Real symmetric extensions of invertible tuples of multivariable continuous functions

Raymond Mortini Université Paul Verlaine - Metz

Saarbrücken, Januar, 2010

・ロット (雪) (目) (日)

Invertible extensions of continuous maps

E

Invertible extensions of continuous maps

 $\mathbb{K}=\mathbb{R} \text{ or } \mathbb{K}=\mathbb{C}$

Theorem (Tietze)

X normal space; $A \subseteq X$ closed. Then each $f \in C(A, \mathbb{K})$ admits a continuous extension F to X.

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨ

Invertible extensions of continuous maps

 $\mathbb{K}=\mathbb{R} \text{ or } \mathbb{K}=\mathbb{C}$

Theorem (Tietze)

X normal space; $A \subseteq X$ closed. Then each $f \in C(A, \mathbb{K})$ admits a continuous extension F to X.

If *f* is zero free, then in general, *F* has zeros.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Invertible extensions of continuous maps

 $\mathbb{K}=\mathbb{R} \text{ or } \mathbb{K}=\mathbb{C}$

Theorem (Tietze)

X normal space; $A \subseteq X$ closed. Then each $f \in C(A, \mathbb{K})$ admits a continuous extension F to X.

If *f* is zero free, then in general, *F* has zeros. Examples:

• $X = \mathbb{R}$, $A = \{-1, 1\}$, $f(\pm 1) = \pm 1$ (intermediate value theorem)

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Invertible extensions of continuous maps

 $\mathbb{K}=\mathbb{R} \text{ or } \mathbb{K}=\mathbb{C}$

Theorem (Tietze)

X normal space; $A \subseteq X$ closed. Then each $f \in C(A, \mathbb{K})$ admits a continuous extension F to X.

If *f* is zero free, then in general, *F* has zeros. Examples:

• $X = \mathbb{R}$, $A = \{-1, 1\}$, $f(\pm 1) = \pm 1$ (intermediate value theorem)

• $X = \mathbb{C}, A = \{z \in \mathbb{C} : |z| = 1\}, f(z) = z$ (Brouwer degree).

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Invertible extensions of continuous maps

 $\mathbb{K} = \mathbb{R} \text{ or } \mathbb{K} = \mathbb{C}$

Theorem (Tietze)

X normal space; $A \subseteq X$ closed. Then each $f \in C(A, \mathbb{K})$ admits a continuous extension F to X.

If f is zero free, then in general, F has zeros. Examples:

• $X = \mathbb{R}$, $A = \{-1, 1\}$, $f(\pm 1) = \pm 1$ (intermediate value theorem)

- $X = \mathbb{C}$, $A = \{z \in \mathbb{C} : |z| = 1\}$, f(z) = z (Brouwer degree). or equivalently:
- $X = \mathbb{R}^2$, $A = \{(x, y) : x^2 + y^2 = 1\}$, f(x, y) = (x, y).

(日)

Invertible extensions of continuous maps

 $\mathbb{K} = \mathbb{R} \text{ or } \mathbb{K} = \mathbb{C}$

Theorem (Tietze)

X normal space; $A \subseteq X$ closed. Then each $f \in C(A, \mathbb{K})$ admits a continuous extension F to X.

If *f* is zero free, then in general, *F* has zeros. Examples:

• $X = \mathbb{R}$, $A = \{-1, 1\}$, $f(\pm 1) = \pm 1$ (intermediate value theorem)

• $X = \mathbb{C}$, $A = \{z \in \mathbb{C} : |z| = 1\}$, f(z) = z (Brouwer degree). or equivalently:

• $X = \mathbb{R}^2$, $A = \{(x, y) : x^2 + y^2 = 1\}$, f(x, y) = (x, y). Why this doesn't work?

Considering tuples:

◆□→ ◆御→ ◆注→ ◆注→

E

Considering tuples:

An *n*-tuple (f_1, \ldots, f_n) of continuous, complex-valued functions on a compact Hausdorff space X is said to be *invertible* if the f_j have no common zeros on X.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э.

Considering tuples:

An *n*-tuple (f_1, \ldots, f_n) of continuous, complex-valued functions on a compact Hausdorff space X is said to be *invertible* if the f_j have no common zeros on X.

 $F := (f, g) \in C(A) \times C(A)$ invertible, $A \subseteq \mathbb{R}$ compact; \exists ? invertible extension to \mathbb{R} ?

YES:

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨ

Proof F, G Tietze extension to \mathbb{R} .

E DQC

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R}), U = 0$ on *A*, U = 1 on $S := Z(F) \cap Z(G)$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

= 990

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for $a, b, c \in C(\mathbb{R})$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э.

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for $a, b, c \in C(\mathbb{R})$. Uniformly approximate on $I \supseteq A$, *I* compact, *a* and *b* by polynomials *p* and *q* (Weierstrass) so that v := pF + qG + cU is invertible on *I*;

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for $a, b, c \in C(\mathbb{R})$. Uniformly approximate on $I \supseteq A$, *I* compact, *a* and *b* by polynomials *p* and *q* (Weierstrass) so that v := pF + qG + cU is invertible on *I*;Move the zeros of *a* a little bit, so that $Z(p) \cap Z(q) = \emptyset$.

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for *a*, *b*, $c \in C(\mathbb{R})$. Uniformly approximate on $I \supseteq A$, *I* compact, *a* and *b* by polynomials *p* and *q* (Weierstrass) so that v := pF + qG + cU is invertible on *I*;Move the zeros of *a* a little bit, so that $Z(p) \cap Z(q) = \emptyset$. Then $c = \alpha p + \beta q$ where $\alpha, \beta \in C(I)$;

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for *a*, *b*, $c \in C(\mathbb{R})$. Uniformly approximate on $I \supseteq A$, *I* compact, *a* and *b* by polynomials *p* and *q* (Weierstrass) so that v := pF + qG + cU is invertible on *I*;Move the zeros of *a* a little bit, so that $Z(p) \cap Z(q) = \emptyset$. Then $c = \alpha p + \beta q$ where $\alpha, \beta \in C(I)$; Hence, on *I*,

$$\mathbf{v} = \mathbf{pF} + \mathbf{qG} + (\alpha \mathbf{p} + \beta \mathbf{q})\mathbf{U} = \mathbf{p}(\mathbf{F} + \alpha \mathbf{U}) + \mathbf{q}(\mathbf{G} + \beta \mathbf{U})$$

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for *a*, *b*, $c \in C(\mathbb{R})$. Uniformly approximate on $I \supseteq A$, *I* compact, *a* and *b* by polynomials *p* and *q* (Weierstrass) so that v := pF + qG + cU is invertible on *I*;Move the zeros of *a* a little bit, so that $Z(p) \cap Z(q) = \emptyset$. Then $c = \alpha p + \beta q$ where $\alpha, \beta \in C(I)$; Hence, on *I*,

$$\mathbf{v} = \mathbf{pF} + \mathbf{qG} + (\alpha \mathbf{p} + \beta \mathbf{q})\mathbf{U} = \mathbf{p}(\mathbf{F} + \alpha \mathbf{U}) + \mathbf{q}(\mathbf{G} + \beta \mathbf{U})$$

Thus $(F + \alpha U, G + \beta U)$ is an invertible extension of (f, g) to *I*. The extension to \mathbb{R} should be clear.

(日)

Proof *F*, *G* Tietze extension to \mathbb{R} . Consider Urysohn map $U \in C(\mathbb{R})$, U = 0 on *A*, U = 1 on $S := Z(F) \cap Z(G)$. Note that $S \cap A = \emptyset$. Then (F, G, U) is invertible. Hence 1 = aF + bG + cU for *a*, *b*, $c \in C(\mathbb{R})$. Uniformly approximate on $I \supseteq A$, *I* compact, *a* and *b* by polynomials *p* and *q* (Weierstrass) so that v := pF + qG + cU is invertible on *I*;Move the zeros of *a* a little bit, so that $Z(p) \cap Z(q) = \emptyset$. Then $c = \alpha p + \beta q$ where $\alpha, \beta \in C(I)$; Hence, on *I*,

$$\mathbf{v} = \mathbf{pF} + \mathbf{qG} + (\alpha \mathbf{p} + \beta \mathbf{q})\mathbf{U} = \mathbf{p}(\mathbf{F} + \alpha \mathbf{U}) + \mathbf{q}(\mathbf{G} + \beta \mathbf{U})$$

Thus $(F + \alpha U, G + \beta U)$ is an invertible extension of (f, g) to *I*. The extension to \mathbb{R} should be clear.

(日)

$$S^{n-1} = \{x \in \mathbb{R}^n : ||x||_2 = 1\}$$
 unit sphere in \mathbb{R}^n .

◆□→ ◆御→ ◆注→ ◆注→ 「注」

$S^{n-1} = \{x \in \mathbb{R}^n : ||x||_2 = 1\}$ unit sphere in \mathbb{R}^n .

Lemma

Let *K*, *L* be two compact subsets in \mathbb{R}^n with $K \subseteq L$. Then a continuous map $f : K \to \mathbb{R}^n \setminus \{(0, \ldots, 0)\}$ admits a continuous extension $F : L \to \mathbb{R}^n \setminus \{(0, \ldots, 0)\}$ if and only if $f/|f| : K \to S^{n-1}$ admits a continuous extension $F^* : L \to S^{n-1}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Theorem

Let K, L be two compact subsets in \mathbb{R}^n with $K \subseteq L$. Then the following assertions are equivalent:

- 1 Every continuous map $f : K \to S^{n-1}$ admits a continuous extension $F : L \to S^{n-1}$,
- 2 Every invertible n-tuple of real-valued continuous functions on K admits an extension to an invertible n-tuple of real-valued continuous functions on L,
- **3** Every component of $\mathbb{R}^n \setminus K$ contains a component of $\mathbb{R}^n \setminus L$.

symmetric case

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Corollary

Let $K \subseteq \mathbb{C}^n$ be compact and suppose that K has no holes. Then every invertible n-tuple $f = (f_1, \ldots, f_n)$ of real-valued (respectively complex-valued) continuous functions can be extended to an invertible n-tuple $F = (F_1, \ldots, F_n)$ of complex-valued continuous functions on \mathbb{C}^n .

Proposition

Let K, L be two compact subsets in \mathbb{R}^n with $K \subseteq L$. Then every invertible n-tuple $f = (f_1, \ldots, f_n)$ of complex-valued continuous functions on K admits an extension to an invertible n-tuple of complex-valued continuous functions on L.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Proposition

Let K, L be two compact subsets in \mathbb{R}^n with $K \subseteq L$. Suppose that $m \ge n + 1$. Then every invertible m-tuple $f = (f_1, \ldots, f_m)$ of real-valued continuous functions on K admits an extension to an invertible m-tuple of real-valued continuous functions on L.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Real symmetric functions

R. Mortini Stable ranks

イロン イヨン イヨン イヨン

E.

Real symmetric functions

Let $z = (z_1, ..., z_n) \in \mathbb{C}^n$. Then $\overline{z} = (\overline{z}_1, ..., \overline{z}_n)$, where \overline{z}_j denotes the complex conjugate of $z_j \in \mathbb{C}$.

ヘロン 人間 とくほ とくほ とう

E

Real symmetric functions

Let $z = (z_1, ..., z_n) \in \mathbb{C}^n$. Then $\overline{z} = (\overline{z}_1, ..., \overline{z}_n)$, where \overline{z}_j denotes the complex conjugate of $z_j \in \mathbb{C}$. A set K in \mathbb{C}^n is said to be *real symmetric* if $\overline{z} \in K$ whenever $z \in K$. If $X \subseteq \mathbb{C}^n$, then $X^* = \{z \in \mathbb{C}^n : \overline{z} \in X\}$. The set \mathbb{R}^n of real tuples will be viewed as a subset of \mathbb{C}^n .

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Real symmetric functions

Let $z = (z_1, ..., z_n) \in \mathbb{C}^n$. Then $\overline{z} = (\overline{z}_1, ..., \overline{z}_n)$, where \overline{z}_j denotes the complex conjugate of $z_j \in \mathbb{C}$. A set K in \mathbb{C}^n is said to be *real symmetric* if $\overline{z} \in K$ whenever $z \in K$. If $X \subseteq \mathbb{C}^n$, then $X^* = \{z \in \mathbb{C}^n : \overline{z} \in X\}$. The set \mathbb{R}^n of real tuples will be viewed as a subset of \mathbb{C}^n . A complex-valued function f defined on a real symmetric set Kin \mathbb{C}^n is said to be *real symmetric*, if $\overline{f(\overline{z})} = f(z)$ for any $z \in K$.

Let $C(K)_{sym}$ denote the set of all continuous real symmetric functions on K.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

E

Let $C(K)_{sym}$ denote the set of all continuous real symmetric functions on K.

If $K \subseteq \mathbb{C}^n$ is real symmetric and compact, then every function $f \in C(K)_{sym}$ has a real symmetric extension to \mathbb{C}^n .

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э.

Let $C(K)_{sym}$ denote the set of all continuous real symmetric functions on K.

If $K \subseteq \mathbb{C}^n$ is real symmetric and compact, then every function $f \in C(K)_{sym}$ has a real symmetric extension to \mathbb{C}^n . Indeed, if ϕ is any continuous Tietze extension to \mathbb{C}^n , just put

$$F(z) = \left(\phi(z) + \overline{\phi(\overline{z})}\right)/2,$$

the symmetrization of ϕ . Then *F* is real symmetric.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Theorem

Let K, L be two highly symmetric, compact subsets of \mathbb{C}^n with $K \subseteq L$. Then the following assertions are equivalent:

- 1 Every map $f \in C_{sym}(K, S^{2n-1})$ can be extended to a map $F \in C_{sym}(L, S^{2n-1})$,
- 2 Every invertible n-tuple of functions in C(K)_{sym} can be extended to an invertible n-tuple of functions in C(L)_{sym},
- Every component of Cⁿ \ K contains a component of Cⁿ \ L
 and every component of Rⁿ \ K contains a component of Rⁿ \ L.

unsymmetric case

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$.

< ロ > < 部 > < き > < き > <</p>

E

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of *K*.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

E.
Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of *K*. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$.

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of *K*. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$.We may assume that Im $a_1 > 0$.

・ロット (雪) (目) (日)

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of *K*. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$.We may assume that Im $a_1 > 0$. Let *B* be small open ball centered at *a*, disjoint from M_1 and satisfying cl $B \subseteq \Omega$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of K. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$.We may assume that Im $a_1 > 0$. Let B be small open ball centered at a, disjoint from M_1 and satisfying cl $B \subseteq \Omega$. Then B^* is a small ball centered at \overline{a} .

・ロッ ・雪 ・ ・ 回 ・ ・

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of K. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$.We may assume that Im $a_1 > 0$. Let B be small open ball centered at a, disjoint from M_1 and satisfying cl $B \subseteq \Omega$. Then B^* is a small ball centered at \overline{a} .Now we need an element $g \in (C_{\text{sym}}(\mathbb{C}^n))^n$ such that $Z(g) = \{a, \overline{a}\}.$

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of K. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$. We may assume that Im $a_1 > 0$. Let B be small open ball centered at a, disjoint from M_1 and satisfying cl $B \subseteq \Omega$. Then B^* is a small ball centered at \overline{a} .Now we need an element $g \in (C_{sym}(\mathbb{C}^n))^n$ such that $Z(g) = \{a, \overline{a}\}$. The simplest real symmetric map $f(z) = ((z_1 - a_1)(z_1 - \overline{a}_1), \dots, (z_n - a_n)(z_n - \overline{a}_n))$ we know, unfortunately vanishes at 2ⁿ points.

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of K. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$. We may assume that Im $a_1 > 0$. Let B be small open ball centered at a, disjoint from M_1 and satisfying cl $B \subseteq \Omega$. Then B^* is a small ball centered at \overline{a} .Now we need an element $g \in (C_{sym}(\mathbb{C}^n))^n$ such that $Z(g) = \{a, \overline{a}\}$. The simplest real symmetric map $f(z) = ((z_1 - a_1)(z_1 - \overline{a}_1), \dots, (z_n - a_n)(z_n - \overline{a}_n))$ we know, unfortunately vanishes at 2^n points. So we have to prove the existence of a map q satisfying the property above.

・ロット (四マ・川田) ・ 日マ

Proof

Here we show that every component of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$. This is obvious for the unbounded component of the complement of K. So let Ω denote a bounded component of $\mathbb{C}^n \setminus K$ and fix $a \in \Omega$. Then $\overline{a} \in \Omega^*$. We may assume that Im $a_1 > 0$. Let B be small open ball centered at a, disjoint from M_1 and satisfying cl $B \subseteq \Omega$. Then B^* is a small ball centered at \overline{a} .Now we need an element $g \in (C_{sym}(\mathbb{C}^n))^n$ such that $Z(g) = \{a, \overline{a}\}$. The simplest real symmetric map $f(z) = ((z_1 - a_1)(z_1 - \overline{a}_1), \dots, (z_n - a_n)(z_n - \overline{a}_n))$ we know, unfortunately vanishes at 2^n points. So we have to prove the existence of a map q satisfying the property above.

・ロット (四マ・川田) ・ 日マ

To show this, let $\check{K} = \partial B \cup \partial B^*$. The real symmetric invertible *n*-tuple

$$f(z) = \begin{cases} z - a & \text{if } z \in \partial B, \\ z - \overline{a} & \text{if } z \in \partial B^* \end{cases}$$

・ロン ・四 ・ ・ ヨン・

E.

To show this, let $\check{K} = \partial B \cup \partial B^*$. The real symmetric invertible *n*-tuple

$$f(z) = egin{cases} z-a & ext{if } z\in\partial B, \ z-\overline{a} & ext{if } z\in\partial B^* \end{cases}$$

defined on \check{K} admits a real symmetric invertible extension \hat{f} to $\mathbb{C}^n \setminus (B \cup B^*)$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

E.

To show this, let $\check{K} = \partial B \cup \partial B^*$. The real symmetric invertible *n*-tuple

$$f(z) = egin{cases} z-a & ext{if } z\in\partial B,\ z-\overline{a} & ext{if } z\in\partial B^* \end{cases}$$

defined on \check{K} admits a real symmetric invertible extension \hat{f} to $\mathbb{C}^n \setminus (B \cup B^*)$. Let

$$g(z) = egin{cases} \widehat{f}(z) & ext{ on } \mathbb{C}^n \setminus (B \cup B^*), \ z - a & ext{ on } B, \ z - \overline{a} & ext{ on } B^*. \end{cases}$$

・ロン ・四 ・ ・ ヨン・

э

Now let us suppose that Ω is entirely contained in *L*.

イロト イヨト イヨト イヨト

E.

Now let us suppose that Ω is entirely contained in *L*. Consider the invertible *n*-tuple $g|_{\kappa} \in U_n(C(\kappa)_{sym})$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

E.

Now let us suppose that Ω is entirely contained in *L*. Consider the invertible *n*-tuple $g|_{\kappa} \in U_n(C(\kappa)_{sym})$. By the assumption of this Proposition, there exists an extension *F* of $g|_{\kappa}$ with $F \in U_n(C(L)_{sym})$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э.

Now let us suppose that Ω is entirely contained in *L*. Consider the invertible *n*-tuple $g|_{K} \in U_n(C(K)_{sym})$. By the assumption of this Proposition, there exists an extension *F* of $g|_{K}$ with $F \in U_n(C(L)_{sym})$. Since $\partial \Omega \subseteq K$, we have that g = F on $\partial \Omega$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Now let us suppose that Ω is entirely contained in *L*. Consider the invertible *n*-tuple $g|_{K} \in U_{n}(C(K)_{sym})$. By the assumption of this Proposition, there exists an extension *F* of $g|_{K}$ with $F \in U_{n}(C(L)_{sym})$. Since $\partial \Omega \subseteq K$, we have that g = F on $\partial \Omega$. Now we use a version of Rouché's theorem involving Brouwer's mapping degree $d(\cdot, \Omega, 0)$ in nonlinear analysis, that tells us that whenever |g - F| < |F| on $\partial \Omega$, then $d(g, \Omega, 0) = d(F, \Omega, 0)$.

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g

イロト イヨト イヨト イヨト

E

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*).

・ロン ・四 ・ ・ ヨン・

E

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*). Thus $d(g, \Omega, 0) = 1$ if a is in Ω and $\overline{a} \notin \Omega$,

・ロン ・四 ・ ・ ヨン・

E.

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*). Thus $d(g, \Omega, 0) = 1$ if a is in Ω and $\overline{a} \notin \Omega$, and $d(g, \Omega, 0) = 2$ if both a and \overline{a} are in Ω .

<ロ> < 回 > < 回 > < 回 > < 回 > <

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*). Thus $d(g, \Omega, 0) = 1$ if a is in Ω and $\overline{a} \notin \Omega$, and $d(g, \Omega, 0) = 2$ if both a and \overline{a} are in Ω . In any case $d(g, \Omega, 0) > 0$ and hence $d(F, \Omega, 0) > 0$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*). Thus $d(g, \Omega, 0) = 1$ if a is in Ω and $\overline{a} \notin \Omega$, and $d(g, \Omega, 0) = 2$ if both a and \overline{a} are in Ω . In any case $d(g, \Omega, 0) > 0$ and hence $d(F, \Omega, 0) > 0$. That implies that F has a zero in Ω ; this is a contradiction because F is invertible in $L \supseteq \Omega$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*). Thus $d(g, \Omega, 0) = 1$ if a is in Ω and $\overline{a} \notin \Omega$, and $d(g, \Omega, 0) = 2$ if both a and \overline{a} are in Ω . In any case $d(g, \Omega, 0) > 0$ and hence $d(F, \Omega, 0) > 0$. That implies that F has a zero in Ω ; this is a contradiction because F is invertible in $L \supseteq \Omega$. Hence Ω cannot be contained in L.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Now

$$d(g,\Omega,0) = \sum_{\xi:g(\xi)=0} \operatorname{sgn} \operatorname{det} J_g(\xi),$$

where J_g is the Jacobian of the map g (note that g is holomorphic around its zeros; that is in the balls B and B^*). Thus $d(g, \Omega, 0) = 1$ if a is in Ω and $\overline{a} \notin \Omega$, and $d(g, \Omega, 0) = 2$ if both a and \overline{a} are in Ω . In any case $d(g, \Omega, 0) > 0$ and hence $d(F, \Omega, 0) > 0$. That implies that F has a zero in Ω ; this is a contradiction because F is invertible in $L \supseteq \Omega$. Hence Ω cannot be contained in L. Thus we have shown that each component Ω of $\mathbb{C}^n \setminus K$ contains a component of $\mathbb{C}^n \setminus L$.

・ロッ ・雪 ・ ・ ヨ ・ ・

Covering dimension

R. Mortini Stable ranks

イロン イロン イヨン イヨン

E

Covering dimension

Definition

Let *X* be a topological space, \mathscr{U} a system of open sets, $p \in X$. The order, $\operatorname{ord}_p \mathscr{U}$, of \mathscr{U} at *p* is the number of members of \mathscr{U} that contain *p*. The order of \mathscr{U} is given by ord $U = \sup\{\operatorname{ord}_p \mathscr{U} : p \in X\}$. Let $n \in \mathbb{N}$. *X* is said to have covering dimension (or Čech-Lebesgue dimension) $\leq n$, dim $X \leq n$, if for any finite open covering \mathscr{U} of *X* there exists an open refinement \mathscr{V} of \mathscr{U} such that ord $\mathscr{V} \leq n + 1$.

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

If X is compact and totally disconnected, then $\dim X = 0$:

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

If X is compact and totally disconnected, then $\dim X = 0$:

Beweis.

Let \mathscr{U} be a finite open covering of *X*.

・ロン ・ 日 ・ ・ ヨ ・ ・

E

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

If X is compact and totally disconnected, then $\dim X = 0$:

Beweis.

Let \mathscr{U} be a finite open covering of X. $\forall x \in X, \exists U_x \in \mathscr{U}$ and C_x , open-closed, with $x \in C_x \subseteq U_x$.

・ロン ・ 日 ・ ・ ヨ ・ ・

Ξ

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

If X is compact and totally disconnected, then $\dim X = 0$:

Beweis.

Let \mathscr{U} be a finite open covering of X. $\forall x \in X, \exists U_x \in \mathscr{U}$ and C_x , open-closed, with $x \in C_x \subseteq U_x.X$ compact $\longrightarrow \{C_i : i \in \{1, ..., N\}\}$ cover X;

(日)

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

If X is compact and totally disconnected, then $\dim X = 0$:

Beweis.

Let \mathscr{U} be a finite open covering of X. $\forall x \in X$, $\exists U_x \in \mathscr{U}$ and C_x , open-closed, with $x \in C_x \subseteq U_x.X$ compact $\longrightarrow \{C_i : i \in \{1, \dots, N\}\}$ cover X; Take $F_1 = C_1$; $F_2 = C_2 \setminus C_1$; $F_3 = C_3 \setminus (C_1 \cup C_2), \dots F_N = C_N - \setminus (\bigcup_{j=1}^{N-1} C_j)$.

Theorem

- dim $\mathbb{R}^n = n$.
- For $M \subseteq \mathbb{R}^n$: dim $M \le n 1 \longleftrightarrow M^\circ = \emptyset$.

Theorem

If X is compact and totally disconnected, then $\dim X = 0$:

Beweis.

Let \mathscr{U} be a finite open covering of X. $\forall x \in X$, $\exists U_x \in \mathscr{U}$ and C_x , open-closed, with $x \in C_x \subseteq U_x$. X compact $\longrightarrow \{C_i : i \in \{1, ..., N\}\}$ cover X; Take $F_1 = C_1$; $F_2 = C_2 \setminus C_1$; $F_3 = C_3 \setminus (C_1 \cup C_2), \dots F_N = C_N - \setminus (\bigcup_{j=1}^{N-1} C_j)$. Then $\mathscr{V} := \{F_j : j = 1 \dots, N\}$ is a refinement of \mathscr{U} with ord $\mathscr{V} \leq 1$.

・ロット (雪) (日) (日)

If $A = C(X, \mathbb{K})$, (where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), or $A = C(K)_{sym}$, then we denote the set of all invertible *n*-tuples in A by $U_n(A)$. Note that

$$U_n(A) = \{(f_1,\ldots,f_n) \in A^n \mid \exists g = (g_1,\ldots,g_n) \in A^n : \sum_{j=1}^n f_j g_j = 1\}.$$

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

If $A = C(X, \mathbb{K})$, (where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), or $A = C(K)_{sym}$, then we denote the set of all invertible *n*-tuples in A by $U_n(A)$. Note that

$$U_n(\mathcal{A}) = \{(f_1,\ldots,f_n) \in \mathcal{A}^n \mid \exists g = (g_1,\ldots,g_n) \in \mathcal{A}^n : \sum_{j=1}^n f_j g_j = 1\}.$$

Theorem

Let X be a normal space. Then the following assertions are equivalent:

- 1 $0 \leq \dim X \leq n;$
- For every closed subspace A of X any continuous mapping
 f : A → Sⁿ admits a continuous extension F : X → Sⁿ;
- For every closed subspace A of X any invertible (n + 1)-tuple f ∈ U_{n+1}(C(A, R)) admits an extension to an invertible (n + 1)-tuple F ∈ U_{n+1}(C(X, R)).

Bass and topological stable rank

R. Mortini Stable ranks

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

E.
Bass and topological stable rank

An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(x_1, \ldots, x_n) \in A^n$ so that

$$(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$$

Bass and topological stable rank

An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(x_1, \ldots, x_n) \in A^n$ so that

$$(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(A). If no such integer exists, then $bsr(A) = \infty$.

Bass and topological stable rank

An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(x_1, \ldots, x_n) \in A^n$ so that

$$(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(*A*). If no such integer exists, then bsr(*A*) = ∞ . A related concept is that of the *topological stable rank*, tsr(*A*), of *A*.

Bass and topological stable rank

An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(x_1, \ldots, x_n) \in A^n$ so that

$$(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(*A*). If no such integer exists, then bsr(*A*) = ∞ . A related concept is that of the *topological stable rank*, tsr(*A*), of *A*. This is the smallest integer *n* such that $U_n(A)$ is dense in A^n .

Bass and topological stable rank

An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(x_1, \ldots, x_n) \in A^n$ so that

$$(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(*A*). If no such integer exists, then bsr(*A*) = ∞ . A related concept is that of the *topological stable rank*, tsr(*A*), of *A*. This is the smallest integer *n* such that $U_n(A)$ is dense in A^n . If no such *n* exists, then tsr(*A*) = ∞ .

Bass and topological stable rank

An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(x_1, \ldots, x_n) \in A^n$ so that

$$(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(A). If no such integer exists, then $bsr(A) = \infty$. A related concept is that of the *topological stable rank*, tsr(A), of *A*. This is the smallest integer *n* such that $U_n(A)$ is dense in A^n . If no such *n* exists, then $tsr(A) = \infty$. It is well known that $bsr(A) \leq tsr(A)$.

Theorem

The (n + 1)-tuple (f_1, \ldots, f_n, g) in C(X) is reducible if and only if (f_1, \ldots, f_n) admits an invertible extension from Z(g) to X.

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Theorem

The (n + 1)-tuple (f_1, \ldots, f_n, g) in C(X) is reducible if and only if (f_1, \ldots, f_n) admits an invertible extension from Z(g) to X.

Theorem (Vaserstein, Rieffel)

Let X be a compact Hausdorff space. Then

$$\operatorname{tsr}(C(X,\mathbb{C})) = \operatorname{bsr}(C(X,\mathbb{C})) = \left\lfloor \frac{\dim X}{2} \right\rfloor + 1$$

$$\operatorname{tsr}(C(X,\mathbb{R})) = \operatorname{bsr}(C(X,\mathbb{R})) = \dim X + 1.$$

Theorem

Let X be a real symmetric, compact set in \mathbb{C}^n . Then

$$\operatorname{bsr} C(X)_{\operatorname{sym}} = \operatorname{tsr} C(X)_{\operatorname{sym}} = \max\left\{ \left[\frac{\dim X}{2} \right], \dim \left(X \cap \mathbb{R}^n \right) \right\} + 1.$$

・ロン ・四 ・ ・ ヨン・

E.