Raymond Mortini

Cours à l'Université du Luxembourg

Une deuxième vue sur l'analyse complexe A second glimpse at complex analysis Funktionentheorie: zum 2-ten

Pour le 5ème semestre du BASI (Module 5.3-10ECTS), 2017-2018, 'reading course' d'analyse.

Extraits du manuscrit du bouquin en préparation:
An introduction to extension problems, Bézout equations and stable ranks in classical function algebras
Accompanied by introductory chapters on point-set topology and function theory,
auteurs: Raymond Mortini et Rudolf Rupp.

The Pythagorian school: the beginning of mathematics

$$
\text { blue area }=\text { yellow area } \Longrightarrow a^{2}+b^{2}=c^{2}
$$

Figure 1: $\quad(a+b)^{2}=a^{2}+b^{2}+2 a b=c^{2}+4 \frac{a b}{2}$

Contents

1 The Jordan curve Theorem, logarithms and fixed points 5
1.1 Logarithms of holomorphic functions 5
1.2 The Jordan curve theorem 7
1.3 Brouwer's fixed point theorem 8
2 The $\bar{\partial}$-calculus 15
2.1 The Wirtinger derivatives 15
2.2 Planar Cauchy-integrals and the $\bar{\partial}$-equation 17
2.3 Explicit values of some integrals 23
2.4 The Cauchy, Gauss, Green, Stokes and Pompeiu formulas 25
2.5 The Bézout equation in $H(U)$ 33
3 Continuous logarithms 35
3.1 Some Banach algebras 35
3.2 Logarithms and Eilenberg's Theorem 38
4 Conformal maps 49
4.1 Conformal maps and the Riemann mapping theorem 49
4.2 Extensions of conformal maps 52

Chapter 1

The Jordan curve Theorem, logarithms and fixed points

1.1 Logarithms of holomorphic functions

Definition 1.1. i) A cycle Γ is a finite union of closed, piecewise C^{1}-curves ${ }^{1}$. The index (or winding number) of a cycle with respect to the point $z \notin \Gamma$ is given by

$$
n(\Gamma, z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\zeta-z} d \zeta
$$

It coincides with the number of times the cycle surrounds the point z.
ii) A cycle Γ in a domain $G \subseteq \mathbb{C}$ is called null-homologous with respect to G if $n(\Gamma, a)=0$ for every $a \in \mathbb{C} \backslash G$.
iii) A domain \mathbb{D} in \mathbb{C} is called a Cauchy domain if every cycle in D is null-homologous.
iv) A Jordan curve J is the homeomorphic image of the unit circle \mathbb{T}.

We note that $n(\Gamma, z)$ is constant on the components of $\mathbb{C} \backslash \Gamma$ and 0 on the unbounded component.

Theorem 1.2. Let D be a domain in \mathbb{C}. The following assertions are equivalent:
(1) D is a Cauchy domain; that is $n(\gamma, a)=0$ for every $a \in \mathbb{C} \backslash D$ and every cycle γ in D. In other words, every cycle in D is null-homologous.
(2) Every $f \in H(D)$ admits a primitive.
(3) Every $f \in H(D)$ with $Z(f)=\emptyset$ admits a holomorphic logarithm in D; that is there is $F \in H(D)$ such that $f=e^{F}$.
(4) Every $f \in H(D)$ with $Z(f)=\emptyset$ admits a holomorphic square-root in D; that is there is $G \in H(D)$ such that $G^{2}=f$.

[^0]
6CHAPTER 1. THE JORDAN CURVE THEOREM, LOGARITHMS AND FIXED POINTS

Proof. (1) $\Longrightarrow(2): \quad$ Fix $z_{0} \in D$ and let γ_{z} be a path in D joining z_{0} with z. Then the integral $F(z):=\int_{\gamma_{z}} f(\xi) d \xi$ is a well defined function in D, because by Cauchy's global integral theorem, $\int_{\Gamma} f(\xi) d \xi=0$ for every closed curve Γ in D. It is now easy to verify that

$$
\lim _{h \rightarrow 0} \frac{F(z+h)-F(z)}{h}=f(z) .
$$

Hence $F^{\prime}=f$.
$(2) \Longrightarrow(3)$: \quad Since $Z(f)=\emptyset$, the quotient f^{\prime} / f belongs to $H(D)$. By hypothesis $(2), f^{\prime} / f$ admits a primitive; that is, there is $h \in H(D)$ with $h^{\prime}=f^{\prime} / f$. Consider the function $H:=f e^{-h}$. Then

$$
H^{\prime}=f^{\prime} e^{-h}-f e^{-h} h^{\prime} \equiv 0 \text { on } D .
$$

Since D is connected, $H \equiv$ const. : $=c$ on D. Since $c \neq 0$, we may write c as $c=e^{a}$ for some $a \in \mathbb{C}$. Then

$$
f=e^{h} e^{a}=e^{a+h}
$$

The function $F:=a+h$ is now the desired logarithm of f.
$(3) \Longrightarrow(4): \quad$ Let $f=e^{F}$ with $F \in H(D)$ and put $G=e^{F / 2}$. Then $G \in H(D)$ and $G^{2}=e^{F}=f$.
(4) $\Longrightarrow(1)$: Let us suppose, to the contrary, that there exists a cycle γ in D and $a \in \mathbb{C} \backslash D$ such that $N:=n(\gamma, a) \neq 0$. Consider the function $f(z)=z-a$. Then $Z_{D}(f)=\emptyset$ and so, by hypothesis (4), we successively have:
(i) There is $f_{1} \in H(D)$ with $Z_{D}\left(f_{1}\right)=\emptyset$ such that $f_{1}^{2}=f$;
(ii) There is $f_{2} \in H(D)$ with $Z_{D}\left(f_{2}\right)=\emptyset$ such that $f_{2}^{2}=f_{1}$. Hence $f_{2}^{2^{2}}=f$.
(iii) $\ldots \ldots$...
(iv) There is $f_{n} \in H(D)$ with $Z_{D}\left(f_{n}\right)=\emptyset$ such that $f_{n}^{2}=f_{n-1}$. Hence $f_{n}^{2^{n}}=f$.

By taking logarithmic derivatives we deduce that

$$
\frac{1}{z-a}=\frac{f^{\prime}(z)}{f(z)}=\frac{2 f_{1} f_{1}^{\prime}}{f_{1}^{2}}=2 \frac{f_{1}^{\prime}}{f_{1}}=2\left(2 \frac{f_{2}^{\prime}}{f_{2}}\right)=\cdots=2^{n} \frac{f_{n}^{\prime}}{f_{n}}
$$

Hence

$$
\begin{aligned}
N & =\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z=\frac{1}{2 \pi i} \int_{\gamma} 2^{n} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z \\
& =2^{n} \underbrace{\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z}_{:=N_{n}} \\
& =2^{n} N_{n} .
\end{aligned}
$$

Since $\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{n}^{\prime}(z)}{f_{n}(z)} d z=n\left(f_{n} \circ \gamma, 0\right), N_{n} \in \mathbb{Z}$ for every $n \in \mathbb{N}^{*}$. Thus $N_{n} \rightarrow 0$ and so $N_{n}=0$ for every $n \geq n_{0}$. But, by assumption, $N \neq 0$. This is a contradiction. Thus we have shown that D is a Cauchy domain.

Proposition 1.3.

i) Let $f \in C\left(\mathbb{T}, \mathbb{C}^{*}\right)$ satisfy $f(-z)=-f(z)$ for all $z \in \mathbb{T}$. Then f has no square root in $C(\mathbb{T}, \mathbb{C})$.
ii) No odd function $f \in C\left(\mathbb{T}, \mathbb{C}^{*}\right)$ has a continuous logarithm in $C(\mathbb{T}, \mathbb{C})$,

Proof. i) Suppose that there is $g \in C(\mathbb{T}, \mathbb{C})$ such that $g^{2}=f$. Since, by hypothesis, f has no zeros, g has no zeros. Hence $q(z):=g(z) / g(-z) \in C\left(\mathbb{T}, \mathbb{C}^{*}\right)$ from which we conclude that $q^{2}(z)=f(z) / f(-z)=-1$. Because \mathbb{T} is connected, $q \equiv i$ or $q \equiv-i$. Therefore, since q is constant,

$$
-1=q^{2}(z) \stackrel{!}{=} q(z) q(-z)=\frac{g(z)}{g(-z)} \frac{g(-z)}{g(z)}=1
$$

An obvious contradiction.
ii) This immediately follows from (i), since otherwise $e^{L}=f$ implies that $\left(e^{\frac{L}{2}}\right)^{2}=e^{L}=f$; in other words f would have a square root, contradicting i).

1.2 The Jordan curve theorem

Lemma 1.4. Let $K \subseteq \mathbb{R}^{n}$ be compact and C a component of $K^{c}:=\mathbb{R}^{n} \backslash K$. Then C is open and $\partial C \subseteq \partial K \subseteq K$.

Proof. It is easy to see that C is open. Now suppose, to the contrary, that there exists $x \in$ $\partial C \backslash \partial K$. Since every neighborhood of x meets C and $K \cap C=\emptyset, x$ cannot be an interior point of K. Thus $x \in K^{c}$ and so x belongs to some component \tilde{C} of K^{c}. Let $x_{n} \rightarrow x, x_{n} \in C$. Because \tilde{C} is open, $x_{n} \in \tilde{C}$ for almost all n. But components are either disjoint or coincide. Thus $\tilde{C}=C$. So $x \in C$. This contradicts the assumption that $x \in \partial C$ (note that, due to openness, $\partial C \cap C=\emptyset)$.
Theorem 1.5 (The Jordan curve Theorem). Let $J=\phi(T)$ be a Jordan curve in \mathbb{C}. Then $\mathbb{C} \backslash J$ has exactly two components: the unbounded one, C_{∞}, and the bounded component C_{1}. Moreover $J=\partial C_{\infty}=\partial C_{1}$.

Proof. First we show that J has at least one bounded component. Suppose, to the contrary, that $\mathbb{C} \backslash J$ is connected. Let $f: J \rightarrow \mathbb{T}$ be the inverse of ϕ. By Theorem 3.9, f has a continuous logarithm on J; say $f=e^{h}$ for some $h \in C(J)$.

Since f is the left-inverse of ϕ we get

$$
\xi=f(\phi(\xi))=e^{h(\phi(\xi))}, \quad|\xi|=1
$$

Let H be a Tietze extension of $h \circ \phi: \mathbb{T} \rightarrow \mathbb{C}$ to \mathbb{C}. Then e^{H} is a zero-free extension of the identity on \mathbb{T}; a contradiction to Corollary 1.12 to Brouwer's fixed point theorem.

Next we show that there are at most two components. Suppose to the contrary that $\mathbb{C} \backslash J$ has two bounded components, C_{1} and C_{2}. Let $a_{j} \in C_{j}$ and consider the function

$$
f(z)=\left(z-a_{1}\right)^{s_{2}} /\left(z-a_{2}\right)^{s_{1}}, \quad(z \in J) .
$$

Here the $s_{j} \in \mathbb{Z}$ are chosen so that for $\xi \in \mathbb{T}$

$$
\phi(\xi)-a_{1}=\xi^{s_{1}} e^{h_{1}(\xi)} \text { and } \phi(\xi)-a_{2}=\xi^{s_{2}} e^{h_{2}(\xi)},
$$

where $h_{1}, h_{2} \in C(\mathbb{T}, \mathbb{C})$ (see Theorem 3.19). Hence, with $z=\phi(\xi) \in J,|\xi|=1$,

$$
f(z)=e^{s_{2}\left(h_{1} \circ \phi^{-1}\right)(z)-s_{1}\left(h_{2} \circ \phi^{-1}\right)(z)} .
$$

Hence f has a continuous logarithm on J. By Theorem 3.16, $s_{2}=s_{1}=0$. Therefore $\phi(\xi)-a_{1}=e^{h_{1}(\xi)}$ and so $z-a_{1}=e^{\left(h_{1} \circ \phi^{-1}\right)(z)}(z \in J)$ is an exponential. In particular, applying Tietze to $h_{1} \circ \phi^{-1}$, we see that $\left.\left(z-a_{1}\right)\right|_{J}$ has a continuous zero-free extension to \mathbb{C}. This is a contradiction to Corollary 1.12. Hence, $\mathbb{C} \backslash J$ has exactly one bounded component, which we denote by C_{1}.

Now let C_{∞} be the unbounded component of $\mathbb{C} \backslash J$. We conclude that $\mathbb{C} \backslash J=C_{\infty} \cup C_{1}$.
Next we show the assertion that $J=\partial C_{\infty}=\partial C_{1}$. By Lemma 1.4, for $j=1$ or $j=\infty$, $\partial C_{j} \subseteq J$. Now

$$
\mathbb{C} \backslash \partial C_{j}=\mathbb{C} \backslash\left(\bar{C}_{j} \backslash C_{j}\right)=\left(\mathbb{C} \backslash \bar{C}_{j}\right) \cup C_{j} .
$$

Hence $\mathbb{C} \backslash \partial C_{j}$ is a disjoint union of open sets; so it is disconnected. Now, if ∂C_{j} would be a proper subset of J, then, by Lemma 1.6, $\mathbb{C} \backslash \partial C_{j}$ would be connected. A contradiction. Thus $\partial C_{j}=J$.

The unbounded component C_{∞} of $\mathbb{C} \backslash J$ is called the exterior domain and the bounded component C_{1} the interior domain associated with the Jordan curve J. One also says that C_{1} is the interior of J and C_{∞} the exterior of J.

Lemma 1.6. Let J be a Jordan curve in \mathbb{C}, If K is a proper subset of J, then $\mathbb{C} \backslash K$ is connected.
Proof. We shall use Borsuk's Theorem 3.9 to conclude. So let $f: K \rightarrow \mathbb{C}^{*}$ be a continuous zero-free function on K. Let $S:=\phi^{-1}(K)$. Since $\phi: \mathbb{T} \rightarrow J$ is a homeomorphism, S is a proper compact subset of \mathbb{T}. Hence $\mathbb{C} \backslash S$ is connected.

For $\xi \in \mathbb{T}$, let $h(\xi)=f(\phi(\xi))$. Then h is a zero-free continuous function on S. By Theorem 3.9, h has a continuous logarithm L on S. Thus, for $z \in K$,

$$
f(z)=\exp \left(L\left(\phi^{-1}(z)\right),\right.
$$

and so f has a continuous logarithm on K. By Borsuk's Theorem again, $\mathbb{C} \backslash K$ is connected.

1.3 Brouwer's fixed point theorem

Let $\mathbf{B}_{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\|x\|:=\sqrt{\sum_{j=1}^{n}\left|x_{j}\right|^{2}} \leq 1\right\}$ be the closed unit ball in \mathbb{R}^{n} and $S_{n-1}:=\partial \mathbf{B}_{n}$ the unit sphere (boundary of \mathbf{B}_{n}).

Lemma 1.7. There is no C^{1}-map $f: \mathbf{B}_{n} \rightarrow S_{n-1}$ such that $f(x)=x$ for all $x \in S_{n-1}$; in other words, the closed ball does not admit a (smooth) retract to its boundary ${ }^{2}$.

Proof. Let us suppose that there does exist such a map $f: \mathbf{B}_{n} \rightarrow S_{n-1}$. Consider the convexcombination f_{t} of the identity on \mathbf{B}_{n} and f; that is, let $f_{t}(x)=(1-t) x+t f(x), 0 \leq t \leq 1$. Since $\left\|f_{t}(x)\right\| \leq 1$ we have that f_{t} is a self-map of \mathbf{B}_{n} that fixes every point in S_{n-1}, too. Moreover, f_{t} writes as $f_{t}(x)=x+t(f(x)-x)$. With $g(x):=f(x)-x$, we see that g is a C^{1}-map of \mathbf{B}_{n} and so, due to the convexity of \mathbf{B}_{n}, g satisfies a Lipschitz condition there. That is, there is a constant $C>0$ such that for every $x, y \in \mathbf{B}_{n}$

$$
\|g(x)-g(y)\| \leq C\|x-y\|
$$

We claim that there is $t_{0}>0$ such that for all $t \in\left[0, t_{0}\right]$, the function f_{t} is a bijection of \mathbf{B}_{n} onto \mathbf{B}_{n}. First we show injectivity.

Suppose that $f_{t}\left(x_{1}\right)=f_{t}\left(x_{2}\right)$ for some points $x_{1}, x_{2} \in \mathbf{B}_{n}$. Then $x_{2}-x_{1}=t\left(g\left(x_{1}\right)-g\left(x_{2}\right)\right)$ and therefore

$$
\left\|x_{2}-x_{1}\right\|=t\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\| \leq C t\left\|x_{2}-x_{1}\right\| .
$$

Hence, for $C t<1$, we get that $x_{1}=x_{2}$. Thus f_{t} is injective on \mathbf{B}_{n} whenever $0 \leq t<1 / C$.
To show surjectivity, we look at the Jacobian matrix $J_{f_{t}}(x)$. Note that $J_{f_{t}}(x)=I_{n}+t J_{g}(x)$, where I_{n} is the identity matrix in $M_{n}(\mathbb{R})$. Let

$$
p(t, x):=\operatorname{det} J_{f_{t}}(x)=\operatorname{det}\left(I_{n}+t J_{g}(x)\right)
$$

be the determinant of the Jacobian. Obviously, for each $x \in \mathbf{B}_{n}, p(t, x)$ is a polynomial in t. As g is C^{1}, we see that $p(t, x)$ is a uniformly continuous function on $[0,1] \times \mathbf{B}_{n}$ with $p(0, x)=1$. Thus there exists $\left.t_{0} \in\right] 0,1 / C\left[\right.$ such that $p(t, x)>0$ for all $t \in\left[0, t_{0}\right]$ and $x \in \mathbf{B}_{n}$. By the inverse function theorem, $G_{t}:=f_{t}\left(\left(\mathbf{B}_{n}\right)^{\circ}\right)$ is an open set in \mathbb{R}^{n} for these t. Note that $G_{t} \subseteq \mathbf{B}_{n}$, and that, due to continuity, $\bar{G}_{t}=f_{t}\left(\mathbf{B}_{n}\right)$. Assuming that $\bar{G}_{t} \neq \mathbf{B}_{n}$, the boundary ∂G_{t} of G_{t} intersects \mathbf{B}_{n} at some point y_{0} with $\left\|y_{0}\right\|<1$. Let $x_{0} \in \mathbf{B}_{n}$ satisfy $f_{t}\left(x_{0}\right)=y_{0}$. Since G_{t} is open, $y_{0} \notin G_{t}$ and so $x_{0} \in \mathbf{B}_{n} \backslash\left(\mathbf{B}_{n}\right)^{\circ}=S_{n-1}$. Hence

$$
y_{0}=f_{t}\left(x_{0}\right)=x_{0}
$$

has norm one; a contradiction. We conclude that f_{t} is a surjection of \mathbf{B}_{n} onto itself.
Let us now consider the polynomial $F(t)=\int_{\mathbf{B}_{n}} p(t, x) d x$. Since for $t \in\left[0, t_{0}\right], f_{t}: \mathbf{B}_{n} \rightarrow \mathbf{B}_{n}$ is a bijection, we obtain from the change of variable formula for multiple integrals that $F(t)$ is the volume σ_{n} of the image $f_{t}\left(\mathbf{B}_{n}\right)$. But $f_{t}\left(\mathbf{B}_{n}\right)=\mathbf{B}_{n}$. Hence $F(t)$ is constant for $t \in\left[0, t_{0}\right]$. Since $F(t)$ is a polynomial, $F(t)$ must be constant σ_{n} for each $t \in[0,1]$. In particular, $F(1)=\sigma_{n}>0$.

But on the other hand, $\|f(x)\|=1$ for each $x \in \mathbf{B}_{n}$ implies that $\sum_{j=1}^{n} \phi_{j}^{2}(x) \equiv 1$, where $f=\left(\phi_{1}, \ldots, \phi_{n}\right)$. Hence, by taking the partial derivatives,

$$
\sum_{j=1}^{n} \frac{\partial \phi_{j}}{\partial x_{k}} \phi_{j} \equiv 0 .
$$

[^1]Thus each column of the Jacobian

$$
J_{f}(x)=\left(\begin{array}{ccc}
\frac{\partial \phi_{1}(x)}{\partial x_{1}} & \ldots & \frac{\partial \phi_{1}(x)}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial \phi_{n}(x)}{\partial x_{1}} & \ldots & \frac{\partial \phi_{n}(x)}{\partial x_{n}}
\end{array}\right)
$$

is orthogonal to the column vector $f(x)$ itself; hence the rank of $J_{f}(x)$ is less than $n-1$ and so its determinant det $J_{f}(x)$ is zero for every $x \in \mathbf{B}_{n}$. But $f(x)=f_{1}(x)$ and so

$$
F(1)=\int_{\mathbf{B}_{n}} \operatorname{det} J_{f_{1}}(x) d x=0 .
$$

This contradicts the fact that $F(1)>0$.
Theorem 1.8 (Brouwer's fixed point theorem). Every continuous map $f: \mathbf{B}_{n} \rightarrow \mathbf{B}_{n}$ has a fixed point.

Proof. By the Stone-Weierstrass theorem there exists a sequence $\left(p_{j}\right)$ of polynomials $p_{j} \in$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ converging uniformly to f on \mathbf{B}_{n}. Say

$$
\max _{x \in \mathbf{B}_{n}}\left\|p_{j}(x)-f(x)\right\| \leq 1 / j .
$$

Now $q_{j}=(1+1 / j)^{-1} p_{j}$ converges uniformly to f, too, and $\left\|q_{j}(x)\right\| \leq 1$. Hence each q_{j} is a C^{1} self-map of \mathbf{B}_{n}. We claim that q_{j} has a fixed point in \mathbf{B}_{n}. For if not, consider the map $Q_{j}: \mathbf{B}_{n} \rightarrow S_{n-1}$ that sends $x \in \mathbf{B}_{n}$ to the unique intersection point of the ray from $q_{j}(x)$ to x that meets S_{n-1}; that is $Q_{j}(x)=x+s(x) n(x)$ where $n(x)=\left(x-q_{j}(x)\right) /\left\|x-q_{j}(x)\right\|$ and

$$
s(x)=-x \cdot n(x)+\sqrt{1-\|x\|^{2}+(x \cdot n(x))^{2}} .
$$

Then Q_{j} is a continuous map from \mathbf{B}_{n} to S_{n-1} that fixes each point in S_{n-1}. In order to apply Lemma 1.7 , we need still to show that Q_{j} is a C^{1}-map. To see this, it suffices to show that $1-\|x\|^{2}+\langle x, n(x)\rangle^{2}$ is never zero.

Figure 1.1: $q_{j}(x)-x$ orthogonal to x
This actually holds, since otherwise $1+\langle x, n(x)\rangle^{2}=\|x\|^{2} \leq 1$ implies $\langle x, n(x)\rangle=0$ and $\|x\|=1$ for some $x \in \mathbf{B}_{n}$. Hence x is orthogonal to $x-q_{j}(x)$. By elementary geometry $\left\|q_{j}\right\|>1$, a contradiction (see figure 1.1).

This can also be seen as follows: Since $0=\left\langle x-q_{j}(x), x\right\rangle=\|x\|^{2}-\left\langle q_{j}(x), x\right\rangle$, we see that

$$
1=\|x\|^{2}=\left\langle q_{j}(x), x\right\rangle=\left|\left\langle q_{j}(x), x\right\rangle\right| \leq\|x\|\left\|q_{j}(x)\right\| \leq 1
$$

Thus, by the equality case in the Cauchy-Schwarz inequality, $q_{j}(x)=\lambda x$ for some $\lambda>0$. Consequently $|\lambda|=1$ and so $q_{j}(x)=x$; a contradiction to the assumption that q_{j} does not admit a fixed point. Hence we have found a C^{1}-retract of \mathbf{B}_{n} into S_{n-1}; a contradiction to Lemma 1.7. Thus, each of our maps q_{j} has a fixed point $x_{j} \in \mathbf{B}_{n}$. By passing to a subsequence, we may assume that x_{j} converges to some $\xi \in \mathbf{B}_{n}$. Due to the uniform convergence of $\left(q_{j}\right)$ to f, we therefore have that $f(\xi)=\xi$, too.

Corollary 1.9. Every bounded continuous map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a fixed point.
Proof. Since f is bounded, there is a ball $B=\left\{x \in \mathbb{R}^{n}:\|x\| \leq r\right\}, r>0$, such that $f\left(\mathbb{R}^{n}\right) \subseteq B$. Hence the restriction $f: B \rightarrow B$ is a continuous selfmap of B. Brouwer's fixed point Theorem 1.8 applied to the map

$$
F:\left\{\begin{array}{l}
\mathbf{B}_{n} \rightarrow \mathbf{B}_{n} \\
x \mapsto r^{-1} f(r x)
\end{array}\right.
$$

yields the desired fixed point of f in B.
One of our major applications of Brouwer's fixed point theorem is the following result on the non-existence of invertible extensions of a certain vector-valued map in \mathbb{R}^{n}.

Theorem 1.10. Let $K \subseteq \mathbb{R}^{n}$ be compact, C a bounded component of $\mathbb{R}^{n} \backslash K$ and $a \in C$. Then the n-tuple $x-a$, defined on K, is invertible, but does not admit a continuous extension to an invertible n-tuple on $K \cup C$.

Proof. Let $f(x)=x-a$. Since $f \cdot \frac{f^{t}}{|f|^{2}}=1$, we see that f is invertible. Next we use that, by Lemma 1.4, $\partial C \subseteq \partial K$. Let $L=K \cup C$. Suppose that $F_{1} \in C\left(L, \mathbb{R}^{n}\right)$ is an invertible n-tuple extending f. Let

$$
F_{2}(x)= \begin{cases}x-F_{1}(x) & \text { if } x \in \bar{C} \\ a & \text { if } x \in \mathbb{R}^{n} \backslash C\end{cases}
$$

Since

$$
\left(\mathbb{R}^{n} \backslash C\right) \cap \bar{C} \subseteq \partial C \subseteq \partial K \subseteq K
$$

we see that F_{2} is well-defined, because on this intersection both expressions are equal. Since F_{2} is bounded, there is a closed ball $B \subseteq \mathbb{R}^{n}$ with $\bar{C} \subseteq B$ such that F_{2} is a continuous self-map of B. By Brouwer's fixed point theorem (Theorem 1.8) there is a point $w \in B$ with $F_{2}(w)=w$. Because $a \in C$, the second case in the definition for $F_{2}(w)$ is not possible. Hence, $w \in \bar{C} \subseteq L$ and $w=F_{2}(w)=w-F_{1}(w)$. Thus $F_{1}(w)$ would be the zero vector, a contradiction to the invertibility of the n-tuple F_{1} on L. We conclude that f cannot be extended to an invertible continuous n-tuple on L.

Corollary 1.11. Let \mathbf{B}_{n} be the closed unit ball in \mathbb{R}^{n}. Then the identity map

$$
\left(x_{1}, \ldots, x_{n}\right): \partial \mathbf{B}_{n} \rightarrow \partial \mathbf{B}_{n}
$$

does not admit a zero-free ${ }^{3}$, continuous extension to \mathbf{B}_{n}.
Proof. Immediate from Theorem 1.10.

Later, in Theorem 1.14, it will be shown that Corollary 1.11 is, indeed, equivalent to Brouwer's fixed-point theorem.

By identifying \mathbb{R}^{2} with \mathbb{C}, we immediately obtain the next Corollary.
Corollary 1.12. Let $K \subseteq \mathbb{C}$ be compact, C a bounded component of $\mathbb{C} \backslash K$ and $a \in C$. Then the function $f(z)=z-a$ defined on K is zero-free on K, but does not admit a zero-free extension to $K \cup C$.

Later on (see Lemma 3.15) we will prove the same result for integer powers of $z-a$.
Definition 1.13. A Hausdorff space X is said to be contractible to the point $x_{0} \in X$, if there is a continuous map $H: X \times[0,1] \rightarrow X$ such that $H(x, 0)=x$ and $H(x, 1)=x_{0}$ for all $x \in X$. Such a map is said to be a homotopic contraction.

Thus we have that X is contractible to the point x_{0} if the identity map on X is homotopic to the constant map $x \mapsto x_{0}$.

Every convex set in \mathbb{R}^{n} is contractible; in fact, if K is a convex set, then we use the map $H(x, t)=(1-t) x+t N, 0 \leq t \leq 1$, where N is any fixed point of K and $x \in K$.

Theorem 1.14. Let $E=(E,\|\cdot\|)$ be a normed space, $B=\{x \in E:\|x\| \leq 1\}$ the unit ball, and $S=\{x \in E:\|x\|=1\}$ the unit sphere in E. Then the following assertions are equivalent:
(1) Each continuous function $f: B \rightarrow B$ has a fixed point;
(2 The sphere S is no retract for B; that is there does not exist a continuous function r : $B \rightarrow S$ such that $r(x)=x$ for every $x \in S$;
(3) The sphere S is not contractible.

Proof. (1) $\Longrightarrow(2)$ Suppose that $r: B \rightarrow S$ is a retract. Then $f=-r$ is a selfmap of B; By (1) f admits a fixed point $x_{0} \in B$. Since $f(B) \subseteq S$, we have that $x_{0} \in S$. Hence

$$
x_{0}=f\left(x_{0}\right)=-r\left(x_{0}\right)=-x_{0}
$$

This is a contradiction, since $\left\|x_{0}\right\|=1$. Thus (2) holds.

[^2](2) \Longrightarrow (3) Suppose that $H:[0,1] \times S \rightarrow S$ is a homotopy in S with $H(x, 0)=x$ and $H(x, 1)=x_{0}$ for every $x \in S$. Let
\[

r(x)= $$
\begin{cases}x_{0} & \text { if }\|x\| \leq 1 / 2 \\ H\left(\frac{x}{\|x\|}, 2-2\|x\|\right) & \text { if } 1 / 2 \leq\|x\| \leq 1\end{cases}
$$
\]

Then r is well defined (since for $\|x\|=1 / 2$ we have $r(x)=H(2 x, 1)=x_{0}$), hence r is a continuous map on B into S. Now for $x \in S$ we see that $r(x)=H(x, 2-2)=H(x, 0)=x$. Thus r is a retract of B to S; a contradiction to (2).

$(3) \Longrightarrow(1)$

Suppose that there exists a continuous selfmap f of B without any fixed points. Consider the function $H:[0,1] \times S \rightarrow S$ defined by

$$
H(x, t)= \begin{cases}\frac{x-2 t f(x)}{\|x-2 t f(x)\|} & \text { if } 0 \leq t<1 / 2 \\ \frac{2 x-2 x-f(2 x-2 t x)}{\|2 x-2 t x-f(2 x-2 t x)\|} & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Then H is well defined and continuous. (In fact, if $2 x-2 t x-f(2 x-2 t x)=0$, then $2 x-2 t x$ would be a fixed point of f, and if $x-2 t f(x)=0$, then $1>2 t\|f(x)\|=\|x\|=1$. Twice a contradiction.) Moreover, $H(x, 0)=x$ and $H(x, 1)=x_{0}$, where $x_{0}:=-f(0) /|f(0)| \in S$. Thus H is a homotopy shrinking the sphere to a point. A contradiction to (3).

14CHAPTER 1. THE JORDAN CURVE THEOREM, LOGARITHMS AND FIXED POINTS

Chapter 2

The $\bar{\partial}$-calculus

In this chapter we present some advanced function theoretic tools that we need several times later on. The main feature is to derive explicit solutions to the $\bar{\partial}$-equation $\bar{\partial} v=f$ in \mathbb{C} (also called inhomogeneous Cauchy-Riemann differential equation) and to derive in a simple and elegant way the Gauss-Green-Stokes formulas in the plane. We also include a purely computational section giving the explicit values of several Cauchy-type integrals $\int_{\mathbb{D}} f(\zeta) /(\zeta-z) d \sigma_{2}(\zeta)$. The set of all holomorphic functions on an open set Ω will be denoted by $H(\Omega)$.

2.1 The Wirtinger derivatives

Whereas in real analysis the partial derivatives $f_{x_{j}}:=\partial f / \partial x_{j}$ play a central role, their counterparts in complex analysis are the so-called Wirtinger derivatives $\partial f=\partial f / \partial z$ and $\bar{\partial} f=\partial f / \partial \bar{z}$.

So suppose that $f: \Omega \rightarrow \mathbb{C}$ is \mathbb{R}-differentiable at $z_{0}=x_{0}+i y_{0} \in \Omega, \Omega \subseteq \mathbb{C}$ open. Then, by writing $x-x_{0}=\frac{1}{2}\left(\left(z-z_{0}\right)+\left(\bar{z}-\bar{z}_{0}\right)\right)$ and $y-y_{0}=\frac{1}{2 i}\left(\left(z-z_{0}\right)-\left(\bar{z}-\bar{z}_{0}\right)\right)$ we arrive at

$$
\begin{aligned}
f(z) & =f\left(z_{0}\right)+f_{x}\left(z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(z_{0}\right)\left(y-y_{0}\right)+\mathcal{O}\left(z-z_{0}\right) \\
& =f\left(z_{0}\right)+\frac{1}{2}\left(f_{x}\left(z_{0}\right)-i f_{y}\left(z_{0}\right)\right)\left(z-z_{0}\right)+\frac{1}{2}\left(f_{x}\left(z_{0}\right)+i f_{y}\left(z_{0}\right)\right)\left(\bar{z}-\bar{z}_{0}\right)+\mathcal{O}\left(z-z_{0}\right) .
\end{aligned}
$$

The Wirtinger derivatives are now defined by

$$
\begin{aligned}
& f_{z}:=\partial f / \partial z:=\partial f:=\frac{1}{2}\left(f_{x}-i f_{y}\right) \\
& f_{\bar{z}}:=\partial f / \partial \bar{z}:=\bar{\partial} f:=\frac{1}{2}\left(f_{x}+i f_{y}\right)
\end{aligned}
$$

It is easy to see that the Cauchy-Riemann equations take the form $\bar{\partial} f=0$. Also, if f is holomorphic at z_{0}, then $f^{\prime}\left(z_{0}\right)=f_{z}\left(z_{0}\right)=f_{x}\left(z_{0}\right)$.

Here is a couple of useful formulas.

Proposition 2.1.

Let $f(z), g(z)$ and $h(w)$ be C^{1}-functions in \mathbb{C}. Then
(1) $(f g)_{z}=f g_{z}+f_{z} g ; \quad(f g)_{\bar{z}}=f g_{\bar{z}}+f_{\bar{z}} g$;
(2) $\overline{\left(f_{z}\right)}=\bar{f}_{\bar{z}}$ and $\overline{\left(f_{\bar{z}}\right)}=\bar{f}_{z}$;
(3) $(h \circ f)_{z}=\left(h_{w} \circ f\right) f_{z}+\left(h_{\bar{w}} \circ f\right) \bar{f}_{z} ; \quad(h \circ f)_{\bar{z}}=\left(h_{w} \circ f\right) f_{\bar{z}}+\left(h_{\bar{w}} \circ f\right) \bar{f}_{\bar{z}} ;$
(4) If $s(t)$ is a C^{1}-path in \mathbb{C}, then

$$
(f \circ s)^{\prime}(t)=f_{z}(s(t)) s^{\prime}(t)+f_{\bar{z}}(s(t)) \overline{s^{\prime}(t)} .
$$

(5) If $\varphi(\theta, r)=f\left(r e^{i \theta}\right), r>0$, then

$$
\begin{aligned}
& \varphi_{r}(\theta, r)=e^{i \theta} f_{z}+e^{-i \theta} f_{\bar{z}} \\
& \varphi_{\theta}(\theta, r)=i r e^{i \theta} f_{z}+r e^{-i \theta}(-i) f_{\bar{z}}
\end{aligned}
$$

(6) $\bar{\partial} f(z)=\frac{1}{2} e^{i \theta}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \theta}\right) \varphi(\theta, r)$;
(7) If $f \in C^{1}(\mathbb{R}, \mathbb{R})$ and $h \in C^{1}(\mathbb{C}, \mathbb{R})$, then

$$
(f \circ h)_{z}=\left(f^{\prime} \circ h\right) h_{z} \text { and }(f \circ h)_{\bar{z}}=\left(f^{\prime} \circ h\right) h_{\bar{z}} \text {. }
$$

(8) Let $u(z, w)$ be a C^{1}-function in $\mathbb{C}^{2}, h_{1}(t)$ and $h_{2}(t)$ two C^{1}-paths in \mathbb{C}, and $h(t):=$ $u\left(h_{1}(t), h_{2}(t)\right)$. Then

$$
\begin{aligned}
h^{\prime}(t) & =u_{z}\left(h_{1}(t), h_{2}(t)\right) \cdot h_{1}^{\prime}(t)+u_{\bar{z}}\left(h_{1}(t), h_{2}(t)\right) \cdot \overline{h_{1}^{\prime}(t)} \\
& +u_{w}\left(h_{1}(t), h_{2}(t)\right) \cdot h_{2}^{\prime}(t)+u_{\bar{w}}\left(h_{1}(t), h_{2}(t)\right) \cdot \overline{h_{2}^{\prime}(t)} .
\end{aligned}
$$

The proof is purely computational. Note that (5) is best done if one writes $\varphi(\theta, r)=$ $f(r \cos \theta, r \sin \theta)$. Let us point out that the second exponential factor in the partial derivatives for φ is $e^{-i \theta}$ and not $e^{i \theta}$. Applying formula (6), we immediately see that the logarithm

$$
\log _{D_{j}}(z):=\log |z|+i \arg z
$$

is a holomorphic function on $D_{1}:=\mathbb{C} \backslash\left[0, \infty\left[\right.\right.$ or $\left.\left.D_{2}=\mathbb{C} \backslash\right]-\infty, 0\right]$ for example.
Here are two formulas envolving the Laplace operator $\Delta u=u_{x x}+u_{y y}$ on \mathbb{C} :
Remark 2.2. Let u be a C^{2}-function in \mathbb{C}, and $f \in H(\mathbb{C})$. Then:
(1) $\Delta u=4 u_{z \bar{z}}$.
(2) $\Delta(u \circ f)=((\Delta u) \circ f)\left|f^{\prime}\right|^{2}$.

Proof. (1) $u_{z \bar{z}}=\frac{1}{2}\left(u_{x}-i u_{y}\right)_{\bar{z}}=\frac{1}{4}\left(u_{x x}+i u_{x y}\right)-\frac{1}{4} i\left(u_{y x}+i u_{y y}\right)=\frac{1}{4} \Delta u$.
(2) Here we use Proposition 2.1 (3) and (2):

$$
\begin{aligned}
4 \Delta(u \circ f) & =(u \circ f)_{z \bar{z}}=\left(\left(u_{w} \circ f\right) f_{z}\right)_{\bar{z}} \\
& =\left(u_{w \bar{w}} \circ f\right) \bar{f}_{\bar{z}} f_{z} \\
& =4((\Delta u) \circ f)\left|f^{\prime}\right|^{2} .
\end{aligned}
$$

2.2 Planar Cauchy-integrals and the $\bar{\partial}$-equation

One of our main tools will be the following Cauchy-type representation theorem for smooth functions with compact support. Planar Lebesgue measure is denoted by σ_{2}.

Theorem 2.3. Let f be continuously \mathbb{R}-differentiable in \mathbb{C} and suppose that f has compact support. Then

$$
f(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

Proof. Fix $z \in \mathbb{C}$ and Let $\phi(r, \theta)=f\left(z+r e^{i \theta}\right)$. Then, by 2.1 (6), the integral above coincides with the limit, as $\varepsilon \rightarrow 0$, of

$$
\begin{equation*}
I(\varepsilon):=-\frac{1}{2 \pi} \int_{\varepsilon}^{\infty} \int_{0}^{2 \pi}\left(\frac{\partial \phi}{\partial r}+\frac{i}{r} \frac{\partial \phi}{\partial \theta}\right) d \theta d r . \tag{2.1}
\end{equation*}
$$

Since ϕ and its partial derivatives are periodic in θ with period 2π, the integral of $\partial \phi / \partial \theta$ is 0 . Hence

$$
I(\varepsilon)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{\varepsilon}^{\infty} \frac{\partial \phi}{\partial r} d r d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi(\varepsilon, \theta) d \theta
$$

Since $\phi(\varepsilon, \theta)$ tends uniformly (in θ) to $f(z)$ as $\varepsilon \rightarrow 0$, we see that $\lim _{\varepsilon \rightarrow 0} I(\varepsilon)=f(z)$.
The existence of the integral

$$
-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

with a singularity at z also follows from the fact that the convolution integral of a locally $L_{1}\left(d \sigma_{2}\right)$-function, here $1 / \zeta$, with a continuous function, converges.

The following result is an analogue of the Cauchy-integral formula.
Proposition 2.4. Let $\alpha \in C_{c}^{\infty}(\mathbb{C})$ and f continuous on \mathbb{C}. Suppose that f is holomorphic in Ω, where Ω is an open neighborhood of the support of α. Then

$$
\begin{equation*}
\int_{\mathbb{C}}(\bar{\partial} \alpha) f d \sigma_{2}=0 \tag{2.2}
\end{equation*}
$$

Proof. Let U be an open set such that supp $\alpha \subseteq U \subseteq \bar{U} \subseteq \Omega$. Let $\phi \in C_{c}^{\infty}(\mathbb{C})$ satisfy $\phi=1$ on U and $\operatorname{supp} \phi \subseteq \Omega$. Fix $a \in \mathbb{C}$ and define

$$
F(z)= \begin{cases}\phi(z) f(z)(z-a) & \text { if } z \in \Omega \\ 0 & \text { if } z \notin \Omega\end{cases}
$$

Then $F \in C_{c}^{\infty}(\mathbb{C})$. Since F is holomorphic in $U \supseteq \operatorname{supp}(\alpha)$, we have $\bar{\partial}(\alpha F)=F \bar{\partial} \alpha$ on U. Thus,
by Theorem 2.3,

$$
\begin{aligned}
-\frac{1}{\pi} \int_{\mathbb{C}} \bar{\partial} \alpha(\zeta) f(\zeta) d \sigma_{2}(\zeta) & =-\frac{1}{\pi} \int_{U} \frac{\bar{\partial} \alpha(\zeta) F(\zeta)}{\zeta-a} d \sigma_{2}(\zeta) \\
& =-\frac{1}{\pi} \int_{U} \frac{\bar{\partial}(\alpha F)(\zeta)}{\zeta-a} d \sigma_{2}(\zeta) \\
& =-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial}(\alpha F)(\zeta)}{\zeta-a} d \sigma_{2}(\zeta) \\
& =\alpha(a) F(a)=0
\end{aligned}
$$

A second proof of Proposition 2.4 will be given later 2.21 as an application of the complex version of Gauss' Theorem.

It is interesting to note that if we merely assume that f is holomorphic in a neighborhood of supp $\bar{\partial} \alpha$, then formula (2.2) does no longer hold, although the values of f outside supp $\bar{\partial} \alpha$ do not play any role, as what is demonstrated by the following integral equality:

$$
\int_{\mathbb{C}}(\bar{\partial} \alpha) f d \sigma_{2}=\int_{\text {supp } \bar{\partial} \alpha}(\bar{\partial} \alpha) f d \sigma_{2}
$$

Here is an example. Given $a \in \mathbb{C}$, choose $\alpha \in C_{c}^{\infty}(\mathbb{C})$ so that

$$
R:=(\operatorname{supp} \alpha)^{\circ} \backslash \operatorname{supp} \bar{\partial} \alpha \neq \emptyset
$$

$a \in R$ and $\alpha(a)=1$.
Let U be an open neighborhood of supp $\bar{\partial} \alpha$ and W an open set containing a with $\bar{U} \cap \bar{W}=\emptyset$. Let $g \in C_{c}^{\infty}(\mathbb{C})$ be chosen so that $g=0$ in a neighborhood of \bar{W} and $g(z)=1$ if $z \in U$. Define f by

$$
f(z)= \begin{cases}\frac{1}{z-a} g(z) & \text { if } z \in \mathbb{C} \backslash W \tag{2.3}\\ 0 & \text { if } z \in W\end{cases}
$$

Then $f \in C_{c}^{\infty}(\mathbb{C})$ and f is holomorphic in the neighborhood U of $\operatorname{supp} \bar{\partial} \alpha$. By Theorem 2.3,

$$
\begin{aligned}
-\frac{1}{\pi} \int_{\mathbb{C}} \bar{\partial} \alpha(\zeta) f(\zeta) d \sigma_{2} & =-\frac{1}{\pi} \int_{\operatorname{supp} \bar{\partial} \alpha} \bar{\partial} \alpha(\zeta) f(\zeta) d \sigma_{2} \\
& =-\frac{1}{\pi} \int_{\operatorname{supp} \bar{\partial} \alpha} \bar{\partial} \alpha(\zeta) \frac{1}{\zeta-a} d \sigma_{2} \\
& =-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} \alpha(\zeta)}{\zeta-a} d \sigma_{2} \\
& =\alpha(a) \neq 0 .
\end{aligned}
$$

In view of Proposition 2.4 and the fact that $\int_{\gamma} f(z) d z=0$ whenever f is the derivative of a holomorphic function and γ a closed C^{1}-path in Ω, it is tempting to conjecture that the following is true:

Desideratum 2.5. Let $\alpha \in C_{c}^{\infty}(\mathbb{C})$ and $f \in C(\mathbb{C})$. Suppose that in a neighborhood U of the support of $\bar{\partial} \alpha, f$ is the derivative of a holomorphic function g. Then $\int_{\mathbb{C}}(\bar{\partial} \alpha) f d \sigma_{2}=0$.

Unfortunately, the assertion above is not true. Here is an example. Note that functions built on $1 /(z-a)$ (as in the formula (2.3)) cannot be taken, since they do not have primitives on annuli surrounding a.

Let V be an open set containing supp $\bar{\partial} \alpha$ with smooth boundary and such that $\bar{\partial} g=0$ and $\partial g=f$ on $U \supseteq \bar{V} \supseteq V$. Then

$$
\begin{gathered}
\int_{\mathbb{C}}(\bar{\partial} \alpha) f d \sigma_{2}=\int_{V}(\bar{\partial} \alpha) \partial g d \sigma_{2} \\
=\int_{V} \bar{\partial}(\alpha \partial g) d \sigma_{2}-\frac{1}{4} \int_{V} \alpha \Delta g d \sigma_{2} \\
=\frac{1}{2 i} \int_{\partial V} \alpha \partial g d z-0
\end{gathered}
$$

Now let $\alpha(z)=z$ for $|z|<2$ and $\alpha=0$ for $|z| \geq 3$. Then

$$
\operatorname{supp} \bar{\partial} \alpha \subseteq\{2 \leq|z| \leq 3\}
$$

Choose $g \in C(\mathbb{C})$ such that $g(z)=1 / z$ for $|z| \geq 1$ and $g(z)=\bar{z}$ for $|z| \leq 1$. Then g is holomorphic on $|z|>1$, a neighborhood of $\operatorname{supp} \bar{\partial} \alpha$. As V we may take

$$
V=\{3 / 2<|z|<7 / 2\}
$$

Then V is a neighborhood of $\operatorname{supp} \bar{\partial} \alpha$. But

$$
\int_{\partial V} \alpha \partial g d z=0-\int_{\{|z|=3 / 2\}} z \frac{(-1)}{z^{2}} d z=2 \pi i \neq 0
$$

We are now ready to solve the $\bar{\partial}$-equation in the plane.
Theorem 2.6. For $k=1,2, \ldots, \infty$, let $g \in C^{k}(\mathbb{C})$ and suppose that g has compact support. Then the Cauchy transform $G:=C[g]$ of g, given by

$$
G(z):=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{g(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

has the following properties:

1. $G \in C^{k}(\mathbb{C})$ and $\lim _{z \rightarrow \infty} G(z)=0$;
2. $\bar{\partial} G=g$.

Proof. Let $\zeta=z+r e^{i \theta}$. Then

$$
G(z)=-\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} g\left(z+r e^{i \theta}\right) e^{-i \theta} d r d \theta
$$

This is a proper Riemann integral because g has compact support. Since $g \in C_{c}^{1}(\mathbb{C})$, the integral

$$
J:=-\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \bar{\partial} g\left(z+r e^{i \theta}\right) e^{-i \theta} d r d \theta
$$

exists and, by interchanging the differential operators $\frac{d}{d x}$ and $\frac{d}{d y}$ with the integral operator, we see that $G \in C^{k}(\mathbb{C})$ and $\bar{\partial} G=J$. Since

$$
J=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} g(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

we may use Theorem 2.3 to conclude that $J=g$. Hence $\bar{\partial} G=g$. That $\lim _{z \rightarrow \infty} G(z)=0$, follows immediately from the definition of G.

Whereas the preceding results only used the Riemann integral, we must now deal with Lebesgue integration of continuous functions on compacta. We note that we can no longer use Riemann integrals (as above), since the compact sets K we are considering are not Jordan measurable; their boundaries will have positive Lebesgue measure in general.

Lemma 2.7. Let $X \subseteq \mathbb{C}$ be a Borel set of finite planar measure. Then for all $z \in \mathbb{C}$

$$
\int_{X} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta) \leq 2 \sqrt{\pi \sigma_{2}(X)}
$$

In particular, $1 / \zeta$ is in $L_{1}\left(K, \sigma_{2}\right)$ for each compact set $K \subseteq \mathbb{C}$.
Proof. Let $R=\sqrt{\sigma_{2}(X) / \pi}$, so $\sigma_{2}(X)=\pi R^{2}$. For fixed $z \in \mathbb{C}$, let D be the closed disk

$$
D(z, R)=\{\zeta \in \mathbb{C}:|z-\zeta| \leq R\} .
$$

Because $\sigma_{2}(X)=\sigma_{2}(D)$, we conclude from

$$
X \cup D=(X \backslash D) \cup D=(D \backslash X) \cup X
$$

that $\sigma_{2}(X \backslash D)=\sigma_{2}(D \backslash X)$. Since $|\zeta-z| \leq R$ for $\zeta \in D \backslash X$ and $|\zeta-z| \geq R$ for $\zeta \in X \backslash D$, it follows that

$$
\int_{X \backslash D} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta) \leq \int_{D \backslash X} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta) .
$$

Now $X=(X \cap D) \cup(X \backslash D)$. Hence

$$
\int_{X} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta)=\int_{X \backslash D} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta)+\int_{X \cap D} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta)
$$

$$
\begin{gathered}
\leq \int_{D \backslash X} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta)+\int_{D \cap X} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta) \\
\quad=\int_{D} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta)=\int_{0}^{2 \pi} \int_{0}^{R} \frac{1}{r} r d r d \theta \\
=2 \pi R=2 \sqrt{\pi \sigma_{2}(X)} .
\end{gathered}
$$

As a special case we obtain that for all $z \in \mathbb{C}$

$$
\begin{equation*}
I:=\frac{1}{\pi} \int_{\{|\zeta| \leq R\}} \frac{1}{|\zeta-z|} d \sigma_{2}(\zeta) \leq 2 R . \tag{2.4}
\end{equation*}
$$

A computation of the exact value of I is rather difficult (in form of infinite series) and involves Legendre polynomials. On the other hand it is very easy to determine the explicit value of

$$
-\frac{1}{\pi} \int_{\{|\zeta| \leq R\}} \frac{1}{\zeta-z} d \sigma_{2}(\zeta)
$$

(see below).
Theorem 2.8. Let $K \subseteq \mathbb{C}$ be compact, $f \in C(K, \mathbb{C}) \cap C^{k}\left(K^{\circ}\right),(k=1,2, \ldots, \infty)$, and for $z \in \mathbb{C}$ let

$$
v(z)=-\frac{1}{\pi} \int_{K} \frac{f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

Then the following assertions hold:
(i) $v \in C(\widehat{\mathbb{C}}), v$ holomorphic in $\mathbb{C} \backslash K$, and $\lim _{z \rightarrow \infty} v(z)=0$;
(ii) $v \in C^{k}\left(K^{\circ}\right)$;
(iii) $\bar{\partial} v=f$ in K°.

Proof. (i)is easy. To show (ii) and (iii), let $z_{0} \in K^{\circ}$. Choose a closed disk $D\left(z_{0}, r\right)$ of radius r centered at z_{0} such that $D\left(z_{0}, 2 r\right) \subseteq K^{\circ}$. Let $\alpha \in C_{c}^{\infty}(\mathbb{C})$ satisfy $\alpha \equiv 1$ on $D\left(z_{0}, r\right)$ and $\alpha \equiv 0$ outside $D\left(z_{0}, 2 r\right)$. Then for every $z \in D\left(z_{0}, r / 2\right)$ we have

$$
\begin{aligned}
-\pi v(z)= & \int_{D\left(z_{0}, r\right)} \frac{f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)+\int_{K \backslash D\left(z_{0}, r\right)} \frac{f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta) \\
= & \int_{D\left(z_{0}, r\right)} \frac{(\alpha f)(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)+\int_{K \backslash D\left(z_{0}, r\right)} \frac{f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta) \\
= & \int_{\mathbb{C}} \frac{(\alpha f)(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)-\int_{D\left(z_{0}, 2 r\right) \backslash D\left(z_{0}, r\right)} \frac{(\alpha f)(\zeta)}{\zeta-z} d \sigma_{2}(\zeta) \\
& \quad+\int_{K \backslash D\left(z_{0}, r\right)} \frac{f(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
\end{aligned}
$$

Using Theorem 2.6 for the first integral and interchanging the differentiation operators ∂ and $\bar{\partial}$ with the integral operator in the remaining two integrals, allows us to conclude that $v \in C^{k}\left(K^{\circ}\right)$. Moreover, by Theorem 2.6

$$
\bar{\partial} v\left(z_{0}\right)=\alpha f\left(z_{0}\right)+0+0=f\left(z_{0}\right)
$$

Theorem 2.9. Let Ω be a domain in \mathbb{C} and let $k \in\{1,2, \ldots, \infty\}$. If $v \in C^{k}(\Omega)$, then there exists $u \in C^{k}(\Omega)$ such that $\bar{\partial} u=v$.

Proof. Let $\left(K_{n}\right)$ be an exhaustion sequence of Ω with Ω-convex sets. For $j=1,2, \ldots$, choose $\alpha_{j} \in C_{c}^{\infty}(\mathbb{C})$ so that $\operatorname{supp} \alpha_{j} \subseteq K_{j+1}^{\circ}$ and $\alpha_{j} \equiv 1$ on K_{j} and let $\alpha_{0} \equiv 0$. Let

$$
v_{j}(z)= \begin{cases}\left(\alpha_{j}(z)-\alpha_{j-1}(z)\right) v(z) & \text { if } z \in K_{j+1} \\ 0 & \text { if } z \in \mathbb{C} \backslash K_{j+1}\end{cases}
$$

Then $v_{j} \in C^{k}(\mathbb{C})$ and $v_{j} \equiv 0$ on $K_{j-1}, j \geq 2$, and $\sum_{j=1}^{N} v_{j}=\alpha_{N} v$ on Ω. Hence, if $N \rightarrow \infty$, we see that on $\Omega, \sum_{j=1}^{\infty} v_{j}=v$, the convergence being pointwise. Moreover, on K_{N}, we have

$$
\sum_{j=1}^{N} v_{j}=v
$$

Since $v_{j} \in C_{c}^{k}(\mathbb{C})$, there is $u_{j} \in C^{k}(\mathbb{C})$ such that $\bar{\partial} u_{j}=v_{j}$ (see Theorem 2.6). In particular,

$$
\begin{equation*}
u_{j} \text { is holomorphic on } K_{j-1}^{\circ} \text { for } j \geq 2 \tag{2.5}
\end{equation*}
$$

By Theorem ??, applied to the Ω-convex set K_{j-2}, there is $f_{j} \in H(\Omega)$ such that for $j=3,4, \ldots$

$$
\begin{equation*}
\sup _{K_{j-2}}\left|u_{j}-f_{j}\right|<2^{-j} \tag{2.6}
\end{equation*}
$$

Now let

$$
u=\sum_{n=1}^{\infty}\left(u_{n}-f_{n}\right)
$$

We claim that u is the solution we are looking for.
In fact, using (2.6), we see that the series defining u converges locally uniformly on Ω. Moreover, by (2.5) and Weierstrass' convergence theorem, the remainder term

$$
\sum_{n=N+1}^{\infty}\left(u_{n}-f_{n}\right)
$$

is holomorphic on K_{N}°. Thus $u \in C^{k}\left(K_{N}^{\circ}\right)$ and, on K_{N}°,

$$
\begin{aligned}
\bar{\partial} u & =\bar{\partial} \sum_{n=1}^{N}\left(u_{n}-f_{n}\right)+\bar{\partial} \sum_{n=N+1}^{\infty}\left(u_{n}-f_{n}\right) \\
& =\sum_{n=1}^{N} \bar{\partial} u_{n}+0 \\
& =\sum_{n=1}^{N} v_{n} \\
& =v .
\end{aligned}
$$

Since $\bigcup_{j=1}^{\infty} K_{j}^{\circ}=\Omega$, we obtain the assertion that $\bar{\partial} u=v$ on Ω and that $u \in C^{k}(\Omega)$.

2.3 Explicit values of some integrals

In this supplementary section we derive the explicit values of some Cauchy-type integrals. To deal with integrals of the form $\int_{\mathbb{D}} h(w, z) d \sigma_{2}(w)$, we use polar-coordinates $(r, \theta), 0<r<1$, $0 \leq \theta<2 \pi$, and replace integration with respect to θ by complex integration on the unit circle; that is we put $d \theta=\frac{d \xi}{i \xi}$ where $|\xi|=1$. As usual, the orientation of the circle in $\int_{|\xi|=1}$ is always to be taken counterclockwise (that is the positive orientation).

Proposition 2.10. Let $f \in H^{\infty}$. Then

$$
\begin{equation*}
\frac{1}{\pi} \int_{\mathbb{D}} f(w) d \sigma_{2}(w)=f(0) \tag{2.7}
\end{equation*}
$$

and

$$
-\frac{1}{\pi} \int_{\mathbb{D}} \frac{f(w)}{w-z} d \sigma_{2}(w)= \begin{cases}-f^{\prime}(0) & \text { if } z=0 \tag{2.8}\\ \left(|z|^{2}-1\right) \frac{f(z)-f(0)}{z}+f(0) \bar{z} & \text { if } 0<|z|<1 \\ \frac{f(0)}{z} & \text { if }|z| \geq 1 .\end{cases}
$$

Remark 2.11. By the results in section 2.2 (in particular Theorem 2.6), the value $u(z)$ of the integral 2.8 is a function that is continuous on \mathbb{C}, holomorphic in $\mathbb{C} \backslash \overline{\mathbb{D}}$ and that satisfies the inhomogeneous Cauchy-Riemannn equation $\bar{\partial} u=f$ in \mathbb{D}. In particular, $u=\bar{z} f+h$, where $h \in H(\mathbb{D})$. It turns out that $h(z)=-\frac{f(z)-f(0)}{z}$ if $z \neq 0$ and $h(0)=-f^{\prime}(0)$.
Proof. Let $J=\frac{1}{\pi} \int_{\mathbb{D}} f(w) d \sigma_{2}(w)$. Since f is bounded, the integral exists and we may use Fubini's theorem. Hence

$$
J=2 \int_{r=0}^{1}\left[\frac{1}{2 \pi i} \int_{|\xi|=1} f(r \xi) \frac{d \xi}{\xi}\right] r d r=f(0) \int_{r=0}^{1}(2 r) d r=f(0)
$$

(This also follows from the fact that harmonic functions (here f) enjoy the planar mean-value property on disks. Moreover, instead of using Cauchy's integral formula, one could have used the power series representation $\sum_{n=0}^{\infty} a_{n} r^{n} e^{i n \theta}$ of f, to derive the result.)

Let $u(z)=-\frac{1}{\pi} \int_{\mathbb{D}} \frac{f(w)}{w-z} d \sigma_{2}(w)$. By Theorem ??, u converges absolutely and so we may apply Fubini's theorem. Since $\sigma_{2}(\{w \in \mathbb{C}:|w|=r\})=0$, we have $\int_{\mathbb{D}}=\int_{\mathbb{D} \backslash\{w \in \mathbb{C}:|w|=r\}}$. Henceforth, for fixed z, we may integrate only on curves $|\zeta|=r$ where $r \neq|z| .{ }^{4}$ Thus

$$
u(z)=-\frac{1}{2 \pi i} \int_{\substack{r=0 \\ r \neq|z|}}^{1}\left[\int_{|\xi|=1} 2 \frac{f(r \xi)}{r \xi-z} \frac{d \xi}{\xi}\right] r d r=-\int_{\substack{r=0 \\ r \neq|z|}}^{1}\left[\frac{1}{2 \pi i} \int_{|\xi|=1} 2 \frac{f(r \xi)}{\xi-\frac{z}{r}} \frac{d \xi}{\xi}\right] d r
$$

Let $0<|z|<1$. Then

$$
u(z)=-\int_{0<r<|z|}\left[\frac{1}{2 \pi i} \int_{|\xi|=1} 2 \frac{f(r \xi)}{\left(\xi-\frac{z}{r}\right) \xi} d \xi\right] d r-\int_{|z|<r<1}\left[\frac{1}{2 \pi i} \int_{|\xi|=1} 2 \frac{f(r \xi)}{\left(\xi-\frac{z}{r}\right) \xi} d \xi\right] d r
$$

If $|z / r|<1$, then two singularities are surrounded: 0 and z / r; otherwise only 0 is sourrounded. By the residue theorem,

$$
\begin{gathered}
u(z)=-2 \int_{0}^{|z|} \frac{f(0)}{\left(-\frac{z}{r}\right)} d r-2 \int_{|z|}^{1}\left(\frac{f\left(r \frac{z}{r}\right)}{\frac{z}{r}}+\frac{f(0)}{\left(-\frac{z}{r}\right)}\right) d r \\
=\frac{f(0)}{z}|z|^{2}-\frac{f(z)}{z}\left(1-|z|^{2}\right)+\frac{f(0)}{z}\left(1-|z|^{2}\right) \\
=\left(|z|^{2}-1\right) \frac{f(z)-f(0)}{z}+f(0) \bar{z}
\end{gathered}
$$

If $z=0$, then

$$
\begin{aligned}
u(z) & =-2 \int_{r=0}^{1}\left[\frac{1}{2 \pi i} \int_{|\xi|=1} \frac{f(r \xi)}{\xi^{2}} d \xi\right] d r \\
& =-2 \int_{0}^{1} r f^{\prime}(0) d r=-f^{\prime}(0)
\end{aligned}
$$

Now let $|z| \geq 1$. Then, for $0<r<1,|z / r|>1$; hence only the singularity 0 is surrounded. Thus

$$
u(z)=-2 \int_{0}^{1} \frac{f(0)}{-\frac{z}{r}} d r=\frac{f(0)}{z}
$$

[^3]An analysis of the proof shows that the iterated integral

$$
\int_{r=0}^{1} \int_{\theta=0}^{2 \pi} \frac{f\left(r e^{i \theta}\right)}{r e^{i \theta}-z} d \theta r d r
$$

exists for every function $f \in H(\mathbb{D})$, f not necessary bounded, and that its value is deduced from (2.8).

As a particular case we obtain:

Example 2.12.

$$
-\frac{1}{\pi} \int_{\mathbb{D}} \frac{1}{w-z} d \sigma_{2}(w)= \begin{cases}\bar{z} & \text { if }|z|<1 \tag{2.9}\\ \frac{1}{z} & \text { if }|z| \geq 1\end{cases}
$$

Note that the case $|z| \geq 1$ also follows directly from the case $|z|<1$ without calculus; in fact, we know that $I(z)$ is continuous in \mathbb{C} and holomorphic for $|z|>1$. Now $1 / z$ is the only holomorphic function outside the closed unit disk that has the boundary values \bar{z}.

2.4 The Cauchy, Gauss, Green, Stokes and Pompeiu formulas

In this section we give a very simple proof of Gauss' divergence theorem. We shall base our proof on the $\bar{\partial}$-calculus. For a better visualization, we exceptionally use here the double integral sign to denote planar integrals.
Lemma 2.13. Let $\phi:[0,1] \rightarrow \mathbb{C}$ be a C^{1}-path. Then its image, $\Gamma:=\phi([0,1])$, has twodimensional Lebesgue measure zero.

Proof. Since ϕ^{\prime} is bounded on $[0,1]$, we see that ϕ satisfies a Lipschitz condition on $[0,1]$; that is $|\phi(s)-\phi(t)| \leq M|s-t|$ for every $s, t \in[0,1]$. Fix $N \in \mathbb{N}$ and consider the decomposition $0=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=1$ of [0,1] into N intervals $I_{j}=\left[t_{j-1}, t_{j}\right]$ of length $1 / N$. Then

$$
\Gamma \subseteq \bigcup_{j=1}^{N} \phi\left(I_{j}\right)
$$

Now for $z_{j} \in \phi\left(I_{j}\right)$ and $d_{j}:=2 \operatorname{diam} \phi\left(I_{j}\right)$, we see that $\phi\left(I_{j}\right) \subseteq D\left(z_{j}, d_{j}\right)$. Hence

$$
\sigma_{2}\left(\phi\left(I_{j}\right)\right) \leq \pi d_{j}^{2}
$$

But

$$
d_{j}=2 \sup _{s, t \in I_{j}}|\phi(s)-\phi(t)| \leq 2 M\left|I_{j}\right| \leq \frac{2 M}{N}
$$

So we conclude that

$$
\sigma_{2}(\Gamma) \leq \sum_{j=1}^{N} \sigma_{2}\left(\phi\left(I_{j}\right)\right) \leq N \pi \frac{4 M^{2}}{N^{2}}=\frac{4 M^{2}}{N} \rightarrow 0
$$

Thus $\sigma_{2}(\Gamma)=0$.

Theorem 2.14. Let $\Omega \subseteq \mathbb{C}$ be an open set and suppose that Γ is a null-homologous cycle in Ω. Then the following formula holds for every $f \in C^{1}(\Omega)$: ${ }^{5}$

$$
\int_{\Gamma} f(z) d z=2 i \iint_{\Omega} \bar{\partial} f(\zeta) n(\Gamma, \zeta) d \sigma_{2}(\zeta)
$$

Proof. Let $S=\Gamma \cup\{z \in \Omega \backslash \Gamma: n(\Gamma, z) \neq 0\}$. Then $S \subseteq \Omega$ and since $n(\Gamma, z)$ is locally constant on $\mathbb{C} \backslash \Gamma$, we see that S is compact. Choose $\psi \in C_{c}^{\infty}(\mathbb{C})$ such that $\psi \equiv 1$ in a neighborhood U of S with $S \subseteq U \subseteq \Omega$, and $\operatorname{supp} \psi \subseteq \Omega$. Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
g(z)= \begin{cases}\psi(z) f(z) & \text { if } z \in \Omega \\ 0 & \text { if } z \notin \Omega\end{cases}
$$

Then $g \in C_{c}^{1}(\mathbb{C})$ and supp $g \subseteq \Omega$. By Theorem 2.3

$$
g(z)=-\frac{1}{\pi} \iint_{\mathbb{C}} \frac{\bar{\partial} g(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

Note that $g=f$ on Γ. Hence

$$
I:=\int_{\Gamma} f(z) d z=\int_{\Gamma} g(z) d z=-\frac{1}{\pi} \int_{\Gamma}\left(\iint_{\mathbb{C}} \frac{\bar{\partial} g(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)\right) d z
$$

Since Γ has planar measure zero (Lemma 2.13), we conclude that

$$
I=-\frac{1}{\pi} \int_{\Gamma}\left(\iint_{\mathbb{C} \backslash \Gamma} \frac{\bar{\partial} g(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)\right) d z
$$

By Lemma 2.7 we see that

$$
\frac{1}{\pi} \int_{\Gamma}\left(\iint_{\mathbb{C}}\left|\frac{\bar{\partial} g(\zeta)}{\zeta-z}\right| d \sigma_{2}(\zeta)\right)|d z| \leq 2 L(\Gamma)\|\bar{\partial} g\|_{\infty} \sqrt{\sigma_{2}(\operatorname{supp} g) / \pi}
$$

Hence we may use Fubini's Theorem to conclude that

$$
I=2 i \iint_{\mathbb{C} \backslash \Gamma} \bar{\partial} g(\zeta)\left(\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{z-\zeta} d z\right) d \sigma_{2}(\zeta)=2 i \iint_{\mathbb{C} \backslash \Gamma} \bar{\partial} g(\zeta) n(\Gamma, \zeta) d \sigma_{2}(\zeta)
$$

By construction, $n(\Gamma, \zeta)=0$ for $\zeta \notin S$. But on $U \supseteq S, f=g$. In particular, since U is open, $\bar{\partial} f=\bar{\partial} g$ on U. Hence, since $S \subseteq U \subseteq \Omega$,

$$
I=2 i \iint_{S \backslash \Gamma} \bar{\partial} g(\zeta) n(\Gamma, \zeta) d \sigma_{2}(\zeta)=2 i \iint_{S \backslash \Gamma} \bar{\partial} f(\zeta) n(\Gamma, \zeta) d \sigma_{2}(\zeta)
$$

Defining $n(\Gamma, z)=0$ whenever $z \in \Gamma$, and using again that $\sigma_{2}(\Gamma)=0$ we obtain

$$
I=2 i \iint_{\Omega} \bar{\partial} f(\zeta) n(\Gamma, \zeta) d \sigma_{2}(\zeta)
$$

[^4]If $\Omega \subseteq \mathbb{C}$ is open, then we denote the set of all complex-valued functions f that are continuously \mathbb{R}-differentiable on Ω and for which f and the partial derivatives f_{x} and f_{y} are continuously extendable to $\bar{\Omega}$, by $C^{1}(\bar{\Omega})$.
Definition 2.15. i) Let $\Omega \subseteq \mathbb{C}$ be a bounded domain (=connected open set). We call Ω admissible if the boundary of Ω consists of finitely many closed, positively orientated, pairwise disjoint, piecewise- C^{1} Jordan curves $\gamma_{j},(j=0,1, \ldots, n)$.

Recall that the boundary curve γ_{j} is positively orientated, if the domain lies to the left of the curve. Moreover, γ_{0} denotes the outer boundary of the domain. It follows from the Jordan curve Theorem 1.5, that the cycle $\Gamma=\bigcup_{j=0}^{n} \gamma_{j}$ satisfies ${ }^{6}$

$$
\begin{equation*}
n(\Gamma, z)=0 \text { for every } z \in \mathbb{C} \backslash \Omega \text { and } n(\Gamma, z)=1 \text { for every } z \in \Omega \tag{2.10}
\end{equation*}
$$

We note that instead of the piecewise smoothness, we could have stipulated the rectifiability of the curves.

Figure 2.1: An admissible domain

Theorem 2.16 (Gauss' Theorem, complex version). Let Ω be an admissible domain. Suppose that f is continuously \mathbb{R}-differentiable in a neighborhood U of $\bar{\Omega}$. Then

$$
\int_{\partial \Omega} f(z) d z=2 i \iint_{\Omega} \bar{\partial} f(\zeta) d \sigma_{2}(\zeta)
$$

Proof. This follows immediately from Theorem 2.14 by noticing that the cycle $\Gamma=\sum_{j=0}^{n} \gamma_{j}$ is null-homologuous in U and that $n(\Gamma, \zeta)=1$ for every $\zeta \in \Omega$.

Corollary 2.17. Let Ω be an admissible domain. Then the area of Ω (respectively $\bar{\Omega}$) is given by

$$
\sigma_{2}(\Omega)=\frac{1}{2 i} \int_{\partial \Omega} \bar{z} d z
$$

[^5]We are now able to deduce the classical Green-Riemann-Stokes formula and Gauss' divergence theorem:
Proposition 2.18 (Green-Riemann-Stokes). Let Ω be an admisible domain. Then, for every pair of real-valued functions $P, Q \in C^{1}(\bar{\Omega})$,

$$
\int_{\partial \Omega} P d x+Q d y=\iint_{\Omega}\left(Q_{x}-P_{y}\right) d x d y .
$$

Proof. For $z=x+i y$, identified with (x, y), let $f(z)=P(z)-i Q(z)$. Then

$$
f d z=(P-i Q)(d x+i d y)=P d x+Q d y+i(P d y-Q d x) .
$$

Moreover,

$$
\bar{\partial} f=(1 / 2)\left(f_{x}+i f_{y}\right)=(1 / 2)\left(P_{x}-i Q_{x}+i\left(P_{y}-i Q_{y}\right)\right)=(1 / 2)\left(P_{x}+Q_{y}+i\left(P_{y}-Q_{x}\right)\right) .
$$

Hence

$$
\operatorname{Re} \int_{\partial \Omega} f(z) d z=\int_{\partial \Omega} P d x+Q d y
$$

and

$$
\operatorname{Re}\left[2 i \iint_{\Omega} \bar{\partial} f(\zeta) d \sigma_{2}(\zeta)\right]=\iint_{\Omega}\left(Q_{x}-P_{y}\right) d x d y
$$

Proposition 2.19 (Gauss). Let Ω be an admissible domain. Then, for every vector-valued function $f=(u, v) \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{2}\right)$ and $\operatorname{div} f=u_{x}+v_{y}$,

$$
\iint_{\Omega} \operatorname{div} f d x d y=\int_{\partial \Omega} f \cdot \boldsymbol{n} d s,
$$

where \boldsymbol{n} is the outer normal to $\partial \Omega$ and ds is integration with respect to arc-length.
Proof. If $(x(t), y(t))$ is a parametrization of one of the boundary curves, then $d s=\sqrt{\dot{x}^{2}+\dot{y}^{2}} d t$ and the non-orientated normal \boldsymbol{n} is given by

$$
n=\frac{(\dot{y},-\dot{x})}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}},
$$

where the derivative with respect to t is denoted by the dot. By Proposition 2.18,

$$
\iint_{\Omega}\left(u_{x}+v_{y}\right) d x d y=\int_{\partial \Omega}(-v d x+u d y)=\int_{\partial \Omega}(u, v) \cdot \boldsymbol{n} d s .
$$

Corollary 2.20 (Green). Let Ω be an admissible domain. Then, for any $h \in C^{2}(\bar{\Omega}, \mathbb{R})$ and $\Delta=h_{x x}+h_{y y}$,

$$
\iint_{\Omega} \Delta h d x d y=\int_{\partial \Omega} \frac{\partial h}{\partial \boldsymbol{n}} d s
$$

where $\frac{\partial h}{\partial \boldsymbol{n}}:=\nabla h \cdot \boldsymbol{n}$ is the derivative along the outer normal \boldsymbol{n}.

Proof. Use Proposition 2.19 and the fact that $\Delta h=\operatorname{div}(\nabla h)$.
Here are several corollaries to Gauss' Theorem 2.16. The first one coincides with Proposition 2.4. ${ }^{7}$

Corollary 2.21. Let $\alpha \in C_{c}^{\infty}(\mathbb{C})$ and $f \in \mathbb{C}(\mathbb{C})$. Suppose that f is holomorphic in an neighborhood of the support of α. Then

$$
\int_{\mathbb{C}}(\bar{\partial} \alpha) f d \sigma_{2}=0
$$

In particular, $\iint_{\mathbb{C}} \bar{\partial} \alpha d \sigma_{2}=\iint_{\mathbb{C}} \partial \alpha d \sigma_{2}=0$.
Proof. Let D be an open disk such that $\operatorname{supp} \alpha \subseteq D$. Then

$$
\begin{gathered}
I:=\iint_{\mathbb{C}}(\bar{\partial} \alpha) f d \sigma_{2}=\iint_{\mathbb{C}} \bar{\partial}(\alpha f) d \sigma_{2}-\iint_{\mathbb{C}} \alpha \bar{\partial} f d \sigma_{2} \\
=\iint_{D} \bar{\partial}(\alpha f) d \sigma_{2}-\iint_{\operatorname{supp} \alpha} \alpha \bar{\partial} f d \sigma_{2} .
\end{gathered}
$$

Since $\bar{\partial} f=0$ on supp $\bar{\partial} \alpha$ and $\alpha=0$ on ∂D we conclude from Theorem 2.16 that

$$
I=\frac{1}{2 i} \int_{\partial D}(\alpha f)(z) d z-0=0
$$

The special case immediately follows when chosing $f \equiv 1$ and by noticing that $\partial \alpha=\overline{\bar{\partial}} \bar{\alpha}$ (Proposition 2.1).

Corollary 2.22. Let $f \in C^{1}\left(D\left(z_{0}, R\right)\right)$. If the boundary of the disk $D_{r}:=D\left(z_{0}, r\right)$ is surrounded counter-clockwise, then ${ }^{8}$

$$
\begin{equation*}
\bar{\partial} f\left(z_{0}\right)=\lim _{r \rightarrow 0} \frac{1}{2 \pi i r^{2}} \int_{\partial D_{r}} f(z) d z \tag{2.11}
\end{equation*}
$$

Proof. Since the disk is an admissible domain, we obtain from Theorem 2.16 that

$$
\int_{\partial D_{r}} f(z) d z=2 i \iint_{D_{r}} \bar{\partial} f(\zeta) d \sigma_{2}(\zeta)
$$

By the mean-value theorem for the planar integral of a continuous function u,

$$
\begin{equation*}
\frac{1}{\sigma_{2}\left(D_{r}\right)} \iint_{D_{r}} u(\zeta) d \sigma_{2}(\zeta) \rightarrow u\left(z_{0}\right) \tag{2.12}
\end{equation*}
$$

as $r \rightarrow 0$. Applying this to $u=\bar{\partial} f$ yields the desired equality.

[^6]Remark 2.23. - A different proof can be given by using directly the representation

$$
f(z)=f\left(z_{0}\right)+\partial f\left(z_{0}\right)\left(z-z_{0}\right)+\bar{\partial} f\left(z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)+\mathcal{O}\left(z-z_{0}\right)
$$

and integrating along the circles ∂D_{r}. To handle the little \mathcal{O}-term, just note that if $\mathcal{O}\left(z-z_{0}\right)=$ $r(z)$, then

$$
\int_{\partial D_{r}} r(z) d z=\int_{\partial D_{r}} \frac{r(z)}{z-z_{0}}\left(z-z_{0}\right) d z=\mathcal{O}(1) \int_{\partial D_{r}} r|d z|=\mathcal{O}(1) r^{2} .
$$

- The limit (2.11) may exist without f being a C^{1}-function. For example if $f(z)=|z|$, then

$$
\lim _{r \rightarrow 0} \frac{1}{2 \pi i r^{2}} \int_{\partial D_{r}} f(\zeta) d \zeta=0
$$

If we raise the denominator of the integrand $\bar{\partial} f(\zeta) /(\zeta-a)$ to certain integer powers, then the integral $\int_{\mathbb{C}} \bar{\partial} f(\zeta) /(\zeta-a)^{n} d \sigma_{2}(\zeta)$ is, in general, divergent for $a \in \operatorname{supp} \bar{\partial} f$. On the other hand, Theorem 2.16 will allow us to determine the explicit value whenever $a \notin \operatorname{supp} \bar{\partial} f$.
Corollary 2.24. Let $f \in C^{1}(\mathbb{C})$ have compact support and let $n \in \mathbb{N}$. Then, for every $a \notin$ $\operatorname{supp} \bar{\partial} f{ }^{9}$

$$
I:=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} f(\zeta)}{(\zeta-a)^{n+1}} d \sigma_{2}(\zeta)=\frac{f^{(n)}(a)}{n!}
$$

Proof. Let $D:=D(a, \varepsilon)$ be a small disk centered at a, so that f is holomorphic in D and let $R>0$ be chosen so that $\bar{D} \cup \operatorname{supp} f \subseteq D(0, R)$. If $\Omega=D(0, R) \backslash D$, then, by Theorem 2.16,

$$
\begin{gathered}
I=-\frac{1}{\pi} \int_{\Omega} \frac{\bar{\partial} f(\zeta)}{(\zeta-a)^{n+1}} d \sigma_{2}(\zeta)=-\frac{1}{\pi} \int_{\Omega} \bar{\partial}\left(\frac{f(\zeta)}{(\zeta-a)^{n+1}}\right) d \sigma_{2}(\zeta) \\
=-\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{f(z)}{(z-a)^{n+1}} d z=\frac{1}{2 \pi i} \int_{|z-a|=\varepsilon} \frac{f(z)}{(z-a)^{n+1}} d z \\
=\frac{f^{(n)}(a)}{n!}
\end{gathered}
$$

The methods above also allow us to give an analogue to Morera's theorem for disks.
Theorem 2.25 (Carleman). Let $f \in C(\Omega)$, where $\Omega \subseteq \mathbb{C}$ is an open set. Suppose that for every disk D with $\bar{D} \subseteq \Omega$

$$
\int_{\partial D} f(z) d z=0
$$

Then f is holomorphic in Ω.

[^7]Proof. We first prove the assertion under the condition that $f \in C^{1}(\Omega)$. By Corollary 2.22,

$$
\bar{\partial} f\left(z_{0}\right)=\lim _{r \rightarrow 0} \frac{1}{2 \pi i r^{2}} \int_{\partial D_{r}} f(z) d z=0
$$

for every $z_{0} \in \Omega$. Hence f is holomorphic in Ω.
If f is merely continuous, we shall use an approximation argument. Fix $z_{0} \in \Omega$ and consider a disk $D=D\left(z_{0}, 2 r\right)$ with $\bar{D} \subseteq \Omega$. By Theorem ??, let $\phi \in C_{c}^{\infty}(\mathbb{C})$ satisfy $0 \leq \phi \leq 1, \phi=1$ on $D\left(z_{0}, r\right)$ and $\operatorname{supp} \phi \subseteq D$. Then the function F given by

$$
F(z)= \begin{cases}\phi(z) f(z) & \text { if } z \in D \\ 0 & \text { if } z \notin D\end{cases}
$$

is continuous in \mathbb{C}. Let $\psi \in C_{c}^{\infty}(\mathbb{C})$ be chosen so that $0 \leq \psi \leq 1, \operatorname{supp} \psi \subseteq \mathbb{D}$ and such that $\int_{\mathbb{C}} \psi(\zeta) d \sigma_{2}=1$ (for example we could take $\psi=\phi / \int_{\mathbb{C}} \phi(\zeta) d \sigma_{2}$ with $z_{0}=0$ and $r=1 / 2$). For $\varepsilon>0$, let $\psi_{\varepsilon}=\varepsilon^{-2} \psi(z / \varepsilon)$ be the associated C^{∞}-approximate identity. Consider the convolution

$$
F_{\varepsilon}(z)=F * \psi_{\varepsilon}(z):=\iint_{\mathbb{C}} F(\zeta-z) \psi_{\varepsilon}(\zeta) d \sigma_{2}(\zeta)
$$

Then, by Theorem ??, $F_{\varepsilon} \in C_{c}^{\infty}(\mathbb{C})$ and by Theorem ??,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{z \in \mathbb{C}}\left|F_{\varepsilon}(z)-F(z)\right|=0
$$

We claim that F_{ε} is holomorphic in $D\left(z_{0}, r / 2\right)$ whenever $\varepsilon<r / 2$. Let $z_{1} \in D\left(z_{0}, r / 2\right)$. By Fubini's Theorem,

$$
\begin{aligned}
I:=\int_{\left|z-z_{1}\right|=1 / n} F_{\varepsilon}(z) d z & =\int_{\left|z-z_{1}\right|=1 / n}\left(\iint_{|\zeta| \leq \varepsilon} f(z-\zeta) \psi_{\varepsilon}(\zeta) d \sigma_{2}(\zeta)\right) d z \\
& =\iint_{|\zeta| \leq \varepsilon}\left(\int_{\left|z-z_{1}\right|=1 / n} f(z-\zeta) d z\right) \psi_{\varepsilon}(\zeta) d \sigma_{2}(\zeta)
\end{aligned}
$$

Next we do a change of variables. Let $\xi=z-\zeta$. Then, when z moves on the circle $\partial D\left(z_{1}, 1 / n\right)$, ξ moves on the circle $S:=\partial D\left(z_{1}-\zeta, 1 / n\right)$. Hence

$$
I=\iint_{|\zeta| \leq \varepsilon}\left(\int_{S} f(\xi) d \xi\right) \psi_{\varepsilon}(\zeta) d \sigma_{2}(\zeta)
$$

In order to apply the assumption of the Theorem, we need to show that for every ζ with $|\zeta| \leq \varepsilon$, $\overline{D\left(z_{1}-\zeta, 1 / n\right)} \subseteq D\left(z_{0}, r\right)$ whenever n is large. To see this, let $w \in \overline{D\left(z_{1}-\zeta, 1 / n\right)}$. Then

$$
\left|w-z_{0}\right| \leq\left|w-\left(z_{1}-\zeta\right)\right|+|\zeta|+\left|z_{1}-z_{0}\right|<1 / n+\varepsilon+r / 2<r
$$

Hence the inner integral $\int_{S} f(\xi) d \xi=0$. It follows that

$$
I=\int_{\left|z-z_{1}\right|=1 / n} F_{\varepsilon}(z) d z=0
$$

for large n. Since F_{ε} is smooth, we conclude from Corollary 2.22 that $\bar{\partial} F_{\varepsilon}\left(z_{1}\right)=0$. Thus $\bar{\partial} F_{\varepsilon}=0$ on $D\left(z_{0}, r / 2\right)$.
Since F_{ε} converges uniformly to F on $D\left(z_{0}, r\right)$ and since $f=F$ on $D\left(z_{0}, r\right)$, we conclude from Weierstrass' Theorem that f is holomorphic in $D\left(z_{0}, r / 2\right)$. Since z_{0} was arbitrarily chosen, $f \in H(\Omega)$.

We conclude this section with the Cauchy-Pompeiu formula.
Theorem 2.26. Let Ω be an admissible domain. Then the following formula holds for every $F \in C^{1}(\bar{\Omega})$ and $z \in \Omega$:

$$
F(z)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{F(\xi)}{\xi-z} d \xi-\frac{1}{\pi} \iint_{\Omega} \frac{\bar{\partial} F(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

Proof. First we note that both integrals exist Fix $z \in \Omega$ and consider a small disk $D(z, \varepsilon)$ centered at z such that $\bar{D}(z, \varepsilon) \subseteq \Omega$. The new domain $\Omega_{\varepsilon}:=\Omega \backslash \bar{D}(z, \varepsilon)$ is admissible again. We orientate the circle $|\xi-z|=\varepsilon$ negatively. Hence, by Theorem 2.16,

$$
\begin{gathered}
I_{2}(\varepsilon):=\frac{1}{\pi} \iint_{\Omega_{\varepsilon}} \frac{\bar{\partial} F(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)=\frac{1}{\pi} \iint_{\Omega_{\varepsilon}} \bar{\partial}\left(\frac{F(\zeta)}{\zeta-z}\right) d \sigma_{2}(\zeta) \\
=\frac{1}{2 \pi i} \int_{\partial \Omega_{\varepsilon}} \frac{F(\xi)}{\xi-z} d \xi \\
=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{F(\xi)}{\xi-z} d \xi-\frac{1}{2 \pi i} \int_{\partial D(z, \varepsilon)} \frac{F(\xi)}{\xi-z} d \xi
\end{gathered}
$$

Since the integral

$$
J:=\frac{1}{\pi} \iint_{\Omega} \frac{\bar{\partial} F(\zeta)}{\zeta-z} d \sigma_{2}(\zeta)
$$

converges absolutely, and $\lim _{\varepsilon \rightarrow 0} I_{2}(\varepsilon)=J$, it remains to show that

$$
I_{1}(\varepsilon):=\int_{\partial D(z, \varepsilon)} \frac{F(\xi)}{\xi-z} d \xi \rightarrow 2 \pi i F(z) \text { as } \varepsilon \rightarrow 0
$$

By using the parametrization $\xi(t)=z+\varepsilon e^{i t}$, we obtain

$$
I_{1}(\varepsilon)=\int_{0}^{2 \pi} \frac{F(\xi(t))}{\varepsilon e^{i t}} \varepsilon e^{i t} i d t=i \int_{0}^{2 \pi} F\left(z+\varepsilon e^{i t}\right) d t
$$

$$
\rightarrow i \int_{0}^{2 \pi} F(z) d t=2 \pi i F(z)
$$

As special cases we obtain Cauchy's integral formula (note that $\bar{\partial} F=0$ in that case) and Theorem 2.3 whenever F has its support contained in Ω.

2.5 The Bézout equation in $H(U)$

Let R be a commutative unital ring. Then

$$
U_{n}(R):=\left\{\boldsymbol{f} \in R^{n}: \boldsymbol{f} \cdot \boldsymbol{x}=\mathbf{1} \text { for some } \boldsymbol{x} \in R^{n}\right\}
$$

is the set of all invertible n-tuples.
Theorem 2.27. Let R be a commutative unital ring. Suppose that $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ is an invertible n-tuple in R^{n} (that is $\boldsymbol{a} \in U_{n}(R)$), and let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ satisfy $1=\sum_{j=1}^{n} x_{j} a_{j}$; that is $\boldsymbol{x} \boldsymbol{a}^{t}=1$. Then every other representation $1=\sum_{j=1}^{n} y_{j} a_{j}$ of 1 can be deduced from the former by letting $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{a} H$, where H is an antisymmetric $(n \times n)$-matrix over R; that is $H=-H^{t}$, where H^{t} is the transpose of H.

Proof. Suppose that $1=\boldsymbol{x} \boldsymbol{a}^{t}$ and $1=\boldsymbol{y} \boldsymbol{a}^{t}$. For $k=1, \ldots, n$, multiply the first equation by y_{k} and the second by x_{k}. Then

$$
x_{k}-y_{k}=\sum_{j \neq k} a_{j}\left(y_{j} x_{k}-y_{k} x_{j}\right)
$$

Thus $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{a} H$ for some antisymmetric matrix H. To prove the converse, let $1=\boldsymbol{x} \boldsymbol{a}^{t}$. Note that

$$
\begin{equation*}
\boldsymbol{u} \boldsymbol{v}^{t}=\boldsymbol{v} \boldsymbol{u}^{t} \in R \tag{2.13}
\end{equation*}
$$

for any $\boldsymbol{u}, \boldsymbol{v} \in R^{n}$. Since H is antisymmetric we have (due to the transitivity of matrix multiplication)

$$
\begin{aligned}
(\boldsymbol{a} H) \boldsymbol{a}^{t} & =\boldsymbol{a}\left(H \boldsymbol{a}^{t}\right)=\boldsymbol{a}\left(\boldsymbol{a} H^{t}\right)^{t} \\
& =\boldsymbol{a}(-\boldsymbol{a} H)^{t} \stackrel{(2.13)}{=}(-\boldsymbol{a} H) \boldsymbol{a}^{t}
\end{aligned}
$$

Thus $(\boldsymbol{a} H) \boldsymbol{a}^{t}=0$. Hence

$$
\boldsymbol{y} \boldsymbol{a}^{t}=(\boldsymbol{x}+\boldsymbol{a} H) \boldsymbol{a}^{t}=\boldsymbol{x} \boldsymbol{a}^{t}+(\boldsymbol{a} H) \boldsymbol{a}^{t}=1+0=1
$$

Proposition 2.28. Let Ω be open in \mathbb{C} and let $f_{j} \in H(\Omega)$ be different from the zero-function, $(j=1, \ldots, n) .{ }^{10}$ Then the Bézout equation $\sum_{j=1}^{n} u_{j} f_{j}=1$ admits a solution in $H(\Omega)$ if and only if the functions f_{j} do not have a common zero in Ω.

[^8]We would like to present an entirely different proof here, based on the Hörmander-Wolff method to solve a system of $\bar{\partial}$-equations. Consider $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$ as a row matrix and let \boldsymbol{f}^{t} be its transpose. Then $|\boldsymbol{f}|^{2}=\sum_{j=1}^{n}\left|f_{j}\right|^{2}$; that is $|\boldsymbol{f}|^{2}=\overline{\boldsymbol{f}} \boldsymbol{f}^{t}$.

Proof. Since the condition on the zeros of the functions f_{j} obviously holds whenever $\boldsymbol{u} \boldsymbol{f}^{t}=1$, it remains to prove the converse. So assume that $\bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$; that is $|\boldsymbol{f}|>0$. Let $\boldsymbol{x}=\overline{\boldsymbol{f}} /|\boldsymbol{f}|^{2}$. Then all the coordinates of \boldsymbol{x} belong to $C^{\infty}(\Omega)$ and $\boldsymbol{x} \boldsymbol{f}^{t}=1$. By Theorem 2.27, any other solution $\boldsymbol{u} \in C^{\infty}(\Omega)$ to the Bézout equation $\boldsymbol{u} \boldsymbol{f}^{t}=1$ is given by

$$
\boldsymbol{u}^{t}=\boldsymbol{x}^{t}+H \boldsymbol{f}^{t}
$$

or equivalently

$$
\boldsymbol{u}=\boldsymbol{x}-\boldsymbol{f} H,
$$

where H is an $n \times n$ antisymmetric matrix over $C^{\infty}(\Omega)$; that is $H^{t}=-H$.
Let

$$
F=\left(\left(\bar{\partial} \boldsymbol{x}^{t} \cdot \overline{\boldsymbol{f}}\right)^{t}-\bar{\partial} \boldsymbol{x}^{t} \cdot \overline{\boldsymbol{f}}\right) \frac{1}{|\boldsymbol{f}|^{2}}
$$

Since $\boldsymbol{x} \in C^{\infty}(\Omega)^{n}$, we see that F is an antisymmetric matrix over $C^{\infty}(\Omega)$. Thus, by Theorem 2.9 (applied to each component of Ω), the system $\bar{\partial} H=F$ admits a matrix solution H over $C^{\infty}(\Omega)$. Since F is antisymmetric, H can be chosen to be antisymmetric, too.

It is now easy to check that on $\Omega, \bar{\partial} \boldsymbol{u}=\mathbf{0}$. In fact

$$
\begin{gather*}
\bar{\partial} \boldsymbol{u}=\bar{\partial} \boldsymbol{x}-\boldsymbol{f} \cdot \bar{\partial} H=\bar{\partial} \boldsymbol{x}-\boldsymbol{f} \cdot\left(\overline{\boldsymbol{f}}^{t} \cdot \bar{\partial} \boldsymbol{x}-\bar{\partial} \boldsymbol{x}^{t} \cdot \overline{\boldsymbol{f}}\right) \frac{1}{|\boldsymbol{f}|^{2}} \\
=\frac{\left(\boldsymbol{f} \cdot \bar{\partial} \boldsymbol{x}^{t}\right) \overline{\boldsymbol{f}}}{|\boldsymbol{f}|^{2}}=\frac{\left(\bar{\partial}\left(\boldsymbol{f} \cdot \boldsymbol{x}^{t}\right)\right) \overline{\boldsymbol{f}}}{|\boldsymbol{f}|^{2}}=\frac{\left(\bar{\partial}\left(\boldsymbol{x} \cdot \boldsymbol{f}^{t}\right)^{t}\right) \overline{\boldsymbol{f}}}{|\boldsymbol{f}|^{2}}=\mathbf{0} \tag{2.14}
\end{gather*}
$$

Thus $\boldsymbol{u}=\boldsymbol{x}-\boldsymbol{f} H$ is holomorphic in Ω. Hence \boldsymbol{u} is a solution to the Bézout equation in $H(\Omega)$.

Chapter 3

Continuous logarithms

3.1 Some Banach algebras

Lemma 3.1. Let $A=(A,\|\cdot\|)$ be a unital Banach algebra over \mathbb{K}, not necessarily commutative. We assume that $\|\cdot\|$ is submultiplicative, but $\|\mathbf{1}\|$ may be bigger than 1.
a) Let $f \in A$ satisfy $\|\mathbf{1}-f\|<1$. Then $f \in A^{-1}$ and

$$
f^{-1}=\sum_{n=0}^{\infty}(\mathbf{1}-f)^{n}
$$

(Neumann series). Moreover,

$$
\left\|f^{-1}\right\| \leq \frac{1}{1-\|\mathbf{1}-f\|}
$$

b) Actually $f \in \exp A$.

Proof. Since $\left\|\sum_{n=N}^{M}(\mathbf{1}-f)^{n}\right\| \leq \sum_{n=N}^{M}\|\mathbf{1}-f\|^{n} \rightarrow 0$ as $N, M \rightarrow \infty$, the completeness of the norm implies that the Neumann series is convergent; that is there is $g \in A$ such that $g=\sum_{n=0}^{\infty}(\mathbf{1}-f)^{n}$. Since $\|\mathbf{1}-f\|^{N} \rightarrow 0$,

$$
\begin{aligned}
f \cdot\left(\sum_{n=0}^{N}(\mathbf{1}-f)^{n}\right) & =(\mathbf{1}-(\mathbf{1}-f)) \sum_{n=0}^{N}(\mathbf{1}-f)^{n} \\
& =\sum_{n=0}^{N}(\mathbf{1}-f)^{n}-\sum_{n=1}^{N+1}(\mathbf{1}-f)^{n} \\
& =\mathbf{1}-(\mathbf{1}-f)^{N+1} \rightarrow \mathbf{1} .
\end{aligned}
$$

Hence $f g=\mathbf{1}$. Similarily, $g f=\mathbf{1}$. The norm estimate of the inverse is clear (geometric series).
b) By Proposition 3.2, there is $L \in A$ such that $u=\mathbf{1}+(u-\mathbf{1})=e^{L}$.

Proposition 3.2. Let $A=(A,\|\cdot\|$) be a unital (not necessarily commutative) Banach algebra over \mathbb{K}, the norm $\|\cdot\|$ being submultiplicative. ${ }^{11}$

[^9]i) Suppose that $f \in A$ satisfies $\|f\|<1$. Then $\mathbf{1}+f$ admits a logarithm in A; that is there is $L \in A$ such that $\mathbf{1}+f=\exp L$. Moreover, L is given by
$$
L=L_{f}:=\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} f^{j}
$$
the series being unconditionnally/absolutely convergent. Finally, if $f_{n} \rightarrow 0$, then $L_{f_{n}} \rightarrow 0$.
ii) If $u \in A$ is nilpotent, that is $u^{s}=0$ for some $s \in \mathbb{N}^{*}$, then $\mathbf{1}+u$ admits a logarithm \tilde{L} in A, too. In that case \tilde{L} is given by
$$
\tilde{L}=\sum_{j=1}^{s-1} \frac{(-1)^{j-1}}{j} u^{j}
$$
iii) Assertion ii) holds in any unital algebra, not necessarily bearing a norm.

Proof. We first note that due to the submultiplicativity of the algebra norm, the series for L converges absolutely in the Banach space $(A,\|\cdot\|)$. Now if $x \in \mathbb{R},|x|<1$, then the Taylor series of the logarithm is given by

$$
L(x):=\log (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}
$$

By taking Cauchy-products, $L(x)^{k}=\sum_{n=0}^{\infty} a_{k, n} x^{n}$ for some uniquely determined coefficients $a_{k, n} \in \mathbb{R}, n \in \mathbb{N}$. Hence, by reordering the absolute converging series,

$$
\begin{aligned}
1+x=e^{\log (1+x)} & =\sum_{k=0}^{\infty} \frac{1}{k!} L(x)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\sum_{n=0}^{\infty} a_{k, n} x^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{1}{k!} a_{k, n}\right) x^{n}
\end{aligned}
$$

By the uniqueness of the coefficients, $\sum_{k=0}^{\infty} \frac{1}{k!} a_{k, n}=0$ if $n \geq 2$ and $\sum_{k=0}^{\infty} \frac{1}{k!} a_{k, n}=1$ if $n=0$ or $n=1$. Therefore, due to absolute convergence,

$$
e^{L}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{1}{k!} a_{k, n}\right) f^{n}=\mathbf{1}+f
$$

This formula remains valid if one replaces f by the nilpotent element u. Hence ii) holds.
If $f_{n} \rightarrow 0$, then $\left\|f_{n}\right\| \leq \varepsilon \leq 1 / 2$ for all $n \geq n_{0}$. Hence, for these n,

$$
\left\|L_{f_{n}}\right\| \leq \sum_{j=1}^{\infty}\left\|f_{n}\right\|^{j} \leq \frac{\varepsilon}{1-\varepsilon} \leq 2 \varepsilon
$$

Lemma 3.3. Let A be a unital Banach algebra over \mathbb{K} and $f, g \in A$. The following equality holds:

$$
e^{f}=\lim _{n \rightarrow \infty}\left(1+\frac{f}{n}\right)^{n}
$$

Moreover, if f and g commute, then $e^{f+g}=e^{f} e^{g}$.
Proof. Let $S_{N}=\sum_{n=0}^{N} f^{n} / n!$ and $a_{N}=(\mathbf{1}+f / N)^{N}$. Then

$$
S_{N}-a_{N}=\sum_{n=0}^{N}\left(\frac{1}{n!}-\binom{N}{n}\right) f^{n}
$$

Hence, by noticing that $\frac{1}{n!} \leq\binom{ N}{n}$,

$$
\left\|S_{n}-a_{N}\right\| \leq \sum_{n=0}^{N}\left(\binom{N}{n}-\frac{1}{n!}\right)\|f\|^{n}=\left(1+\frac{\|f\|}{N}\right)^{N}-\sum_{n=0}^{N} \frac{1}{n!}\|f\|^{n} \rightarrow 0
$$

The rest is a straightforward application of the Cauchy-product to represent $e^{f} e^{g}$.
Theorem 3.4. Let $A=(A,\|\cdot\|)$ be a commutative unital Banach algebra over \mathbb{K} and $G_{A}:=A^{-1}$ the group of invertible elements. The following assertions hold:
(1) G_{A} is an open subset of A;
(2) $\exp A$ is open-closed in G_{A}, path-connected, and coincides with the connected component in G_{A} of the identity element $\mathbf{1}$ in A;
Proof. (1) $G_{A}=A^{-1}$ is an open set in A. In fact, let $f \in A^{-1}$ and let $g \in A$ satisfy $\|f-g\|<$ $\left\|f^{-1}\right\|^{-1}$. Then

$$
\left\|\mathbf{1}-f^{-1} g\right\|=\left\|f^{-1}(f-g)\right\| \leq\left\|f^{-1}\right\|\|f-g\|<1 .
$$

Hence, by Lemma 3.1, $f^{-1} g \in A^{-1}$ and so, by (1), $g=f\left(f^{-1} g\right) \in A^{-1}$. We conclude that A^{-1} is open
(2) - Let $a \in A$. Consider the map $\Gamma:[0,1] \rightarrow \exp A, t \mapsto e^{t a}$. Using that

$$
\left\|e^{s a}-e^{t a}\right\| \leq\left\|e^{s a}\right\|\left\|\mathbf{1}-e^{(t-s) a}\right\| \leq C e^{\|s a\|}\left|1-e^{|t-s|\|a\|}\right|
$$

where $C=\max \{1,\|\mathbf{1}\|\}$, we see that Γ is a continuous path between the identity and e^{a}. Whence, $\exp A$ is path-connected.

- Next we show that $\exp A$ is an open set in A. Let $f=e^{a} \in \exp A$ and let $g \in A$ satisfy $\|f-g\|<\left\|f^{-1}\right\|^{-1}$. Then, as we know, $\left\|1-f^{-1} g\right\|<1$ and so, by Lemma 3.1, $f^{-1} g \in \exp A$; say $f^{-1} g=e^{b}$ for some $b \in A$. Since A was assumed to be commutative, we may use Lemma 3.3 to conclude that

$$
g=f\left(f^{-1} g\right)=e^{a} e^{b}=e^{a+b} \in \exp A .
$$

- Next we show that $\exp A$ is (relatively) closed in $U_{1}(A)$. To this end, let $\left(a_{n}\right)$ be a sequence in A and $u \in U_{1}(A)$ such that $\left\|e^{a_{n}}-u\right\| \rightarrow 0$. Then

$$
\left\|e^{a_{n}} u^{-1}-\mathbf{1}\right\|=\left\|\left(e^{a_{n}}-u\right) u^{-1}\right\| \leq\left\|u^{-1}\right\|\left\|e^{a_{n}}-u\right\| \rightarrow 0
$$

By Proposition 3.2, $e^{a_{n}} u^{-1} \in \exp A$ for n sufficiently large. Since $\exp A$ is a subgroup of $U_{1}(A)$, we conclude that $u^{-1} \in \exp A$ and so $u \in \exp A$.

In summary, we have shown that $\exp A$ is the connected component of the identity element within $U_{1}(A)$.

Corollary 3.5. Let X be a compact, contractible Hausdorff space. Then every continuous, zerofree \mathbb{C}-valued function on X admits a continuous logarithm in $A=C(X, \mathbb{C})$, that is $\exp A=G_{A}$.

Proof. Consider the following path Γ induced by the homotopic contraction H :

$$
\Gamma:[0,1] \rightarrow U_{1}(C(X, \mathbb{C})), \quad \Gamma(t)=f \circ H(\cdot, t)
$$

This path connects f and $f\left(x_{0}\right)$. Hence both invertible tuples belong to the same component of $U_{1}(C(X, \mathbb{C}))$. Thus $f=e^{g} f\left(x_{0}\right)=e^{p}$. and note that $\mathbb{C}^{*} \cdot 1 \subseteq \exp C(X, \mathbb{C})=G_{C(X, \mathbb{C})}$.

3.2 Zero-free extensions, logarithms and Eilenberg's Theorem

We introduce the following notation.
Notation 3.6. Let $K \subseteq \mathbb{C}$ be compact and let f, g be continuous and zero-free on K. Then we say that f is homotopic to g within $C\left(K, \mathbb{C}^{*}\right)$, denoted by $f \stackrel{K}{\sim} g$, if there is a continuous map $H: K \times[0,1] \rightarrow \mathbb{C}^{*}$ such that $H(z, 0)=f(z)$ and $H(z, 1)=g(z)$ for $z \in K$.

Theorem 3.7 (Borsuk). Let $K \subseteq \mathbb{C}$ be compact and let $f \in C\left(K, \mathbb{C}^{*}\right)$ be a zero-free continuous function. Then the following assertions are equivalent:

1. f is homotopic in $C\left(K, \mathbb{C}^{*}\right)$ to a constant;
2. f has a continuous logarithm; that is there is $L \in C(K, \mathbb{C})$ such that $f=e^{L}$;
3. f has a zero-free continuous extension to \mathbb{C}.

Proof. $(1) \Longrightarrow(2)$: Let $H: K \times[0,1] \rightarrow \mathbb{C}^{*}$ be a homotopy with $H(z, 0)=f(z)$ and $H(z, 1) \equiv c$, $(z \in K)$. The path $\Gamma:[0,1] \rightarrow U_{1}(C(K, \mathbb{C}))$, given by

$$
\Gamma(t)=H(\cdot, t)
$$

connects the invertible function f with the (invertible) constant function c. Thus f belongs to the principal component of $U_{1}(C(K, \mathbb{C}))$. Using Theorem 3.4, we conclude that f is an exponential.
$(2) \Longrightarrow(3)$: Let $f=e^{L}, L \in C(K, \mathbb{C})$. By Tietze's theorem applied to $\mathbb{R}^{2} \sim \mathbb{C}$, we may extend L to a function L^{*} continuous in \mathbb{C}. Hence $e^{L^{*}}$ is the desired zero-free extension of f.
$(3) \Longrightarrow(2)$: Let D be a closed disk centered at 0 such that $K \subseteq D^{\circ}$. If F is a zero-free continuous extension of $f: K \rightarrow \mathbb{C}^{*}$, then $\left.F\right|_{D}$ is invertible in $C(D, \mathbb{C})$. But D is contractible (look at the homotopy $H(z, t)=t z, 0 \leq t \leq 1, z \in D$.) By Corollary 3.5, each zero-free $g \in C(D, \mathbb{C})$ has a logarithm; in particular there is $L \in C(K, \mathbb{C})$ such that $e^{L}=f$.
$(2) \Longrightarrow(1):$ If $e^{L}=f$, then we only have to consider the homotopy $H: K \times[0,1] \rightarrow \mathbb{C}^{*}$ given by

$$
H(z, t)=e^{t L(z)}
$$

Corollary 3.8. Let $K \subseteq \mathbb{C}$ be compact and let $f, g \in C\left(K, \mathbb{C}^{*}\right)$ be two zero-free continuous functions. Then the following assertions are equivalent:

1. f and g are homotopic in $C\left(K, \mathbb{C}^{*}\right)$;
2. there is $h \in C(K, \mathbb{C})$ such that $f=g e^{h}$.

In particular, if f and g are homotopic in $C\left(K, \mathbb{C}^{*}\right)$, then f has a continuous logarithm on K if and only if g has one.

Proof. This is an immediate consequence of Theorem 3.7 by using that $f \stackrel{K}{\sim} g$ if and only if $f / g \stackrel{K}{\sim} 1$. Note that if $H(z, t): K \times[0,1] \rightarrow \mathbb{C}^{*}$ is a homotopy between f and g, then $\tilde{H}(z, t):=H(z, t) / H(z, 1)$ is a homotopy between f / g and 1 .

Theorem 3.9 (Borsuk). For a compact set $K \subseteq \mathbb{C}$, the following assertions are equivalent:

1. Every continuous, zero-free function $f \in C(K, \mathbb{C})$ has a continuous logarithm;
2. $\mathbb{C} \backslash K$ is connected.

Proof. (1) $\Longrightarrow(2)$: If K has a hole G and $a \in G$, then Corollary 1.12 shows that the function $f(z)=z-a(z \in K)$, has no invertible continuous extension to $K \cup G$, and a fortiori no invertible extension to \mathbb{C}. Hence, by Theorem 3.7, f does not have a continuous logarithm.
$(2) \Longrightarrow(1)$: Special case of Theorem 3.19.
Remark 3.10. This result does no longer hold in higher dimensions: let $K=\left\{(x, y, t) \in \mathbb{R}^{3}\right.$: $\left.t=0, x^{2}+y^{2}=1\right\}$ (in other words, K is the embedded unit circle). Then $\mathbb{R}^{3} \backslash K$ is connected, but the function $f: K \rightarrow \mathbb{C}$ given by $f(x, y, t)=x+i y$ has no continuous logarithm on K (otherwise there would exist $L \in C(K, \mathbb{C})$ such that $e^{L}=f$. This in turn implies that the identity map $z: \mathbb{T} \rightarrow \mathbb{C}$ would have a continuous, zero-free extension to $\overline{\mathbb{D}}$, a contradiction to Corollary 1.12.)

Proposition 3.11. Let $K \subseteq \mathbb{C}$ be compact, $f \in C(K, \mathbb{C})$, f holomorphic in K°. Suppose that there is $h \in C(K, \mathbb{C})$ such that $f=e^{h}$. Then h is holomorphic in K°.

Proof. Let $a \in K^{\circ}$.
Case $1 f$ is not constant in a neighborhood of a. The holomorphy implies that there exists a disk $D(a, \varepsilon) \subseteq K^{\circ}$ such that $f(z) \neq f(a)$ for all $z \in D(a, \varepsilon) \backslash\{a\}$. Hence $h(z) \neq h(a)$ for
all those z. Note that $\lim _{z \rightarrow a} h(z)=h(a)$. Hence, if $z \neq a$ is close to $a, e^{h(z)} \neq e^{h(a)}$. The differentiability of the exponential function now implies that

$$
\begin{aligned}
\frac{h(z)-h(a)}{z-a} & =\frac{f(z)-f(a)}{z-a}\left(\frac{e^{h(z)}-e^{h(a)}}{h(z)-h(a)}\right)^{-1} \\
& \rightarrow f^{\prime}(a) e^{-h(a)}=\frac{f^{\prime}(a)}{f(a)} .
\end{aligned}
$$

Hence h is \mathbb{C}-differentiable at a.
Case 2 If f is constant $f(a)$ in a neighborhood of a, then $f \equiv f(a)$ in the connected component C of K° containing a. Thus the continuous logarithm h of f is constant in C, too. In particular, h is holomorphic in K°.

Lemma 3.12 (Eilenberg). Let $K \subseteq \mathbb{C}$ be compact and $a, b \in \mathbb{C} \backslash K$. Let $f: K \rightarrow \mathbb{C}$ be defined by $f(z)=(z-a) /(z-b)(z \in K)$. Then the following assertions are equivalent:
(1) f has a continuous logarithm on K;
(2) a and b belong to the same component of $\mathbb{C} \backslash K .{ }^{12}$

Proof. (1) $\Longrightarrow(2)$: Suppose, to the contrary, that a and b belong to different components of $\mathbb{C} \backslash K$. Then at least one of them is a bounded component. Let us call this C. We may assume that $a \in C$. Now, if (1) is satisfied then, by Theorem 3.7, f admits a continuous zero-free extension, F, to \mathbb{C}. Hence, the function $A: K \cup C$ given by $A(z)=(z-b) F(z)(z \in K \cup C)$, is a zero-free extension of $\left.(z-b) f(z)\right|_{K}=\left.(z-a)\right|_{K}$; a contradiction to Corollary 1.12
$(2) \Longrightarrow(1)$: Let $a, b \in C$, where C is a component of $\mathbb{C} \backslash K$. Let $\gamma:[0,1] \rightarrow C$ be a path in C joining a to b. Then $H:[0,1] \times K \rightarrow \mathbb{C}^{*}$, given by

$$
H(t, z)=\frac{z-\gamma(t)}{z-b}
$$

is a homotopy in $C\left(K, \mathbb{C}^{*}\right)$ between f and 1 ; in other words the path $\Gamma:[0,1] \rightarrow U_{1}(C(K, \mathbb{C}))$ given by $\Gamma(t)=H(t, \cdot)$ joins within $U_{1}(C(K, \mathbb{C}))$ the identity element 1 to f. By Theorem 3.4, f belongs to the principal component in $U_{1}(C(K, \mathbb{C}))$; that is, f is an exponential.

As an application we now present Janiszewski's separation theorem.
Theorem 3.13 (Janiszewski). For $j=1,2$, let K_{j} be two compact subsets of \mathbb{C} and let Ω_{j} be a component of $\mathbb{C} \backslash K_{j}$. Suppose that $\{a, b\} \subseteq \Omega_{1} \cap \Omega_{2}$ and that $K_{1} \cap K_{2}$ is connected. Then a and b both lie in the same component of $\mathbb{C} \backslash\left(K_{1} \cup K_{2}\right)$.

Proof. Consider on $K_{1} \cup K_{2}$ the function $f(z)=(z-a) /(z-b)$. By Lemma 3.12, there are $h_{j} \in C\left(K_{j}\right)$ such that $f(z)=e^{h_{j}(z)}$ whenever $z \in K_{j}$. Hence $e^{h_{1}(z)-h_{2}(z)}=1$ whenever

[^10]
$\mathrm{K}_{1} \cap \mathrm{~K}_{2}$ not connected

$\mathrm{K}_{1} \cap \mathrm{~K}_{2}$ comnected

Figure 3.1: A separating and a non-separating union
$z \in K_{1} \cap K_{2}$. Since $K_{1} \cap K_{2}$ is connected, $h_{1}-h_{2}$ is constant on $K_{1} \cap K_{2}$, say $2 \pi i m$, for some $m \in \mathbb{Z}$. Now define the function $L: K_{1} \cup K_{2} \rightarrow \mathbb{C}$ by

$$
L(z)= \begin{cases}h_{2}(z)+2 \pi i m & \text { if } z \in K_{1} \\ h_{1}(z) & \text { if } z \in K_{2}\end{cases}
$$

Then L is continuous on $K_{2} \cup K_{2}$. Since $e^{L}=f$, Lemma 3.12 yields that a and b do not belong to distinct components of $\mathbb{C} \backslash\left(K_{1} \cup K_{2}\right)$.

Next we discuss what happens when we have expressions of the form

$$
\prod_{j=1}^{n}\left(z-a_{j}\right)^{s_{j}}, \quad\left(s_{j} \in \mathbb{Z}\right)
$$

Corollary 3.14. Let a, b, p belong to the same component C of $\mathbb{C} \backslash K$ and let $m, n \in \mathbb{N}$. Then there exists $h \in C(K, \mathbb{C})$ such that for all $z \in K$

$$
f(z):=\frac{(z-a)^{m}}{(z-b)^{n}}=(z-p)^{m-n} e^{h(z)} .
$$

Proof. By Lemma 3.12, there exists $h_{1}, h_{2} \in C(K, \mathbb{C})$ such that $z-a=e^{h_{1}(z)}(z-p)$ and $z-b=e^{h_{2}(z)}(z-p)$. Hence

$$
f(z)=e^{m h_{1}(z)-n h_{2}(z)}(z-p)^{m-n} .
$$

Lemma 3.15. Let $K \subseteq \mathbb{C}$ be compact and let C be a bounded component of $\mathbb{C} \backslash K$. If $a \in C$ and $s \in \mathbb{Z}, s \neq 0$, then $\left.(z-a)^{s}\right|_{K}$ does not have a zero-free continuous extension to $K \cup C$.

Proof. Let $D_{r}=D(a, r)$ be a closed disk of radius r centered at a such that $K \subseteq D_{r}^{\circ}$. Note that $C \subseteq D_{r}$, too. Suppose that there is $F \in C(K \cup C), F$ zero-free, with $F(z)=(z-a)^{s}$ for $z \in K$. Let

$$
F_{1}(z)= \begin{cases}F(z) & \text { if } z \in K \cup C \\ (z-a)^{s} & \text { if } z \in D_{r} \backslash(K \cup C) .\end{cases}
$$

Then F_{1} is zero-free on D_{r}. Since on the boundary of $K \cup C$ the functions F and $(z-a)^{s}$ coincide, F_{1} is continuous on D_{r}. By Theorem 3.9, F_{1} has a continuous logarithm on D_{r}; say $F_{1}=e^{L}$. Now $f(z):=e^{(1 / s) L(z)}$ is continuous on D_{r} and $f^{s}=F_{1}$. In particular, $f^{s}(z)=(z-a)^{s}$ for $|z-a|=r$. Now $z \mapsto f(z) /(z-a)$ is continuous on $|z-a|=r$ and $(f(z) /(z-a))^{s}=1$ for each z with $|z-a|=r$. Because the circle is connected, $f(z) /(z-a) \equiv e^{2 k \pi i / s}$ for some $k \in \mathbb{Z}$, independent of $z \in \partial D_{r}$. Note that f is zero-free on D_{r}. Hence $e^{-2 k \pi i / s} f$ is a zero-free extension of $\left.(z-a)\right|_{\partial D_{r}}$ to D_{r}. This contradicts Corollary 1.12.

Theorem 3.16. Let C_{1}, \ldots, C_{n} be distinct bounded components of the complement $\mathbb{C} \backslash K$ of the compact set K and let $a_{j} \in C_{j}$. Suppose that for some $s_{j} \in \mathbb{Z},(j=1, \ldots, n)$, the function

$$
f(z)=\prod_{j=1}^{n}\left(z-a_{j}\right)^{s_{j}}, \quad(z \in K)
$$

has a continuous logarithm on K. Then $s_{1}=\cdots=s_{n}=0$.
Proof. In view of Lemma 3.15 and Theorem 3.7, we may assume that $n \geq 2$. Let $f=e^{h}$, where $h \in C(K, \mathbb{C})$. Then

$$
\left(z-a_{1}\right)^{s_{1}}=e^{h(z)} \prod_{j=2}^{n}\left(z-a_{j}\right)^{-s_{j}}=: R(z) .
$$

Because $a_{j} \notin C_{1},(j=2, \ldots, n)$, we see that the function $R(z)$ (and hence $\left.\left(z-a_{1}\right)^{s_{1}}\right)$ has a zero-free continuous extension to $K \cup C_{1}$. By Lemma 3.15, $s_{1}=0$. By the same reasoning, $s_{j}=0$ for the remaining j.

It is important to note that if the point a belongs to the unbounded component of $\mathbb{C} \backslash K$, then $z-a$ does have a continuous logarithm on K, as the following Proposition shows:

Proposition 3.17. Let $K \subseteq \mathbb{C}$ be compact and suppose that $f: K \rightarrow \mathbb{C}^{*}$ is continuous. If 0 belongs to the unbounded component C_{0} of $\mathbb{C} \backslash f(K)$, then f has a continuous logarithm on K. This holds in particular for the function $f(z)=z-a$, when a belongs to the unbounded component of $\mathbb{C} \backslash K$.

Proof. Choose $r>\max _{K}|f|$ and let $\gamma:[0,1] \rightarrow C_{0}$ be a path joining within C_{0} the point 0 to r. Then the homotopy $H:[0,2] \times K \rightarrow \mathbb{C}^{*}$ given by

$$
H(t, z)= \begin{cases}f(z)-\gamma(t) & \text { if }(t, z) \in[0,1] \times K \\ (2-t) f(z)-r & \text { if }(t, z) \in[1,2] \times K\end{cases}
$$

shows that f is homotopic in $C\left(K, \mathbb{C}^{*}\right)$ to the constant $-r$. Hence, by Theorem 3.7, f has a continuous logarithm on K.

Our proof of Eilenberg's theorem relies on the "primitive" version 3.18 of Runge's theorem and on the $\bar{\partial}$-calculus.
Theorem 3.18 (Runge). Let $K \subseteq \mathbb{C}$ be compact. Then every function holomorphic in a neighborhood of K can be uniformly approximated on K by rational functions vanishing at infinity and with (simple) poles outside K.
Proof. Let f be holomorphic in the open set U with $K \subseteq U$. Choose bounded open sets V and W such that

$$
K \subseteq V \subseteq \bar{V} \subseteq W \subseteq \bar{W} \subseteq U
$$

Let $\phi \in C_{c}^{\infty}(\mathbb{C})$ satisfy

$$
\phi=1 \text { on } \bar{V}, \phi=0 \text { on } \mathbb{C} \backslash W
$$

and $0 \leq \phi \leq 1$. Then $F:=\phi f \in C_{c}^{\infty}(\mathbb{C})$ and $F=f$ on V. By Theorem 2.3, for every $z \in \mathbb{C}$,

$$
F(z)=-\frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} F(\xi)}{\xi-z} d \sigma_{2}(\xi)
$$

Since $\bar{\partial} F=0$ in $V \cup Q^{c}$, where Q is a closed dyadic square with $\bar{W} \subseteq Q^{\circ}$, we obtain

$$
\begin{equation*}
F(z)=-\frac{1}{\pi} \int_{Q \backslash V} \frac{\bar{\partial} F(\xi)}{\xi-z} d \sigma_{2}(\xi) \tag{3.1}
\end{equation*}
$$

The Riemann sums associated with this integral are rational functions (in z) and uniformly approximate F (hence f) on K. Here are the details of the proof.

Let $d:=\frac{1}{4} \operatorname{dist}(K, Q \backslash V)$. Now the function $h: K \times(Q \backslash V) \rightarrow \mathbb{C}$, given by

$$
h(z, \xi)=-\frac{1}{\pi} \frac{\bar{\partial} F(\xi)}{\xi-z}
$$

is uniformly continuous. In particular, for every $\varepsilon>0$ there is $\delta \in] 0, d[$ such that

$$
|h(z, \xi)-h(z, \eta)|<\varepsilon
$$

for any $z \in K$ and $\xi, \eta \in Q \backslash V$ with $|\xi-\eta|<\delta$. If we choose a covering of $Q \backslash V$ with adjacent (closed) dyadic squares $Q_{j} \subseteq Q, j=1, \ldots, N$, of fixed diameter κ less than $\delta,{ }^{13}$ then for $\xi_{j} \in Q_{j} \backslash V$

$$
\left|F(z)-\sum_{j=1}^{N} h\left(z, \xi_{j}\right) \sigma_{2}\left(Q_{j}\right)\right| \leq \varepsilon \sum_{j=1}^{N} \sigma_{2}\left(Q_{j}\right) \leq \varepsilon \sigma_{2}(Q)
$$

Thus F has been uniformly approximated by rational functions of the form

$$
\sum_{j=1}^{N} \frac{\mu_{j}}{\xi_{j}-z}
$$

where the poles ξ_{j} belong to $\mathbb{C} \backslash K$.

[^11]Theorem 3.19 (Eilenberg). Let $K \subseteq \mathbb{C}$ be compact and for each bounded component C of $\mathbb{C} \backslash K$, let $a_{C} \in C$. Suppose that $f: K \rightarrow \mathbb{C}^{*}$ is continuous. Then there exist finitely many bounded components C_{j} of $\mathbb{C} \backslash K$, integers $s_{j} \in \mathbb{Z}(j=1, \ldots, n)$, and $L \in C(K, \mathbb{C})$ such that for all $z \in K$

$$
f(z)=\prod_{j=1}^{n}\left(z-a_{C_{j}}\right)^{s_{j}} e^{L(z)}
$$

Proof. Since f has no zeros on the compact set K, the continuity of f implies that $\min _{K}|f|>0$. We may also assume that f is continuous and zero-free in a neighborhood of K. By Weierstrass' approximation theorem ??, let F be a smooth function (say a polynomial in the real variables x and y) with $\| F-\left.f\right|_{K}<\min _{K}|f|$. Then F is zero free in a neighborhood of K. Moreover, $\left\|\frac{F}{f}-1\right\|_{K}<1$. By Proposition 3.2, there exists $g \in C(K, \mathbb{C})$ such hat $F / f=e^{g}$. Hence $f=F e^{-g}$. Next we wish to write F as $e^{u} G$, where G is holomorphic in a neighborhood of K and $u \in C^{1}(U)$. Here we use the $\bar{\partial}$-calculus. In fact, let u be a smooth solution to the $\bar{\partial}$-equation $\bar{\partial} u=\frac{\bar{\partial} F}{F}$ in a neighborhood U of K (see Theorem 2.8). Then $\bar{\partial}\left(e^{-u} F\right)=0$ and so $G:=e^{-u} F$ is holomorphic on U. Moreover,

$$
f=F e^{-g}=\left(e^{u} G\right) e^{-g}=G e^{u-g}
$$

and G is zero-free in U. Now we use Runge's approximation theorem 3.18 to get a rational function r with poles outside K such that $\|r-G\|_{K}<\min _{K}|G|$. Then $\|(r / G)-1\|_{K}<1$ and so, by Proposition 3.2, $G=r e^{v}$ for some $v \in C(K, \mathbb{C})$. Summing up, we have obtained on K the representation

$$
f=r e^{v+u-g}
$$

r continuous and zero-free on K. Next we have to deal with the zeros of r inside the components of $\mathbb{C} \backslash K$. Since r is a rational function, there are of course only finitely many components C_{j}, $j=0,1, \ldots, N$ that contain zeros and/or poles. Here C_{0} is the unbounded component. Let s_{j} be the number of zeros (multiplicities included) minus the number of poles in C_{j}. Choose a point $a_{C_{0}} \in C_{0}$. Using Corollary 3.14 several times, we finally obtain a continuous function $w \in C(K, \mathbb{C})$ such that $r=\prod_{j=0}^{N}\left(z-a_{C_{j}}\right)^{s_{j}} e^{w}$. By Proposition 3.17, $z-a_{C_{0}}$ has a continuous logarithm on K. Thus $r=\prod_{j=1}^{N}\left(z-a_{C_{j}}\right)^{s_{j}} e^{h}$ for some $h \in C(K, \mathbb{C})$. To sum up, we have shown that

$$
f=\prod_{j=1}^{N}\left(z-a_{C_{j}}\right)^{s_{j}} e^{h+v+u-g}
$$

Corollary 3.20. Let $S \subseteq \mathbb{C}$ be compact. If a and b belong to distinct components of $\mathbb{C} \backslash S$, then the polynomials $z-a$ and $z-b$ are not homotopic in $C\left(S, \mathbb{C}^{*}\right)$.

Proof. Suppose to the contrary that $f(z):=z-a$ and $g(z):=z-b$ are homotopic in $C\left(S, \mathbb{C}^{*}\right)$. Then, by Corollary 3.8, there is $h \in C(S, \mathbb{C})$ such that $f=g e^{h}$. Hence $(z-a) /(z-b)$ has a continuous logarithm on S. This contradicts Theorem 3.16 if both numbers a and belong to (distinct) bounded components of $\mathbb{C} \backslash S$. If one of them, say a, belongs to the unbounded
component, we already have $f(z)=z-a=e^{\ell(z)}$ for some $\ell \in C(S, \mathbb{C})$ (by Proposition 3.17. But then we also would have have $g=e^{\ell-h}$. In other words, $z-b$ has a logarithm, say $z-b=e^{L(z)}, z \in S$. Let Ω denote that bounded component of $\mathbb{C} \backslash S$ the point b belongs to. Note that $\partial \Omega \subseteq S$. Then $\left.(z-b)\right|_{\partial \Omega}$ has a zero-free continuous extension to $\bar{\Omega}$; a contradiction to Corollary 1.12.

Theorem 3.21. Let K_{1} and K_{2} be two compact sets in \mathbb{C} and let $h: K_{1} \rightarrow K_{2}$ be a homeomorphism. Then K_{1} and K_{2} have the same number of holes.

Proof. i) If K_{1} has no holes then $\mathbb{C} \backslash K_{1}$ is connected and so, by Borsuk's theorem 3.9, any $f \in C\left(K_{1}, \mathbb{C}^{*}\right)$ has a logarithm; say $f=e^{g}$. Now, if $F \in C\left(K_{2}, \mathbb{C}^{*}\right)$, then $f:=F \circ h \in C\left(K_{1}, \mathbb{C}^{*}\right)$. Hence $F=f \circ h^{-1}=e^{g \circ h^{-1}}$. Since F was arbitrary, we conclude, again from Borsuk's theorem 3.9, that $\mathbb{C} \backslash K_{2}$ is connected. In other words, K_{2} has no holes.
ii) Assume that K_{1} has finitely many holes, say U_{1}, \ldots, U_{n}, and let V_{1}, \ldots, V_{m} be holes of K_{2}. By i), $m \geq 1$. In view of achieving a contradiction, we may suppose that $m \geq n+1$. Let $a_{k} \in U_{k}$ and $b_{j} \in V_{j}$ be fixed and consider for $w \in K_{2}$ the functions

$$
f_{j}(w)=w-b_{j}, \quad(j=1, \ldots, m)
$$

For $z \in K_{1}$, let $F_{j}(z)=f_{j}(h(z)), j=1, \ldots, m$. Then $F_{j} \in C\left(K_{1}, \mathbb{C}^{*}\right)$. By Eilenberg's theorem 3.19, there are $L_{j} \in C\left(K_{1}, \mathbb{C}\right)$ and $s_{k, j} \in \mathbb{Z}$ such that for $z \in K_{1}$

$$
F_{j}(z)=\prod_{k=1}^{n}\left(z-a_{k}\right)^{s_{k, j}} e^{L_{j}(z)}
$$

Consider the "horizontal" (n, m)-matrix

$$
M=\left(\begin{array}{cccc}
s_{1,1} & \ldots & \ldots & s_{1, m} \\
\vdots & & & \vdots \\
s_{n, 1} & \ldots & \ldots & s_{n, m}
\end{array}\right)
$$

The rank of M over \mathbb{Q} is at most n. Since $m>n$, the m columns are linear dependent over \mathbb{Q}. Thus there exist $s_{j} \in \mathbb{Z},(j=1, \ldots, m)$, not all of them zero, such that

$$
\sum_{j=1}^{m} s_{k, j} s_{j}=0 \text { for all } k=1, \ldots, n
$$

Hence

$$
\begin{aligned}
\prod_{j=1}^{m} F_{j}(z)^{s_{j}} & =\left[\prod_{j=1}^{m} \prod_{k=1}^{n}\left(z-a_{k}\right)^{s_{k, j} s_{j}}\right] \exp (\overbrace{\sum_{j=1}^{m} s_{j} L_{j}(z)}^{:=L(z)} \\
& =\left[\prod_{k=1}^{n}\left(z-a_{k}\right)^{\sum_{j=1}^{m} s_{k, j} s_{j}}\right] \exp L(z) \\
& =\exp L(z)
\end{aligned}
$$

On the other hand, $F(z):=\prod_{j=1}^{m} F_{j}(z)^{s_{j}}=\prod_{j=1}^{m}\left(h(z)-b_{j}\right)^{s_{j}}$. Hence, with $z=h^{-1}(w)$,

$$
\prod_{j=1}^{m}\left(w-b_{j}\right)^{s_{j}}=F\left(h^{-1}(w)\right)=\exp L\left(h^{-1}(w)\right), w \in K_{2}
$$

By Theorem 3.16, $s_{j}=0$ for every j. This is a contradiction to the choice of s_{j}. Hence $m \leq n$. Interchanging the role of m and n yields that $m=n$.
iii) If K_{1} has infinitely many holes, then K_{2} must have infinitely many holes, too (otherwise we apply the previous case where the roles of K_{1} and K_{2} are interchanged).

Proposition 3.22. Let f be a zero-free continuous function in \mathbb{C}. Then f has a continuous logarithm; that is, there exists a continuous function g with $e^{g}=f$.

Proof. First approach. By Borsuk's theorem 3.9, f admits a continuous logarithm on every closed square. Now we cover \mathbb{C} with unit squares $[n, n+1] \times[m, m+1], n, m \in \mathbb{Z}$ and enumerate those in the following way: one starts with the square $Q_{1}:=[0,1]^{2}$, denoted by 1 , and spirals around:

37	36	35	34	33	32	31
\downarrow	17	16	15	14	13	30
	18	5	4	3	12	29
	19	6	1	2	11	28
	20	7	8	9	10	27
\downarrow	21	22	23	24	25	26
	\rightarrow				\rightarrow	

Let $h_{1}:=g_{1}=\log f$ on Q_{1}; choose $g_{2}=\log f$ on Q_{2} so that $g_{2}=h_{1}$ on the common boundary and put

$$
h_{2}=\left\{\begin{array}{ll}
g_{1} & \text { on } Q_{1} \\
g_{2} & \text { on } Q_{2}
\end{array} .\right.
$$

Then $h_{2} \in C\left(Q_{1} \cup Q_{2}\right)$ and $e^{h_{2}}=f$. Inductively, choose $g_{n}=\log f$ so that g_{n} coincides with h_{n-1} on the intersection I of the boundary of Q_{n} with the previous boundaries. Note that I is a union of at most two adjacent segments, hence a connected set. The function $g=g_{n}$ on Q_{n}, $(n=1,2,3, \ldots)$, is then well-defined and satisfies $e^{g}=f$ in \mathbb{C}.

Second approach Let $g_{n}=\log f$ on the disk $D_{n}=\{|z| \leq n\}$, where the branch is chosen so that $g_{n}=g_{n-1}$ on D_{n-1}. We claim that the function g, defined by $\lim _{n} g(z)$, is a continuous logarithm of f. In fact, let $z_{0} \in \mathbb{C}$ be fixed, and consider the smallest disk $D_{n_{0}}$ containing z_{0} in its interior. Then $g_{n}(z)=g_{n_{0}}(z)$ for every $z \in D_{n_{0}}$ and $n \geq n_{0}$. Thus $g(z)=g_{n_{0}}(z)$ for all $z \in D_{n_{0}}$ and so $e^{g}=f$ on $D_{n_{0}}$.

Theorem 3.23. Let G be a simply connected domain in \mathbb{C}. Then every zero free continuous function on G admits a continuous logarithm.

Proof. According to Theorem ??, let $\left(K_{n}\right)$ be an exhaustion sequence of Ω-convex connected compacta. Since Ω is simply connected, each K_{n} actually is polynomial convex (Proposition ??). By Borsuk's Theorem 3.9, there is $g_{n} \in C\left(K_{n}, \mathbb{C}\right)$ with $e^{g_{n}}=f$ on K_{n} and where the branch is chosen so that $g_{n}=g_{n-1}$ on K_{n-1} whenever $n \geq 2$. As above, we see that the function g, defined by $\lim _{n} g(z)$, is a continuous logarithm of f on G.

We conclude this Section with Brouwer's fixed point theorem for the closed unit disk.
Theorem 3.24 (Brouwer). Let \boldsymbol{D} be the closed unit disk and $f \in C(\boldsymbol{D}, \boldsymbol{D})$. Then f admits a fixed point; that is there is $a \in \boldsymbol{D}$ with $f(a)=a$.

Proof. Suppose that f does not admit a fixed point. Then $g(z):=z-f(z)$ is a zero-free continuous function on \boldsymbol{D}. Note that \boldsymbol{D} is contractible. Hence, due to Corollary $3.5, g=e^{G}$ for some $G \in C(\boldsymbol{D}, \mathbb{C})$. Now consider the function $h: \boldsymbol{D} \rightarrow \boldsymbol{D}$ given by $h(z)=1-\bar{z} f(z)$. Then h is zero free on \boldsymbol{D}, because otherwise $\bar{b} f(b)=1$ for some $b \in \boldsymbol{D}$. Since on $\mathbb{D},|b f(b)|<1$, we deduce that $|b|=1$. Thus $f(b)=b$; a contradiction to the assumption. Again, by Corollary 3.5, there is $H \in C(\boldsymbol{D}, \mathbb{C})$ with $h=e^{H}$. But on $\mathbb{T}=\partial \boldsymbol{D}$, we have $z h(z)=z-f(z)=g(z)$. Thus $z e^{H(z)}=e^{G(z)}$ and so

$$
z=e^{G(z)-H(z)} \text { with }|z|=1
$$

This contradicts Proposition 1.3, for example. We conclude that f has a fixed point in \boldsymbol{D}.

Chapter 4

Conformal maps

4.1 Conformal maps and the Riemann mapping theorem

Here we will present the most important theorem in geometric function theory dealing with conformal maps: namely the Riemann mapping theorem. We will use our original Definition 4.1 of simple-connectedness.

Definition 4.1.

i) A domain in \mathbb{C} is an open connected set ${ }^{14}$.
ii) A domain $G \subseteq \mathbb{C}$ is said to be simply connected if $\mathbb{C} \backslash G$ has no bounded components.

Recall from Definition 1.1 that a Cauchy domain is a domain in \mathbb{C} for which every cycle is null-homologous.

Theorem 4.2. Let D_{1} and D_{2} be two domains in \mathbb{C} and suppose that $f: D_{1} \rightarrow D_{2}$ is a conformal map (that is a holomorphic bijection). If D_{1} is a Cauchy domain, then $D_{2}=f\left(D_{1}\right)$ is a Cauchy domain.

Proof. Let $\Gamma=w([0,1]) \subseteq D_{2}$ be a closed, piecewise C^{1}-curve. We need to show that $n(\Gamma, a)=0$ for every $a \in \mathbb{C} \backslash D_{2}$. To this end, let $\gamma=f^{-1} \circ \Gamma$. Then γ is a closed piecewise C^{1}-curve in D_{1} parametrized by $z(t)=f^{-1}(w(t))$, or equivalently, $w(t)=f(z(t)), 0 \leq t \leq 1$. By assumption, γ is null-homologous in D_{1}. Hence,

$$
\begin{aligned}
I:=n(\Gamma, a) & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{w-a} d w \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{f^{\prime}(z(t)) \cdot \dot{z}(t)}{f(z(t))-a} d t \\
& =\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)-a} d z .
\end{aligned}
$$

Since $f^{\prime} /(f-a) \in H\left(D_{1}\right)$, the Cauchy theorem for null-homologous cycles implies that $I=0$. Hence Γ is null-homologous in D_{2} and so D_{2} is a Cauchy domain, too.

[^12]Theorem 4.3 (Riemann mapping theorem). Let G be a simply connected domain, $z_{0} \in G$ and $G \neq \mathbb{C}$. Then there is a unique conformal map $f: G \rightarrow \mathbb{D}$ (called the Riemann map) with $f\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)>0$.
Proof. Uniqueness
Let f and g be two conformal maps of G onto \mathbb{D} with $f\left(z_{0}\right)=g\left(z_{0}\right)=0$ and $f^{\prime}\left(z_{0}\right)>0$, $g^{\prime}\left(z_{0}\right)>0$. Then $h:=g \circ f^{-1}$ is a conformal map of \mathbb{D} onto \mathbb{D} satisfying $h(0)=0$. Hence, by Schwarz's Lemma, $h(z)=e^{i \theta} z$ for some $\theta \in[0,2 \pi[$. But

$$
e^{i \theta}=h^{\prime}(0)=g^{\prime}\left(f^{-1}(0)\right)\left(f^{-1}\right)^{\prime}(0)=g^{\prime}\left(z_{0}\right) \frac{1}{f^{\prime}\left(z_{0}\right)}>0 .
$$

Consequently $\theta=0$. Hence $h(z)=z$ and so $f=g$.

Existence

Step 1 Reduction of the problem to a Cauchy domain $G:=D_{3}$ with $D_{3} \subseteq \mathbb{D}$ and $z_{0}:=0 \in$ D_{3}.

Let $a \in \mathbb{C} \backslash G$. Then $f(z)=z-a$ is zero-free in G. Now, due to Example ??, G is a Cauchy domain. Hence, by Theorem 1.2, there is $g \in H(G)$ with $g^{2}(z)=z-a$ and $Z(g)=\emptyset$. Moreover, g is injective. Let $D_{1}:=g(G)$. Then D_{1} is a Cauchy domain, too (Appendix 4.2).

Claim $1 D_{1}$ is antisymetric; that is, if $w_{0} \in G_{1}$, then $-w_{0} \notin G_{1}$.
In fact, supposing the contrary, there are $z_{1}, z_{2} \in G$ with $g\left(z_{1}\right)=w_{0}$ and $g\left(z_{2}\right)=-w_{0}$. Hence

$$
z_{1}-a=g^{2}\left(z_{1}\right)=g^{2}\left(z_{2}\right)=z_{2}-a,
$$

from which we deduce that $z_{1}=z_{2}$ and so $w_{0}=0$; a contradiction to $Z(g)=\emptyset$.
Claim $2 D_{1}$ has exterior points; this means that $\mathbb{C} \backslash \overline{D_{1}}$ has nonvoid interior.
To see this, let $w_{0} \in D_{1}$ and let $r>0$ be such that $D\left(w_{0}, r\right) \subseteq D_{1}$ (note that D_{1} is open). Then $D\left(-w_{0}, r\right) \cap D_{1}=\emptyset$ by the first claim.

Now consider the Möbius transform $S(z)=\frac{r}{z+w_{0}}$. This function maps the extended exterior of $D\left(-w_{0}, r\right)$ to \mathbb{D}; that is

$$
S\left(\widehat{\mathbb{C}} \backslash D\left(-w_{0}, r\right)\right)=\mathbb{D} \text { with } S(\infty)=0
$$

Since $D_{1} \subseteq \mathbb{C} \backslash D\left(-w_{0}, r\right)$, we see that $D_{2}:=S\left(D_{1}\right) \subseteq \mathbb{D}$. Finally, using a conformal selfmap T of \mathbb{D} with $T \circ S \circ g\left(z_{0}\right)=0$; for example $T(\xi)=\left(S\left(g\left(z_{0}\right)\right)-\xi\right) /\left(1-\overline{S\left(g\left(z_{0}\right)\right)} \xi\right)$, we obtain a conformal map $F:=T \circ S \circ g$ of G onto a Cauchy domain $D_{3}:=F(G) \subseteq \mathbb{D}$ such that $F\left(z_{0}\right)=0$.

Step 2 "Left-composing F to get a surjection".
Consider the family

$$
\mathcal{F}=\left\{f \in H\left(D_{3}\right): f\left(D_{3}\right) \subseteq \mathbb{D}, f(0)=0, f \text { injective }\right\} \cup\{0\}
$$

Since \mathcal{F} is uniformly bounded (by 1), we may apply Montel's normality criterion ??, to deduce that \mathcal{F} is a normal family. But \mathcal{F} is also closed in the metric space $\left(H\left(D_{3}\right), d\right)$ (given in

Observation ??), hence (sequentially) compact. In fact, if $\left(f_{n}\right)$ is a sequence in $\mathcal{F} \backslash\{0\}$ converging locally uniformly to some $f \in H\left(D_{3}\right)$, then, by Hurwitz's Theorem ??, f either is injective or constantly 0 .

Since the map $L:\left\{\begin{array}{ll}\left(H\left(D_{3}\right), d\right) & \rightarrow \mathbb{C} \\ f & \mapsto f^{\prime}(0)\end{array}\right.$ is continuous, the compactness of \mathcal{F} yields that $L(\mathcal{F})$ is a compact set in \mathbb{C}. Thus, there is $f_{0} \in \mathcal{F}$ (called an extremal function) such that

$$
\left|f_{0}^{\prime}(0)\right|=\sup \left\{\left|f^{\prime}(0)\right|: f \in \mathcal{F}\right\}
$$

Claim $3 f_{0}$ is a conformal map of D_{3} onto \mathbb{D}.
We first note that $\left|f_{0}^{\prime}(0)\right| \geq 1$, because the identity map $f(z)=z,\left(z \in D_{3} \subseteq \mathbb{D}\right)$, satisfies $f^{\prime}(0)=1$ and belongs to \mathcal{F}. Thus $f_{0} \not \equiv 0$ and so f_{0} is injective.

To prove the surjectivity of f_{0}, we suppose that this is not the case. Then there is $b \in$ $\mathbb{D} \backslash f_{0}\left(D_{3}\right)$. Let $S_{b}(\xi)=\frac{b-\xi}{1-\bar{b} \xi}$. Then the function $S_{b} \circ f_{0}: D_{3} \rightarrow \mathbb{D}$ is zero-free. Since D_{3} is a Cauchy domain, we may apply Theorem 1.2 again to deduce that there is $q \in H\left(D_{3}\right)$ with $q^{2}=S_{b} \circ f_{0}$. Note that $q\left(D_{3}\right) \subseteq \mathbb{D}$. The injectivity of $S_{b} \circ f_{0}$ implies that q is also injective. Let $c:=q(0)$. Then the function $h:=S_{c} \circ q \in H\left(D_{3}\right), h\left(D_{3}\right) \subseteq \mathbb{D}$, and $h(0)=0$. But h is also injective. Hence $h \in \mathcal{F}$. But $\left|h^{\prime}(0)\right|>\left|f_{0}^{\prime}(0)\right|$. In fact, if $\psi(w)=w^{2}$, then

$$
f_{0}=\underbrace{S_{b}^{-1} \circ \psi \circ S_{c}^{-1}}_{:=\varphi} \circ h
$$

and so

$$
\begin{equation*}
\left|f_{0}^{\prime}(0)\right|=\left|\varphi^{\prime}(0)\right|\left|h^{\prime}(0)\right| . \tag{4.1}
\end{equation*}
$$

Since $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ and $\varphi(0)=0$, we deduce from the Schwarz Lemma that $\left|\varphi^{\prime}(0)\right|<1$ (note that φ is not a rotation). Hence $\left|f_{0}^{\prime}(0)\right|<\left|h^{\prime}(0)\right|$. This is a contradiction though to the extremality of f_{0}. We conclude that f_{0} must be surjective.

Finally, let $f_{1}:=f_{0} \circ F$ and

$$
f:=\frac{\left|f_{1}^{\prime}(0)\right|}{f_{1}^{\prime}(0)} f_{1}
$$

Note that $f_{1}^{\prime}(0) \neq 0$ because f_{1} is a conformal map. Then f is the desired conformal map of G onto \mathbb{D} with $f^{\prime}(0)>0$ and $f(0)=0$.

Theorem 4.4. If D_{1} and D_{2} are two simply connected domains in \mathbb{C} with $D_{j} \neq \mathbb{C}$, then there is a conformal map of D_{1} onto D_{2} (we say that D_{1} is conformally equivalent to D_{2}).

Proof. Let $f_{j}: \mathbb{D}_{j} \rightarrow \mathbb{D}$ be the Riemann maps associated with D_{j}. Then $f_{2}^{-1} \circ f_{1}$ is a conformal map of D_{1} onto D_{2}.

For the following observe that \mathbb{D} is homeomorphic with \mathbb{C} (just consider the map $h: \mathbb{C} \rightarrow \mathbb{D}$ given by $h(z)=z /(1+|z|)$ and its inverse $\left.h^{-1}(w)=w /(1-|w|)\right)$. Of course \mathbb{C} is not conformally equivalent with \mathbb{D} in view of Liouville's Theorem.

Theorem 4.5. Let G be a domain in \mathbb{C} with $G \neq \mathbb{C}$. The following assertions are equivalent:
(1) G is conformally equivalent with \mathbb{D}.
(2) G is homeomorphic to \mathbb{D}.
(3) G is simply connected.

Proof. (1) $\Longrightarrow(2)$ This is obvious.
$(2) \Longrightarrow(3)$ By example ??, G is simply connected (in the sense of Definition 4.1) if and only if it is a psc-space. But by Corollary ??, being a psc-space is invariant under homeomorphisms. Hence G is simply connected as the homeomorphic image of \mathbb{D}.
$(3) \Longrightarrow(1)$ This is the Riemann mapping Theorem, Appendix 4.3.
Theorem 4.6. Here is a conformal map of the unit disk onto the cusp domain

$$
G=\{z \in \mathbb{C}:|z+1 / 2|<1 / 2\} \backslash\left(\left\{\left|z-\frac{i}{2}\right| \leq \frac{1}{2}\right\} \cup\left\{\left|z+\frac{i}{2}\right| \leq \frac{1}{2}\right\}\right)
$$

Figure 4.1: From the disk to a circular triangle
And here is a conformal map of the lunar crescent G to the unit disk

$$
\begin{gathered}
G=\mathbb{D} \backslash\{z \in \mathbb{C}:|z-1 / 2| \leq 1 / 2\} \\
f(z)=i \tan \frac{\pi}{2}\left(\frac{1+z}{1-z}-\frac{1}{2}\right)
\end{gathered}
$$

4.2 Extensions of conformal maps

Theorem 4.7. Let $f: \mathbb{D} \rightarrow G$ be a conformal map of the unit disk \mathbb{D} onto the bounded domain $G \subseteq \mathbb{C}$. Then the following assertions are equivalent:
(1) f has a continuous extension to $\overline{\mathbb{D}}$;
(2) ∂G is a curve; that is $\partial G=\{\phi(\xi): \xi \in \partial \mathbb{D}\}$ with continuous ϕ;

Figure 4.2: From the lunar crescent to the disk
(3) ∂G is locally connected;
(4) $\mathbb{C} \backslash G$ is locally connected.

Theorem 4.8 (Carathéodory). Let $f: \mathbb{D} \rightarrow G$ be a conformal map of the unit disk \mathbb{D} onto the bounded domain $G \subseteq \mathbb{C}$. Then the following assertions are equivalent:
(1) f has a continuous injective extension to $\overline{\mathbb{D}}$;
(2) ∂G is a Jordan curve;
(3) ∂G is locally connected and has no cut-points.

[^0]: ${ }^{1}$ Where we made the usual convention of "identifying" the curve $\gamma=\phi([0,1])$ with the path ϕ itself.

[^1]: ${ }^{2}$ In Corollary 1.11 it will be shown that one can replace "smooth" by "continuous".

[^2]: ${ }^{3}$ meaning that $(0, \ldots, 0)$ does not belong to the image

[^3]: ${ }^{4}$ This is necessary in order to avoid singularities on the integration curve.

[^4]: ${ }^{5}$ Here we use that $\sigma_{2}(\Gamma)=0$; so that actually $\iint_{\Omega}=\iint_{\Omega \backslash \Gamma}$.

[^5]: ${ }^{6}$ Readers who do not want to use, at this point, the Jordan curve Theorem 1.5, must additionally assume the conditions (2.10).

[^6]: ${ }^{7}$ This second proof runs under the heading "integration by parts"
 ${ }^{8}$ This limit is called the "aerolar derivative" or "areal derivative" (by Pompeiu).

[^7]: ${ }^{9}$ Note that f is holomorphic in a neighborhood of a.

[^8]: ${ }^{10}$ Note that f_{j} can be identically zero on some components of Ω

[^9]: ${ }^{11}$ We do not assume that the norm of the identity element is one.

[^10]: ${ }^{12}$ One also says that K does not separate a and b

[^11]: ${ }^{13}$ For example, take a dyadic lattice of the plane with squares of diameter κ and delete all those squares whose interior does not meet $Q \backslash V$.

[^12]: ${ }^{14}$ If D is a nonvoid domain, then D is sometimes called a region (see [?]).

