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Invertible extensions of continuous maps

K = R or K = C

Theorem (Tietze)

X normal space; A ⊆ X closed. Then each f ∈ C(A,K) admits
a continuous extension F to X.

If f is zero free, then in general, F has zeros.
Examples:
• X = R, A = {−1, 1}, f (±1) = ±1 (intermediate value
theorem)
• X = C, A = {z ∈ C : |z| = 1}, f (z) = z (Brouwer degree).
or equivalently:
• X = R2, A = {(x , y) : x2 + y2 = 1}, f (x , y) = (x , y).
Why this doesn’t work?
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Considering tuples:

An n-tuple (f1, . . . , fn) of continuous, complex-valued functions
on a compact Hausdorff space X is said to be invertible if the fj
have no common zeros on X .

F := (f , g) ∈ C(A)× C(A) invertible, A ⊆ R compact;
∃? invertible extension to R?

YES:
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Proof F , G Tietze extension to R.

Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).

Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅.

Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R).

Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;

Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅.

Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I);

Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Proof F , G Tietze extension to R. Consider Urysohn map
U ∈ C(R), U = 0 on A, U = 1 on S := Z (F ) ∩ Z (G).
Note that S ∩ A = ∅. Then (F , G, U) is invertible. Hence
1 = aF + bG + cU for a, b, c ∈ C(R). Uniformly approximate on
I ⊇ A, I compact, a and b by polynomials p and q (Weierstrass)
so that v := pF + qG + cU is invertible on I;Move the zeros of a
a little bit, so that Z (p) ∩ Z (q) = ∅. Then c = αp + βq where
α, β ∈ C(I); Hence, on I,

v = pF + qG + (αp + βq)U = p(F + αU) + q(G + βU)

Thus (F + αU, G + βU) is an invertible extension of (f , g) to I.
The extension to R should be clear.

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Sn−1 = {x ∈ Rn : ||x ||2 = 1} unit sphere in Rn.

Lemma

Let K , L be two compact subsets in Rn with K ⊆ L. Then a
continuous map f : K → Rn \ {(0, . . . , 0)} admits a continuous
extension F : L→ Rn \ {(0, . . . , 0)} if and only if
f/|f | : K → Sn−1 admits a continuous extension F ∗ : L→ Sn−1.
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Theorem

Let K , L be two compact subsets in Rn with K ⊆ L. Then the
following assertions are equivalent:

1 Every continuous map f : K → Sn−1 admits a continuous
extension F : L→ Sn−1,

2 Every invertible n-tuple of real-valued continuous functions
on K admits an extension to an invertible n-tuple of
real-valued continuous functions on L,

3 Every component of Rn \K contains a component of Rn \ L.
symmetric case
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Corollary

Let K ⊆ Cn be compact and suppose that K has no holes.
Then every invertible n-tuple f = (f1, . . . , fn) of real-valued
(respectively complex-valued) continuous functions can be
extended to an invertible n-tuple F = (F1, . . . , Fn) of
complex-valued continuous functions on Cn.

Proposition

Let K , L be two compact subsets in Rn with K ⊆ L. Then every
invertible n-tuple f = (f1, . . . , fn) of complex-valued continuous
functions on K admits an extension to an invertible n-tuple of
complex-valued continuous functions on L.
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Proposition

Let K , L be two compact subsets in Rn with K ⊆ L. Suppose
that m ≥ n + 1. Then every invertible m-tuple f = (f1, . . . , fm) of
real-valued continuous functions on K admits an extension to
an invertible m-tuple of real-valued continuous functions on L.
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Real symmetric functions

Let z = (z1, . . . , zn) ∈ Cn. Then z = (z1, . . . , zn), where z j

denotes the complex conjugate of zj ∈ C.
A set K in Cn is said to be real symmetric if z ∈ K whenever
z ∈ K . If X ⊆ Cn, then X ∗ = {z ∈ Cn : z ∈ X}. The set Rn of
real tuples will be viewed as a subset of Cn.
A complex-valued function f defined on a real symmetric set K
in Cn is said to be real symmetric, if f (z) = f (z) for any z ∈ K .
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Let C(K )sym denote the set of all continuous real symmetric
functions on K .

If K ⊆ Cn is real symmetric and compact, then every function
f ∈ C(K )sym has a real symmetric extension to Cn. Indeed, if φ is
any continuous Tietze extension to Cn, just put

F (z) =
(
φ(z) + φ(z)

)
/2,

the symmetrization of φ. Then F is real symmetric.

R. Mortini Stable ranks
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Theorem

Let K , L be two highly symmetric, compact subsets of Cn with
K ⊆ L. Then the following assertions are equivalent:

1 Every map f ∈ Csym(K , S2n−1) can be extended to a map
F ∈ Csym(L, S2n−1),

2 Every invertible n-tuple of functions in C(K )sym can be
extended to an invertible n-tuple of functions in C(L)sym,

3 Every component of Cn \ K contains a component of Cn \ L
and every component of Rn \ K contains a component of
Rn \ L.

unsymmetric case
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Proof

Here we show that every component of Cn \ K contains a
component of Cn \ L.

This is obvious for the unbounded component of the
complement of K . So let Ω denote a bounded component of
Cn \ K and fix a ∈ Ω. Then a ∈ Ω∗.We may assume that
Im a1 > 0. Let B be small open ball centered at a, disjoint from
M1 and satisfying cl B ⊆ Ω. Then B∗ is a small ball centered at
a.Now we need an element g ∈ (Csym(C

n))n such that
Z (g) = {a, a}.The simplest real symmetric map
f (z) =

(
(z1 − a1)(z1 − a1), . . . , (zn − an)(zn − an)

)
we know,

unfortunately vanishes at 2n points. So we have to prove the
existence of a map g satisfying the property above.
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To show this, let Ǩ = ∂B ∪ ∂B∗. The real symmetric invertible
n-tuple

f (z) =

{
z − a if z ∈ ∂B,

z − a if z ∈ ∂B∗

defined on Ǩ admits a real symmetric invertible extension f̂ to
Cn \ (B ∪ B∗). Let

g(z) =


f̂ (z) on Cn \ (B ∪ B∗),

z − a on B,

z − a on B∗.
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To show this, let Ǩ = ∂B ∪ ∂B∗. The real symmetric invertible
n-tuple

f (z) =

{
z − a if z ∈ ∂B,

z − a if z ∈ ∂B∗
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Now let us suppose that Ω is entirely contained in L.

Consider
the invertible n-tuple g|K ∈ Un

(
C(K )sym

)
. By the assumption of

this Proposition, there exists an extension F of g|K with
F ∈ Un(C(L)sym). Since ∂Ω ⊆ K , we have that g = F on ∂Ω.
Now we use a version of Rouché’s theorem involving Brouwer’s
mapping degree d(·,Ω, 0) in nonlinear analysis, that tells us
that whenever |g − F | < |F | on ∂Ω, then d(g,Ω, 0) = d(F ,Ω, 0).
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Now we use a version of Rouché’s theorem involving Brouwer’s
mapping degree d(·,Ω, 0) in nonlinear analysis, that tells us
that whenever |g − F | < |F | on ∂Ω, then d(g,Ω, 0) = d(F ,Ω, 0).

R. Mortini Stable ranks



Invertible extensions of continuous maps
Real symmetric functions

Covering dimension
Bass and topological stable rank

Now
d(g,Ω, 0) =

∑
ξ:g(ξ)=0

sgn detJg(ξ),

where Jg is the Jacobian of the map g

(note that g is
holomorphic around its zeros; that is in the balls B and B∗).
Thus d(g,Ω, 0) = 1 if a is in Ω and a /∈ Ω, and d(g,Ω, 0) = 2 if
both a and a are in Ω. In any case d(g,Ω, 0) > 0 and hence
d(F ,Ω, 0) > 0. That implies that F has a zero in Ω; this is a
contradiction because F is invertible in L ⊇ Ω. Hence Ω cannot
be contained in L. Thus we have shown that each component Ω
of Cn \ K contains a component of Cn \ L.
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Covering dimension

Definition

Let X be a topological space, U a system of open sets, p ∈ X .
The order, ordp U , of U at p is the number of members of U
that contain p. The order of U is given by
ord U = sup{ordp U : p ∈ X}. Let n ∈ N. X is said to have
covering dimension ( or Čech-Lebesgue dimension) ≤ n,
dimX ≤ n, if for any finite open covering U of X there exists an
open refinement V of U such that ord V ≤ n + 1.
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Theorem

• dimRn = n.
• For M ⊆ Rn: dimM ≤ n − 1←→ M◦ = ∅.

Theorem

If X is compact and totally disconnected, then dimX = 0:

Beweis.

Let U be a finite open covering of X . ∀x ∈ X , ∃Ux ∈ U and Cx ,
open-closed, with x ∈ Cx ⊆ Ux .X compact
−→ {Ci : i ∈ {1, . . . , N}} cover X ; Take F1 = C1; F2 =
C2 \ C1; F3 = C3 \ (C1 ∪ C2), · · ·FN = CN − \(

⋃N−1
j=1 Cj). Then

V := {Fj : j = 1 . . . , N} is a refinement of U with
ord V ≤ 1.
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If A = C(X ,K), (where K = R or K = C), or A = C(K )sym, then we
denote the set of all invertible n-tuples in A by Un(A). Note that

Un(A) = {(f1, . . . , fn) ∈ An
∣∣ ∃g = (g1, . . . , gn) ∈ An :

n∑
j=1

fjgj = 1}.

Theorem

Let X be a normal space. Then the following assertions are
equivalent:

1 0 ≤ dim X ≤ n;

2 For every closed subspace A of X any continuous mapping
f : A→ Sn admits a continuous extension F : X → Sn;

3 For every closed subspace A of X any invertible
(n + 1)-tuple f ∈ Un+1(C(A,R)) admits an extension to an
invertible (n + 1)-tuple F ∈ Un+1(C(X ,R)).
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Bass and topological stable rank

An element (f1, . . . , fn, g) ∈ Un+1(A) is said to be reducible, if
there exists (x1, . . . , xn) ∈ An so that

(f1 + x1g, . . . , fn + xng) ∈ Un(A).

The smallest integer n for which every element in Un+1(A) is
reducible is called the Bass stable rank of A and is denoted by
bsr(A). If no such integer exists, then bsr(A) =∞.
A related concept is that of the topological stable rank, tsr(A), of
A. This is the smallest integer n such that Un(A) is dense in An.
If no such n exists, then tsr(A) =∞. It is well known that
bsr(A) ≤ tsr(A).
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Theorem

The (n + 1)-tuple (f1, . . . , fn, g) in C(X ) is reducible if and only if
(f1, . . . , fn) admits an invertible extension from Z (g) to X .

Theorem (Vaserstein, Rieffel)

Let X be a compact Hausdorff space. Then

tsr(C(X ,C)) = bsr(C(X ,C)) =
[

dimX
2

]
+ 1

tsr(C(X ,R)) = bsr(C(X ,R)) = dimX + 1.
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Theorem

Let X be a real symmetric, compact set in Cn. Then

bsrC(X )sym = tsr C(X )sym = max
{[

dim X
2

]
, dim (X ∩ Rn)

}
+ 1.
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