unit circle). Then R3 \K is connected,
but the function f : K → C given by f(x, y, t) = x + iy has no continuous logarithm on K
(otherwise there would exist L ∈ C(K,C) such that eL = f . This in turn implies that the
identity map z : T → C would have a continuous, zero-free extension to D, a contradiction to
Corollary 1.12.)

Proposition 3.11. Let K ⊆ C be compact, f ∈ C(K,C), f holomorphic in K◦. Suppose that
there is h ∈ C(K,C) such that f = eh. Then h is holomorphic in K◦.

Proof. Let a ∈ K◦.
Case 1 f is not constant in a neighborhood of a. The holomorphy implies that there exists

a disk D(a, ε) ⊆ K◦ such that f(z) 6= f(a) for all z ∈ D(a, ε) \ {a}. Hence h(z) 6= h(a) for
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all those z. Note that limz→a h(z) = h(a). Hence, if z 6= a is close to a, eh(z) 6= eh(a). The
differentiability of the exponential function now implies that

h(z)− h(a)

z − a
=

f(z)− f(a)

z − a

(
eh(z) − eh(a)

h(z)− h(a)

)−1

→ f ′(a)e−h(a) =
f ′(a)

f(a)
.

Hence h is C-differentiable at a.

Case 2 If f is constant f(a) in a neighborhood of a, then f ≡ f(a) in the connected component
C of K◦ containing a. Thus the continuous logarithm h of f is constant in C, too. In particular,
h is holomorphic in K◦.

Lemma 3.12 (Eilenberg). Let K ⊆ C be compact and a, b ∈ C \K. Let f : K → C be defined
by f(z) = (z − a)/(z − b) (z ∈ K). Then the following assertions are equivalent:

(1) f has a continuous logarithm on K;

(2) a and b belong to the same component of C \K. 12

Proof. (1) =⇒ (2): Suppose, to the contrary, that a and b belong to different components of
C \K. Then at least one of them is a bounded component. Let us call this C. We may assume
that a ∈ C. Now, if (1) is satisfied then, by Theorem 3.7, f admits a continuous zero-free
extension, F , to C. Hence, the function A : K ∪C given by A(z) = (z − b)F (z) (z ∈ K ∪C), is
a zero-free extension of (z − b)f(z)|K = (z − a)|K ; a contradiction to Corollary 1.12

(2) =⇒ (1): Let a, b ∈ C, where C is a component of C \K. Let γ : [0, 1]→ C be a path in
C joining a to b. Then H : [0, 1]×K → C∗, given by

H(t, z) =
z − γ(t)

z − b

is a homotopy in C(K,C∗) between f and 1; in other words the path Γ : [0, 1] → U1(C(K,C))
given by Γ(t) = H(t, ·) joins within U1(C(K,C)) the identity element 1 to f . By Theorem 3.4,
f belongs to the principal component in U1(C(K,C)); that is, f is an exponential.

As an application we now present Janiszewski’s separation theorem.

Theorem 3.13 (Janiszewski). For j = 1, 2, let Kj be two compact subsets of C and let Ωj be
a component of C \Kj. Suppose that {a, b} ⊆ Ω1 ∩ Ω2 and that K1 ∩K2 is connected. Then a
and b both lie in the same component of C \ (K1 ∪K2).

Proof. Consider on K1 ∪ K2 the function f(z) = (z − a)/(z − b). By Lemma 3.12, there
are hj ∈ C(Kj) such that f(z) = ehj(z) whenever z ∈ Kj . Hence eh1(z)−h2(z) = 1 whenever

12 One also says that K does not separate a and b
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Figure 3.1: A separating and a non-separating union

z ∈ K1 ∩K2. Since K1 ∩K2 is connected, h1 − h2 is constant on K1 ∩K2, say 2πim, for some
m ∈ Z. Now define the function L : K1 ∪K2 → C by

L(z) =

{
h2(z) + 2πim if z ∈ K1

h1(z) if z ∈ K2.

Then L is continuous on K2 ∪K2. Since eL = f , Lemma 3.12 yields that a and b do not belong
to distinct components of C \ (K1 ∪K2).

Next we discuss what happens when we have expressions of the form

n∏
j=1

(z − aj)sj , (sj ∈ Z).

Corollary 3.14. Let a, b, p belong to the same component C of C \K and let m,n ∈ N. Then
there exists h ∈ C(K,C) such that for all z ∈ K

f(z) :=
(z − a)m

(z − b)n
= (z − p)m−neh(z).

Proof. By Lemma 3.12, there exists h1, h2 ∈ C(K,C) such that z − a = eh1(z)(z − p) and
z − b = eh2(z)(z − p). Hence

f(z) = emh1(z)−nh2(z)(z − p)m−n.

Lemma 3.15. Let K ⊆ C be compact and let C be a bounded component of C \K. If a ∈ C
and s ∈ Z, s 6= 0, then (z − a)s|K does not have a zero-free continuous extension to K ∪ C.
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Proof. Let Dr = D(a, r) be a closed disk of radius r centered at a such that K ⊆ D◦r . Note that
C ⊆ Dr, too. Suppose that there is F ∈ C(K ∪C), F zero-free, with F (z) = (z− a)s for z ∈ K.
Let

F1(z) =

{
F (z) if z ∈ K ∪ C
(z − a)s if z ∈ Dr \ (K ∪ C).

Then F1 is zero-free on Dr. Since on the boundary of K ∪ C the functions F and (z − a)s

coincide, F1 is continuous on Dr. By Theorem 3.9, F1 has a continuous logarithm on Dr; say
F1 = eL. Now f(z) := e(1/s)L(z) is continuous on Dr and fs = F1. In particular, fs(z) = (z−a)s

for |z − a| = r. Now z 7→ f(z)/(z − a) is continuous on |z − a| = r and
(
f(z)/(z − a)

)s
= 1

for each z with |z − a| = r. Because the circle is connected, f(z)/(z − a) ≡ e2kπi/s for some
k ∈ Z, independent of z ∈ ∂Dr. Note that f is zero-free on Dr. Hence e−2kπi/sf is a zero-free
extension of (z − a)|∂Dr to Dr. This contradicts Corollary 1.12.

Theorem 3.16. Let C1, . . . , Cn be distinct bounded components of the complement C \K of the
compact set K and let aj ∈ Cj. Suppose that for some sj ∈ Z, (j = 1, . . . , n), the function

f(z) =

n∏
j=1

(z − aj)sj , (z ∈ K)

has a continuous logarithm on K. Then s1 = · · · = sn = 0.

Proof. In view of Lemma 3.15 and Theorem 3.7, we may assume that n ≥ 2. Let f = eh, where
h ∈ C(K,C). Then

(z − a1)s1 = eh(z)
n∏
j=2

(z − aj)−sj =: R(z).

Because aj /∈ C1, (j = 2, . . . , n), we see that the function R(z) (and hence (z − a1)s1) has a
zero-free continuous extension to K ∪ C1. By Lemma 3.15, s1 = 0. By the same reasoning,
sj = 0 for the remaining j.

It is important to note that if the point a belongs to the unbounded component of C \K,
then z − a does have a continuous logarithm on K, as the following Proposition shows:

Proposition 3.17. Let K ⊆ C be compact and suppose that f : K → C∗ is continuous. If 0
belongs to the unbounded component C0 of C \ f(K), then f has a continuous logarithm on
K. This holds in particular for the function f(z) = z − a, when a belongs to the unbounded
component of C \K.

Proof. Choose r > maxK |f | and let γ : [0, 1] → C0 be a path joining within C0 the point 0 to
r. Then the homotopy H : [0, 2]×K → C∗ given by

H(t, z) =

{
f(z)− γ(t) if (t, z) ∈ [0, 1]×K
(2− t)f(z)− r if (t, z) ∈ [1, 2]×K

shows that f is homotopic in C(K,C∗) to the constant −r. Hence, by Theorem 3.7, f has a
continuous logarithm on K.
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Our proof of Eilenberg’s theorem relies on the ”primitive” version 3.18 of Runge’s theorem
and on the ∂-calculus.

Theorem 3.18 (Runge). Let K ⊆ C be compact. Then every function holomorphic in a neigh-
borhood of K can be uniformly approximated on K by rational functions vanishing at infinity
and with (simple) poles outside K.

Proof. Let f be holomorphic in the open set U with K ⊆ U . Choose bounded open sets V and
W such that

K ⊆ V ⊆ V ⊆W ⊆W ⊆ U.
Let φ ∈ C∞c (C) satisfy

φ = 1 on V , φ = 0 on C \W
and 0 ≤ φ ≤ 1. Then F := φf ∈ C∞c (C) and F = f on V . By Theorem 2.3, for every z ∈ C,

F (z) = − 1

π

∫
C

∂F (ξ)

ξ − z
dσ2(ξ).

Since ∂F = 0 in V ∪Qc, where Q is a closed dyadic square with W ⊆ Q◦, we obtain

F (z) = − 1

π

∫
Q\V

∂F (ξ)

ξ − z
dσ2(ξ). (3.1)

The Riemann sums associated with this integral are rational functions (in z) and uniformly
approximate F (hence f) on K. Here are the details of the proof.

Let d := 1
4dist (K,Q \ V ). Now the function h : K × (Q \ V )→ C, given by

h(z, ξ) = − 1

π

∂F (ξ)

ξ − z

is uniformly continuous. In particular, for every ε > 0 there is δ ∈]0, d[ such that

|h(z, ξ)− h(z, η)| < ε

for any z ∈ K and ξ, η ∈ Q \ V with |ξ − η| < δ. If we choose a covering of Q \ V with adjacent
(closed) dyadic squares Qj ⊆ Q, j = 1, . . . , N , of fixed diameter κ less than δ, 13 then for
ξj ∈ Qj \ V ∣∣∣∣F (z)−

N∑
j=1

h(z, ξj)σ2(Qj)

∣∣∣∣ ≤ ε N∑
j=1

σ2(Qj) ≤ εσ2(Q).

Thus F has been uniformly approximated by rational functions of the form

N∑
j=1

µj
ξj − z

,

where the poles ξj belong to C \K.

13 For example, take a dyadic lattice of the plane with squares of diameter κ and delete all those squares whose
interior does not meet Q \ V .
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Theorem 3.19 (Eilenberg). Let K ⊆ C be compact and for each bounded component C of C\K,
let aC ∈ C. Suppose that f : K → C∗ is continuous. Then there exist finitely many bounded
components Cj of C\K, integers sj ∈ Z (j = 1, . . . , n), and L ∈ C(K,C) such that for all z ∈ K

f(z) =

n∏
j=1

(z − aCj
)sj eL(z).

Proof. Since f has no zeros on the compact set K, the continuity of f implies that minK |f | > 0.
We may also assume that f is continuous and zero-free in a neighborhood of K. By Weierstrass’
approximation theorem ??, let F be a smooth function (say a polynomial in the real variables
x and y) with ||F − f ||K < minK |f |. Then F is zero free in a neighborhood of K. Moreover,
||Ff − 1||K < 1. By Proposition 3.2, there exists g ∈ C(K,C) such hat F/f = eg. Hence

f = Fe−g. Next we wish to write F as euG, where G is holomorphic in a neighborhood of K
and u ∈ C1(U). Here we use the ∂-calculus. In fact, let u be a smooth solution to the ∂-equation

∂u = ∂F
F in a neighborhood U of K (see Theorem 2.8). Then ∂(e−uF ) = 0 and so G := e−uF

is holomorphic on U . Moreover,

f = Fe−g = (euG)e−g = Geu−g,

and G is zero-free in U . Now we use Runge’s approximation theorem 3.18 to get a rational
function r with poles outside K such that ||r −G||K < minK |G|. Then ||(r/G)− 1||K < 1 and
so, by Proposition 3.2, G = rev for some v ∈ C(K,C). Summing up, we have obtained on K
the representation

f = rev+u−g,

r continuous and zero-free on K. Next we have to deal with the zeros of r inside the components
of C \K. Since r is a rational function, there are of course only finitely many components Cj ,
j = 0, 1, . . . , N that contain zeros and/or poles. Here C0 is the unbounded component. Let
sj be the number of zeros (multiplicities included) minus the number of poles in Cj . Choose
a point aC0 ∈ C0. Using Corollary 3.14 several times, we finally obtain a continuous function
w ∈ C(K,C) such that r =

∏N
j=0(z − aCj )

sjew. By Proposition 3.17, z − aC0 has a continuous

logarithm on K. Thus r =
∏N
j=1(z−aCj )

sjeh for some h ∈ C(K,C). To sum up, we have shown
that

f =
N∏
j=1

(z − aCj )
sjeh+v+u−g.

Corollary 3.20. Let S ⊆ C be compact. If a and b belong to distinct components of C \S, then
the polynomials z − a and z − b are not homotopic in C(S,C∗).

Proof. Suppose to the contrary that f(z) := z− a and g(z) := z− b are homotopic in C(S,C∗).
Then, by Corollary 3.8, there is h ∈ C(S,C) such that f = geh. Hence (z − a)/(z − b) has
a continuous logarithm on S. This contradicts Theorem 3.16 if both numbers a and b belong
to (distinct) bounded components of C \ S. If one of them, say a, belongs to the unbounded
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component, we already have f(z) = z − a = e`(z) for some ` ∈ C(S,C) (by Proposition 3.17.
But then we also would have have g = e`−h. In other words, z − b has a logarithm, say
z − b = eL(z), z ∈ S. Let Ω denote that bounded component of C \ S the point b belongs to.
Note that ∂Ω ⊆ S. Then (z − b)|∂Ω has a zero-free continuous extension to Ω; a contradiction
to Corollary 1.12.

Theorem 3.21. Let K1 and K2 be two compact sets in C and let h : K1 → K2 be a homeomor-
phism. Then K1 and K2 have the same number of holes.

Proof. i) If K1 has no holes then C \ K1 is connected and so, by Borsuk’s theorem 3.9, any
f ∈ C(K1,C∗) has a logarithm; say f = eg. Now, if F ∈ C(K2,C∗), then f := F ◦h ∈ C(K1,C∗).
Hence F = f ◦ h−1 = eg◦h

−1
. Since F was arbitrary, we conclude, again from Borsuk’s theorem

3.9, that C \K2 is connected. In other words, K2 has no holes.
ii) Assume that K1 has finitely many holes, say U1, . . . , Un, and let V1, . . . , Vm be holes of

K2. By i), m ≥ 1. In view of achieving a contradiction, we may suppose that m ≥ n + 1. Let
ak ∈ Uk and bj ∈ Vj be fixed and consider for w ∈ K2 the functions

fj(w) = w − bj , (j = 1, . . . ,m).

For z ∈ K1, let Fj(z) = fj(h(z)), j = 1, . . . ,m. Then Fj ∈ C(K1,C∗). By Eilenberg’s theorem
3.19, there are Lj ∈ C(K1,C) and sk,j ∈ Z such that for z ∈ K1

Fj(z) =
n∏
k=1

(z − ak)sk,j eLj(z).

Consider the “horizontal” (n,m)-matrix

M =

s1,1 . . . . . . s1,m
...

...
sn,1 . . . . . . sn,m

 .

The rank of M over Q is at most n. Since m > n, the m columns are linear dependent over Q.
Thus there exist sj ∈ Z, (j = 1, . . . ,m), not all of them zero, such that

m∑
j=1

sk,jsj = 0 for all k = 1, . . . , n.

Hence

m∏
j=1

Fj(z)
sj =

[ m∏
j=1

n∏
k=1

(z − ak)sk,jsj
]

exp
( :=L(z)︷ ︸︸ ︷

m∑
j=1

sjLj(z)
)

=
[ n∏
k=1

(z − ak)
∑m

j=1 sk,jsj
]

expL(z)

= expL(z).
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On the other hand, F (z) :=
∏m
j=1 Fj(z)

sj =
∏m
j=1(h(z)− bj)sj . Hence, with z = h−1(w),

m∏
j=1

(w − bj)sj = F (h−1(w)) = expL(h−1(w)), w ∈ K2.

By Theorem 3.16, sj = 0 for every j. This is a contradiction to the choice of sj . Hence m ≤ n.
Interchanging the role of m and n yields that m = n.

iii) If K1 has infinitely many holes, then K2 must have infinitely many holes, too (otherwise
we apply the previous case where the roles of K1 and K2 are interchanged).

Proposition 3.22. Let f be a zero-free continuous function in C. Then f has a continuous
logarithm; that is, there exists a continuous function g with eg = f .

Proof. First approach. By Borsuk’s theorem 3.9, f admits a continuous logarithm on every
closed square. Now we cover C with unit squares [n, n+1]× [m,m+1], n,m ∈ Z and enumerate
those in the following way: one starts with the square Q1 := [0, 1]2, denoted by 1, and spirals
around:

37 36 35 34 33 32 31

↓ 17 16 15 14 13 30

18 5 4 3 12 29

19 6 1 2 11 28

20 7 8 9 10 27

↓ 21 22 23 24 25 26

→ →

Let h1 := g1 = log f on Q1; choose g2 = log f on Q2 so that g2 = h1 on the common boundary
and put

h2 =

{
g1 on Q1

g2 on Q2

.

Then h2 ∈ C(Q1 ∪ Q2) and eh2 = f . Inductively, choose gn = log f so that gn coincides with
hn−1 on the intersection I of the boundary of Qn with the previous boundaries. Note that I is
a union of at most two adjacent segments, hence a connected set. The function g = gn on Qn,
(n = 1, 2, 3, . . . ), is then well-defined and satisfies eg = f in C.

Second approach Let gn = log f on the disk Dn = {|z| ≤ n}, where the branch is chosen so
that gn = gn−1 on Dn−1. We claim that the function g, defined by limn g(z), is a continuous
logarithm of f . In fact, let z0 ∈ C be fixed, and consider the smallest disk Dn0 containing z0

in its interior. Then gn(z) = gn0(z) for every z ∈ Dn0 and n ≥ n0. Thus g(z) = gn0(z) for all
z ∈ Dn0 and so eg = f on Dn0 .

Theorem 3.23. Let G be a simply connected domain in C. Then every zero free continuous
function on G admits a continuous logarithm.
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Proof. According to Theorem ??, let (Kn) be an exhaustion sequence of Ω-convex connected
compacta. Since Ω is simply connected, each Kn actually is polynomial convex (Proposition ??).
By Borsuk’s Theorem 3.9, there is gn ∈ C(Kn,C) with egn = f on Kn and where the branch
is chosen so that gn = gn−1 on Kn−1 whenever n ≥ 2. As above, we see that the function g,
defined by limn g(z), is a continuous logarithm of f on G.

We conclude this Section with Brouwer’s fixed point theorem for the closed unit disk.

Theorem 3.24 (Brouwer). Let D be the closed unit disk and f ∈ C(D,D). Then f admits a
fixed point; that is there is a ∈D with f(a) = a.

Proof. Suppose that f does not admit a fixed point. Then g(z) := z − f(z) is a zero-free
continuous function on D. Note that D is contractible. Hence, due to Corollary 3.5, g = eG for
some G ∈ C(D,C). Now consider the function h : D → D given by h(z) = 1 − zf(z). Then
h is zero free on D, because otherwise bf(b) = 1 for some b ∈ D. Since on D, |bf(b)| < 1, we
deduce that |b| = 1. Thus f(b) = b; a contradiction to the assumption. Again, by Corollary 3.5,
there is H ∈ C(D,C) with h = eH . But on T = ∂D, we have zh(z) = z − f(z) = g(z). Thus
zeH(z) = eG(z) and so

z = eG(z)−H(z) with |z| = 1.

This contradicts Proposition 1.3, for example. We conclude that f has a fixed point in D.
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Chapter 4

Conformal maps

4.1 Conformal maps and the Riemann mapping theorem

Here we will present the most important theorem in geometric function theory dealing with
conformal maps: namely the Riemann mapping theorem. We will use our original Definition
4.1 of simple-connectedness.

Definition 4.1.

i) A domain in C is an open connected set 14.

ii) A domain G ⊆ C is said to be simply connected if C \G has no bounded components.

Recall from Definition 1.1 that a Cauchy domain is a domain in C for which every cycle is
null-homologous.

Theorem 4.2. Let D1 and D2 be two domains in C and suppose that f : D1 → D2 is a
conformal map (that is a holomorphic bijection). If D1 is a Cauchy domain, then D2 = f(D1)
is a Cauchy domain.

Proof. Let Γ = w([0, 1]) ⊆ D2 be a closed, piecewise C1-curve. We need to show that n(Γ, a) = 0
for every a ∈ C \D2. To this end, let γ = f−1 ◦ Γ. Then γ is a closed piecewise C1-curve in D1

parametrized by z(t) = f−1(w(t)), or equivalently, w(t) = f(z(t)), 0 ≤ t ≤ 1. By assumption, γ
is null-homologous in D1. Hence,

I := n(Γ, a) =
1

2πi

∫
Γ

1

w − a
dw

=
1

2πi

∫ 1

0

f ′(z(t)) · ż(t)
f(z(t))− a

dt

=
1

2πi

∫
γ

f ′(z)

f(z)− a
dz.

Since f ′/(f − a) ∈ H(D1), the Cauchy theorem for null-homologous cycles implies that I = 0.
Hence Γ is null-homologous in D2 and so D2 is a Cauchy domain, too.

14 If D is a nonvoid domain, then D is sometimes called a region (see [?]).
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Theorem 4.3 (Riemann mapping theorem). Let G be a simply connected domain, z0 ∈ G and
G 6= C. Then there is a unique conformal map f : G → D (called the Riemann map) with
f(z0) = 0 and f ′(z0) > 0.

Proof. Uniqueness
Let f and g be two conformal maps of G onto D with f(z0) = g(z0) = 0 and f ′(z0) > 0,

g′(z0) > 0. Then h := g ◦ f−1 is a conformal map of D onto D satisfying h(0) = 0. Hence, by
Schwarz’s Lemma, h(z) = eiθz for some θ ∈ [0, 2π[. But

eiθ = h′(0) = g′(f−1(0))(f−1)′(0) = g′(z0)
1

f ′(z0)
> 0.

Consequently θ = 0. Hence h(z) = z and so f = g.

Existence
Step 1 Reduction of the problem to a Cauchy domain G := D3 with D3 ⊆ D and z0 := 0 ∈

D3.
Let a ∈ C \G. Then f(z) = z− a is zero-free in G. Now, due to Example ??, G is a Cauchy

domain. Hence, by Theorem 1.2, there is g ∈ H(G) with g2(z) = z−a and Z(g) = ∅. Moreover,
g is injective. Let D1 := g(G). Then D1 is a Cauchy domain, too (Appendix 4.2).

Claim 1 D1 is antisymetric; that is, if w0 ∈ G1, then −w0 /∈ G1.
In fact, supposing the contrary, there are z1, z2 ∈ G with g(z1) = w0 and g(z2) = −w0.

Hence
z1 − a = g2(z1) = g2(z2) = z2 − a,

from which we deduce that z1 = z2 and so w0 = 0; a contradiction to Z(g) = ∅.
Claim 2 D1 has exterior points; this means that C \D1 has nonvoid interior.
To see this, let w0 ∈ D1 and let r > 0 be such that D(w0, r) ⊆ D1 (note that D1 is open).

Then D(−w0, r) ∩D1 = ∅ by the first claim.

Now consider the Möbius transform S(z) =
r

z + w0
. This function maps the extended

exterior of D(−w0, r) to D; that is

S(Ĉ \D(−w0, r)) = D with S(∞) = 0.

Since D1 ⊆ C \ D(−w0, r), we see that D2 := S(D1) ⊆ D. Finally, using a conformal selfmap
T of D with T ◦ S ◦ g(z0) = 0; for example T (ξ) = (S(g(z0)) − ξ)/(1 − S(g(z0))ξ), we obtain
a conformal map F := T ◦S◦g of G onto a Cauchy domain D3 := F (G) ⊆ D such that F (z0) = 0.

Step 2 “Left-composing F to get a surjection ”.
Consider the family

F = {f ∈ H(D3) : f(D3) ⊆ D, f(0) = 0, f injective} ∪ {0}.

Since F is uniformly bounded (by 1), we may apply Montel’s normality criterion ??, to
deduce that F is a normal family. But F is also closed in the metric space (H(D3), d) (given in
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Observation ??), hence (sequentially) compact. In fact, if (fn) is a sequence in F\{0} converging
locally uniformly to some f ∈ H(D3), then, by Hurwitz’s Theorem ??, f either is injective or
constantly 0.

Since the map L :

{
(H(D3), d) → C
f 7→ f ′(0)

is continuous, the compactness of F yields that

L(F) is a compact set in C. Thus, there is f0 ∈ F (called an extremal function) such that

|f ′0(0)| = sup{|f ′(0)| : f ∈ F}.

Claim 3 f0 is a conformal map of D3 onto D.
We first note that |f ′0(0)| ≥ 1, because the identity map f(z) = z, (z ∈ D3 ⊆ D), satisfies

f ′(0) = 1 and belongs to F . Thus f0 6≡ 0 and so f0 is injective.
To prove the surjectivity of f0, we suppose that this is not the case. Then there is b ∈

D \ f0(D3). Let Sb(ξ) = b−ξ
1−bξ . Then the function Sb ◦ f0 : D3 → D is zero-free. Since D3 is

a Cauchy domain, we may apply Theorem 1.2 again to deduce that there is q ∈ H(D3) with
q2 = Sb ◦ f0. Note that q(D3) ⊆ D. The injectivity of Sb ◦ f0 implies that q is also injective.
Let c := q(0). Then the function h := Sc ◦ q ∈ H(D3), h(D3) ⊆ D, and h(0) = 0. But h is also
injective. Hence h ∈ F . But |h′(0)| > |f ′0(0)|. In fact, if ψ(w) = w2, then

f0 = S−1
b ◦ ψ ◦ S

−1
c︸ ︷︷ ︸

:=ϕ

◦h,

and so
|f ′0(0)| = |ϕ′(0)| |h′(0)|. (4.1)

Since ϕ(D) ⊆ D and ϕ(0) = 0, we deduce from the Schwarz Lemma that |ϕ′(0)| < 1 (note that
ϕ is not a rotation). Hence |f ′0(0)| < |h′(0)|. This is a contradiction though to the extremality
of f0. We conclude that f0 must be surjective.

Finally, let f1 := f0 ◦ F and

f :=
|f ′1(0)|
f ′1(0)

f1.

Note that f ′1(0) 6= 0 because f1 is a conformal map. Then f is the desired conformal map of G
onto D with f ′(0) > 0 and f(0) = 0.

Theorem 4.4. If D1 and D2 are two simply connected domains in C with Dj 6= C, then there
is a conformal map of D1 onto D2 (we say that D1 is conformally equivalent to D2).

Proof. Let fj : Dj → D be the Riemann maps associated with Dj . Then f−1
2 ◦ f1 is a conformal

map of D1 onto D2.

For the following observe that D is homeomorphic with C (just consider the map h : C→ D
given by h(z) = z/(1+ |z|) and its inverse h−1(w) = w/(1−|w|)). Of course C is not conformally
equivalent with D in view of Liouville’s Theorem.
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Theorem 4.5. Let G be a domain in C with G 6= C. The following assertions are equivalent:

(1) G is conformally equivalent with D.

(2) G is homeomorphic to D.

(3) G is simply connected.

Proof. (1) =⇒ (2) This is obvious.
(2) =⇒ (3) By example ??, G is simply connected (in the sense of Definition 4.1) if and only

if it is a psc-space. But by Corollary ??, being a psc-space is invariant under homeomorphisms.
Hence G is simply connected as the homeomorphic image of D.

(3) =⇒ (1) This is the Riemann mapping Theorem, Appendix 4.3.

Theorem 4.6. Here is a conformal map of the unit disk onto the cusp domain

G = {z ∈ C : |z + 1/2| < 1/2} \
({∣∣z − i

2

∣∣ ≤ 1
2

}
∪
{∣∣z + i

2

∣∣ ≤ 1
2

})
.

Figure 4.1: From the disk to a circular triangle

And here is a conformal map of the lunar crescent G to the unit disk

G = D \ {z ∈ C : |z − 1/2| ≤ 1/2}

f(z) = i tan
π

2

(
1 + z

1− z
− 1

2

)
.

4.2 Extensions of conformal maps

Theorem 4.7. Let f : D→ G be a conformal map of the unit disk D onto the bounded domain
G ⊆ C. Then the following assertions are equivalent:

(1) f has a continuous extension to D;

(2) ∂G is a curve; that is ∂G = {φ(ξ) : ξ ∈ ∂D} with continuous φ;
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Figure 4.2: From the lunar crescent to the disk

(3) ∂G is locally connected;

(4) C \G is locally connected.

Theorem 4.8 (Carathéodory). Let f : D→ G be a conformal map of the unit disk D onto the
bounded domain G ⊆ C. Then the following assertions are equivalent:

(1) f has a continuous injective extension to D;

(2) ∂G is a Jordan curve;

(3) ∂G is locally connected and has no cut-points.
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