On several different notions of stable ranks for algebras of holomorphic functions

Raymond Mortini Université Paul Verlaine - Metz

Saarbrücken, August, 2009

< □ > < □ > < □ > < □ > < □ > <

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable ranks Matricial stable ranks

Invertible tuples

・ロト ・御 ト ・注 ト ・注 ト

E

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable ranks Matricial stable ranks

Invertible tuples

A commutative unital ring, unit 1. $f \in A$ invertible if $\exists g \in A : fg = 1$

ヘロマ ヘロマ ヘビマ ヘビマ

E

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable ranks Matricial stable ranks

Invertible tuples

A commutative unital ring, unit 1. $f \in A$ invertible if $\exists g \in A : fg = 1$ $f = (f_1, \dots, f_n) \in A^n$ invertible if $\exists g \in A^n : fg = 1$, where $fg = \sum_{j=1}^n f_j g_j$;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable ranks Matricial stable ranks

Invertible tuples

A commutative unital ring, unit 1. $f \in A$ invertible if $\exists g \in A : fg = 1$ $f = (f_1, \dots, f_n) \in A^n$ invertible if $\exists g \in A^n : fg = 1$, where $fg = \sum_{j=1}^n f_j g_j$; $U_n(A)$ set of invertible *n*-tuples

・ロン ・四 ・ ・ ヨン・

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable rank Matricial stable ranks

Invertible tuples

A commutative unital ring, unit 1. $f \in A$ invertible if $\exists g \in A : fg = 1$ $f = (f_1, \dots, f_n) \in A^n$ invertible if $\exists g \in A^n : fg = 1$, where $fg = \sum_{j=1}^n f_j g_j$; $U_n(A)$ set of invertible *n*-tuples

Problem Characterize the invertible tuples

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable ranks Matricial stable ranks

Invertible tuples

A commutative unital ring, unit 1. $f \in A$ invertible if $\exists g \in A : fg = 1$ $f = (f_1, \dots, f_n) \in A^n$ invertible if $\exists g \in A^n : fg = 1$, where $fg = \sum_{j=1}^n f_j g_j$; $U_n(A)$ set of invertible *n*-tuples

Problem Characterize the invertible tuples a) $A = \mathbb{Z}$: $(p_1, \ldots, p_n) \in U_n(\mathbb{Z}) \longleftrightarrow \operatorname{gcd}(p_1, \ldots, p_n) = 1$

(日)

Topological stable rank Bass stable rank Further notions of stable ranks The absolute stable rank Matricial stable ranks

Invertible tuples

A commutative unital ring, unit 1. $f \in A$ invertible if $\exists g \in A : fg = 1$ $f = (f_1, \dots, f_n) \in A^n$ invertible if $\exists g \in A^n : fg = 1$, where $fg = \sum_{j=1}^n f_j g_j$; $U_n(A)$ set of invertible *n*-tuples

Problem Characterize the invertible tuples a) $A = \mathbb{Z}$: $(p_1, \ldots, p_n) \in U_n(\mathbb{Z}) \longleftrightarrow \operatorname{gcd}(p_1, \ldots, p_n) = 1$ b) $A = H(\Omega)$: $(f_1, \ldots, f_n) \in U_n(A) \longleftrightarrow \bigcap_{j=1}^n Z_{\Omega}(f_j) = \emptyset$ (Wedderburn)

(日)

c) A commutative unital complex Banach algebra:

イロト イヨト イヨト イヨト

E.

c) A commutative unital complex Banach algebra:

$$(f_1,\ldots,f_n)\in U_n(A)\longleftrightarrow \bigcap_{j=1}^n Z(\widehat{f_j})=\emptyset,$$

where f is the Gelfand transform given by

$$\widehat{f}: m \mapsto m(f), m \in M(A)$$

and M(A) the spectrum of A (=space of multiplicative linear functionals \neq 0 endowed with the weak-*-topology $\sigma(A^*, A)_{|M(A)})$.)

c) A commutative unital complex Banach algebra:

$$(f_1,\ldots,f_n)\in U_n(A)\longleftrightarrow \bigcap_{j=1}^n Z(\widehat{f_j})=\emptyset,$$

where \hat{f} is the Gelfand transform given by

$$\widehat{f}: m \mapsto m(f), m \in M(A)$$

and M(A) the spectrum of A (=space of multiplicative linear functionals $\neq 0$ endowed with the weak-*-topology $\sigma(A^*, A)_{|M(A)})$.)

ex.: A = C(X), X compact Hausdorff space, M(A) = X, via $x \in X \sim \Phi_x : f \mapsto f(x)$ point functional.

ヘロン 人間 とくき とくき とうき

c1)
$$A = A(\mathbb{D}) = \{f \in C(\overline{\mathbb{D}}), f \text{ holomorphic in } \mathbb{D}\}:$$

 $(f_1, \dots, f_n) \in U_n(A) \longleftrightarrow \bigcap_{j=1}^n Z(f_j) = \emptyset$

where $Z(f) = \{z \in \overline{\mathbb{D}} : f(z) = 0\}$, or equivalently:

$$(f_1,\ldots,f_n)\in U_n(A)\longleftrightarrow \sum_{j=1}^n |f_j|\geq \delta>0$$

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

c1)
$$A = A(\mathbb{D}) = \{ f \in C(\overline{\mathbb{D}}), f \text{ holomorphic in } \mathbb{D} \}$$
:
 $(f_1, \dots, f_n) \in U_n(A) \longleftrightarrow \bigcap_{j=1}^n Z(f_j) = \emptyset$

where $Z(f) = \{z \in \overline{\mathbb{D}} : f(z) = 0\}$, or equivalently:

$$(f_1,\ldots,f_n)\in U_n(A)\longleftrightarrow \sum_{j=1}^n |f_j|\geq \delta>0.$$

c2) <u>Corona-Theorem (Carleson)</u> $A = H^{\infty}(\mathbb{D})$:

$$(f_1,\ldots,f_n)\in U_n(A)\longleftrightarrow \delta:=\inf_{\boldsymbol{z}\in\mathbb{D}}\sum_{j=1}^n|f_j(\boldsymbol{z})|>0,$$

or in topological terms: **D** is dense in $M(H^{\infty}(\mathbb{D}))$, where $\mathbf{D} = \{\phi_a : a \in \mathbb{D}\}$ set of evaluation functionals $f \mapsto \phi_a(f) = f(a)$.

$$\begin{array}{l} \text{d1) } A = A(\mathbb{B}_N) \text{, ball,} \\ \mathbb{B}_N = \{ z = (z_1, \ldots, z_N) \in \mathbb{C}^N : \sum_{j=1}^N |z_j|^2 < 1 \} \text{,} \\ M(A(\mathbb{B}_N)) = \overline{\mathbb{B}_N} \text{.} \end{array}$$

イロン イヨン イヨン イヨン

= 990

$$\begin{array}{l} \text{d1) } A = A(\mathbb{B}_N) \text{, ball,} \\ \mathbb{B}_N = \{ z = (z_1, \dots, z_N) \in \mathbb{C}^N : \sum_{j=1}^N |z_j|^2 < 1 \} \text{,} \\ M(A(\mathbb{B}_N)) = \overline{\mathbb{B}_N} \text{.} \\ \text{d2) } A = A(\mathbb{D}^N) \text{, polydisk,} \\ M(A(\mathbb{D}^N)) = \overline{\mathbb{D}^N} \text{.} \end{array}$$

イロン イヨン イヨン イヨン

= 990

$$\begin{array}{l} \text{d1) } A = A(\mathbb{B}_N) \text{, ball,} \\ \mathbb{B}_N = \{ z = (z_1, \dots, z_N) \in \mathbb{C}^N : \sum_{j=1}^N |z_j|^2 < 1 \} \text{,} \\ M(A(\mathbb{B}_N)) = \overline{\mathbb{B}_N} \text{.} \\ \text{d2) } A = A(\mathbb{D}^N) \text{, polydisk,} \\ M(A(\mathbb{D}^N)) = \overline{\mathbb{D}^N} \text{.} \end{array}$$

two open Problems: 1) Is \mathbb{B}_N dense in $M(H^{\infty}(\mathbb{B}_N))$?

イロト イヨト イヨト イヨト

E.

$$\begin{array}{l} \text{d1) } A = A(\mathbb{B}_N) \text{, ball,} \\ \mathbb{B}_N = \{ z = (z_1, \dots, z_N) \in \mathbb{C}^N : \sum_{j=1}^N |z_j|^2 < 1 \} \text{,} \\ M(A(\mathbb{B}_N)) = \overline{\mathbb{B}_N} \text{.} \\ \text{d2) } A = A(\mathbb{D}^N) \text{, polydisk,} \\ M(A(\mathbb{D}^N)) = \overline{\mathbb{D}^N} \text{.} \end{array}$$

two open Problems:

1) Is \mathbb{B}_N dense in $M(H^{\infty}(\mathbb{B}_N))$? 2) Is \mathbb{D}^N dense in $M(H^{\infty}(\mathbb{D}^N))$?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

E

Topological stable rank

・ロト ・御 ト ・注 ト ・注 ト

E.

Topological stable rank

Question: For which BA *A* each *n*-tuple $(f_1, \ldots, f_n) \in A^n$ can be approximated by invertible *n*-tuples? (property app_n.)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E.

Topological stable rank

Question: For which BA *A* each *n*-tuple $(f_1, \ldots, f_n) \in A^n$ can be approximated by invertible *n*-tuples? (property app_n.)

Def (M. Rieffel, 1983) The topological stable rank tsr(A) of A is the least integer *n* with property app_n . If no such integer exists, then $tsr(A) = \infty$.

(日)

Topological stable rank

Question: For which BA *A* each *n*-tuple $(f_1, \ldots, f_n) \in A^n$ can be approximated by invertible *n*-tuples? (property app_n.)

Def (M. Rieffel, 1983) The topological stable rank tsr(A) of A is the least integer n with property app_n . If no such integer exists, then $tsr(A) = \infty$.

Examples

tsr(C_ℂ([0, 1]))=1

(Weierstrass; move real zeros of the approximating polynomial a little bit to the upper half plane).

(日)

Topological stable rank

Question: For which BA *A* each *n*-tuple $(f_1, \ldots, f_n) \in A^n$ can be approximated by invertible *n*-tuples? (property app_n.)

Def (M. Rieffel, 1983) The topological stable rank tsr(A) of A is the least integer n with property app_n . If no such integer exists, then $tsr(A) = \infty$.

Examples

tsr(C_C([0, 1]))=1

(Weierstrass; move real zeros of the approximating polynomial a little bit to the upper half plane).

• $tsr(C_{\mathbb{R}}([0, 1]))=2$

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Proof: f = x - 1/2 cannot be uniformly approximated by invertibles, since ||f - u|| < 1/4 implies u(0) < 0 and u(1) > 0. Now, by Weierstrass $||(f, g) - (p, q)|| < \varepsilon$; move the real zeros of *q* in common with those of *p* a little to the left so that at the end *p* and *q* have no real zeros in common.

・ロ・ ・ 四・ ・ 回・ ・ 回・

In general (Rieffel)

• $\operatorname{tsr}(C_{\mathbb{R}}(X)) = \operatorname{dim} X + 1$ and $\operatorname{tsr}(C_{\mathbb{C}}(X)) = \lfloor \frac{\operatorname{dim} X}{2} \rfloor + 1$.

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

In general (Rieffel)

- $\operatorname{tsr}(C_{\mathbb{R}}(X)) = \operatorname{dim} X + 1$ and $\operatorname{tsr}(C_{\mathbb{C}}(X)) = \lfloor \frac{\operatorname{dim} X}{2} \rfloor + 1$.
- $tsr(A(\mathbb{D})) = 2$ (Rieffel)
- $tsr(H^{\infty}(\mathbb{D})) = 2$ (Suarez).

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

In general (Rieffel)

- $\operatorname{tsr}(C_{\mathbb{R}}(X)) = \operatorname{dim} X + 1$ and $\operatorname{tsr}(C_{\mathbb{C}}(X)) = \lfloor \frac{\operatorname{dim} X}{2} \rfloor + 1$.
- $tsr(A(\mathbb{D})) = 2$ (Rieffel)
- tsr(H[∞](D)) = 2 (Suarez).

Unknown whether \mathbb{D} can be replaced by \mathbb{B}_n or \mathbb{D}^n (n > 1).

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

In general (Rieffel)

- $\operatorname{tsr}(C_{\mathbb{R}}(X)) = \operatorname{dim} X + 1$ and $\operatorname{tsr}(C_{\mathbb{C}}(X)) = \lfloor \frac{\operatorname{dim} X}{2} \rfloor + 1$.
- $tsr(A(\mathbb{D})) = 2$ (Rieffel)
- tsr(H[∞](D)) = 2 (Suarez).

Unknown whether \mathbb{D} can be replaced by \mathbb{B}_n or \mathbb{D}^n (n > 1).

Let $H^{\infty}_{\mathbb{R}}(\mathbb{D}) = \{f \in H^{\infty} : f(z) = \overline{f(\overline{z})}\}$. Then $tsr(H^{\infty}_{\mathbb{R}}(\mathbb{D})) = 2$ (Mortini-Wick).

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Bass stable rank

Let $(f, g) \in U_2(A)$; then $\exists (x, y) \in A^2 : xf + yg = 1$. **Question**: When *x* itself can be chosen to be invertible? Or in other words, when $\exists y \in A$ such that $x + yg \in U_1(A)$?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

э.

Bass stable rank

Let $(f, g) \in U_2(A)$; then $\exists (x, y) \in A^2 : xf + yg = 1$. **Question**: When *x* itself can be chosen to be invertible? Or in other words, when $\exists y \in A$ such that $x + yg \in U_1(A)$?

More generally, let $(\underline{f}, g) := (f_1, \ldots, f_n, g) \in U_{n+1}(A)$. When does there exist $\underline{x} = (x_1, \ldots, x_n) \in A^n$ such that $(f_1 + x_1g, \ldots, f_n + x_ng) \in U_n(A)$?

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Bass stable rank

Let $(f, g) \in U_2(A)$; then $\exists (x, y) \in A^2 : xf + yg = 1$. **Question**: When *x* itself can be chosen to be invertible? Or in other words, when $\exists y \in A$ such that $x + yg \in U_1(A)$?

More generally, let $(\underline{f}, g) := (f_1, \ldots, f_n, g) \in U_{n+1}(A)$. When does there exist $\underline{x} = (x_1, \ldots, x_n) \in A^n$ such that $(f_1 + x_1g, \ldots, f_n + x_ng) \in U_n(A)$? In that case we call *f* reducible.

(日)

Bass stable rank

Let $(f, g) \in U_2(A)$; then $\exists (x, y) \in A^2 : xf + yg = 1$. **Question**: When *x* itself can be chosen to be invertible? Or in other words, when $\exists y \in A$ such that $x + yg \in U_1(A)$?

More generally, let $(\underline{f}, g) := (f_1, \ldots, f_n, g) \in U_{n+1}(A)$. When does there exist $\underline{x} = (x_1, \ldots, x_n) \in A^n$ such that $(f_1 + x_1g, \ldots, f_n + x_ng) \in U_n(A)$? In that case we call *f* reducible.

Lemma If each $(f_1 \dots, f_n, g) \in U_{n+1}(A)$ is reducible, then each $(f_1, \dots, f_{n+1}, g) \in U_{n+2}(A)$ is reducible.

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Def (Bass) Let *A* be a commutative unital ring. The least integer *n* for which every $(\underline{f}, g) \in U_{n+1}(A)$ is reducible, is called the Bass stable rank bsr(*A*) of *A*. If no such integer exists, then $bsr(A) = \infty$.

・ロン ・四 ・ ・ ヨン・

Def (Bass) Let *A* be a commutative unital ring. The least integer *n* for which every $(\underline{f}, g) \in U_{n+1}(A)$ is reducible, is called the Bass stable rank bsr(*A*) of *A*. If no such integer exists, then $bsr(A) = \infty$.

Proposition (Rieffel) Let *A* be BA. Then $bsr(A) \leq tsr(A)$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Proof Let $(f_1, ..., f_n, h) \in U_{n+1}(A)$.

イロン イヨン イヨン イヨン

E DQC

Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$.

< ロ > < 部 > < き > < き > <</p>

E

Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$. Since $U_n(A)$ is dense in A^n , for every $\varepsilon > 0$, there exists $(u_1, \ldots, u_n) \in U_n(A)$ so that $||u_j - x_j||_A < \varepsilon$.

(日)
Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$. Since $U_n(A)$ is dense in A^n , for every $\varepsilon > 0$, there exists $(u_1, \ldots, u_n) \in U_n(A)$ so that $||u_j - x_j||_A < \varepsilon$. Also $x = \sum_{j=1}^n h_j u_j$ for some $h_j \in A$ because (u_1, \ldots, u_n) is invertible.

Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$. Since $U_n(A)$ is dense in A^n , for every $\varepsilon > 0$, there exists $(u_1, \ldots, u_n) \in U_n(A)$ so that $||u_j - x_j||_A < \varepsilon$. Also $x = \sum_{j=1}^n h_j u_j$ for some $h_j \in A$ because (u_1, \ldots, u_n) is invertible. Hence

$$\sum_{j=1}^n u_j(f_j+h_jh) = \sum_{j=1}^n u_jf_j + xh$$

Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$. Since $U_n(A)$ is dense in A^n , for every $\varepsilon > 0$, there exists $(u_1, \ldots, u_n) \in U_n(A)$ so that $||u_j - x_j||_A < \varepsilon$. Also $x = \sum_{j=1}^n h_j u_j$ for some $h_j \in A$ because (u_1, \ldots, u_n) is invertible. Hence

$$\sum_{j=1}^n u_j(f_j+h_jh) = \sum_{j=1}^n u_jf_j + xh$$

$$= (\sum_{j=1}^{n} x_j f_j + xh) + \sum_{j=1}^{n} (u_j - x_j) f_j = 1 + u,$$

n

Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$. Since $U_n(A)$ is dense in A^n , for every $\varepsilon > 0$, there exists $(u_1, \ldots, u_n) \in U_n(A)$ so that $||u_j - x_j||_A < \varepsilon$. Also $x = \sum_{j=1}^n h_j u_j$ for some $h_j \in A$ because (u_1, \ldots, u_n) is invertible. Hence

n

$$\sum_{j=1}^{n} u_j(f_j + h_j h) = \sum_{j=1}^{n} u_j f_j + xh$$
$$= \left(\sum_{j=1}^{n} x_j f_j + xh\right) + \sum_{j=1}^{n} (u_j - x_j) f_j = 1 + u,$$

where we have defined $u := \sum_{j=1}^{n} (u_j - x_j) f_j$. Moreover, we have $||u||_A \le \varepsilon \sum_{j=1}^{n} ||f_j||_A$.

Proof Let $(f_1, \ldots, f_n, h) \in U_{n+1}(A)$. Then there exist $x_j \in A$ and $x \in A$ so that $1 = \sum_{j=1}^n x_j f_j + xh$. Since $U_n(A)$ is dense in A^n , for every $\varepsilon > 0$, there exists $(u_1, \ldots, u_n) \in U_n(A)$ so that $||u_j - x_j||_A < \varepsilon$. Also $x = \sum_{j=1}^n h_j u_j$ for some $h_j \in A$ because (u_1, \ldots, u_n) is invertible. Hence

$$\sum_{j=1}^{n} u_j(f_j + h_j h) = \sum_{j=1}^{n} u_j f_j + xh$$
$$= \left(\sum_{j=1}^{n} x_j f_j + xh\right) + \sum_{j=1}^{n} (u_j - x_j) f_j = 1 + u,$$

where we have defined $u := \sum_{j=1}^{n} (u_j - x_j) f_j$. Moreover, we have $||u||_A \le \varepsilon \sum_{j=1}^{n} ||f_j||_A$. Hence for $\varepsilon > 0$ small enough, 1 + u is invertible in *A*, and so $(f_1 + h_1 h, \dots, f_n + h_n h) \in U_n(A)$.

Theorems:

• (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),

イロト イヨト イヨト イヨト

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1$

・ロン ・四 ・ ・ ヨン・

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,
- (Corach, Suarez (1997); Mikkola, Sasane (2009))

 $\operatorname{bsr} A(X) = \lfloor \frac{n}{2} \rfloor + 1 \neq \operatorname{tsr} A(X) = n + 1$, where $X = \mathbb{D}^n$ or $X = \mathbb{B}_n$

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,
- (Corach, Suarez (1997); Mikkola, Sasane (2009))
- $\operatorname{bsr} A(X) = \lfloor \frac{n}{2} \rfloor + 1 \neq \operatorname{tsr} A(X) = n + 1$, where $X = \mathbb{D}^n$ or $X = \mathbb{B}_n$
- (Treil; 1992) $\mathrm{bsr} H^\infty(\mathbb{D}) = 1$

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,
- (Corach, Suarez (1997); Mikkola, Sasane (2009))
- $\operatorname{bsr} A(X) = \lfloor \frac{n}{2} \rfloor + 1 \neq \operatorname{tsr} A(X) = n + 1$, where $X = \mathbb{D}^n$ or $X = \mathbb{B}_n$
- (Treil; 1992) bsr $H^{\infty}(\mathbb{D}) = 1 \neq tsr H^{\infty}(\mathbb{D}) = 2$,

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,
- (Corach, Suarez (1997); Mikkola, Sasane (2009))
- $\operatorname{bsr} A(X) = \lfloor \frac{n}{2} \rfloor + 1 \neq \operatorname{tsr} A(X) = n + 1$, where $X = \mathbb{D}^n$ or $X = \mathbb{B}_n$
- (Treil; 1992) bsr $H^{\infty}(\mathbb{D}) = 1 \neq tsr H^{\infty}(\mathbb{D}) = 2$,
- (Rupp, Sasane; >2008) $bsrA_{\mathbb{R}}(\mathbb{D}) = tsrA_{\mathbb{R}}(\mathbb{D}) = 2$,

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,
- (Corach, Suarez (1997); Mikkola, Sasane (2009))
- $\operatorname{bsr} A(X) = \lfloor \frac{n}{2} \rfloor + 1 \neq \operatorname{tsr} A(X) = n + 1$, where $X = \mathbb{D}^n$ or $X = \mathbb{B}_n$
- (Treil; 1992) bsr $H^{\infty}(\mathbb{D}) = 1 \neq tsr H^{\infty}(\mathbb{D}) = 2$,
- (Rupp, Sasane; >2008) $bsrA_{\mathbb{R}}(\mathbb{D}) = tsrA_{\mathbb{R}}(\mathbb{D}) = 2$,
- (Mortini, Wick; >2008) $\operatorname{bsr} H^{\infty}_{\mathbb{R}}(\mathbb{D}) = \operatorname{tsr} H_{\mathbb{R}}(\mathbb{D}) = 2$,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorems:

- (Vaserstein 1971, Rieffel 1983) bsrC(X) = tsrC(X),
- (Jones, Marshall, Wolff; 1986) $bsrA(\mathbb{D}) = 1 \neq tsrA(\mathbb{D}) = 2$,
- (Corach, Suarez (1997); Mikkola, Sasane (2009)) her $A(X) = \frac{n}{2} + \frac{1}{2} \pm \tan A(X) = n + 1$ where $X = \mathbb{D}^n$ or X
- $\operatorname{bsr} A(X) = \lfloor \frac{n}{2} \rfloor + 1 \neq \operatorname{tsr} A(X) = n + 1$, where $X = \mathbb{D}^n$ or $X = \mathbb{B}_n$
- (Treil; 1992) bsr $H^{\infty}(\mathbb{D}) = 1 \neq tsr H^{\infty}(\mathbb{D}) = 2$,
- (Rupp, Sasane; >2008) $bsrA_{\mathbb{R}}(\mathbb{D}) = tsrA_{\mathbb{R}}(\mathbb{D}) = 2$,
- (Mortini, Wick; >2008) $\operatorname{bsr} H^{\infty}_{\mathbb{R}}(\mathbb{D}) = \operatorname{tsr} H_{\mathbb{R}}(\mathbb{D}) = 2$,
- (Suarez; 1996) bsr(*AP*) = ∞ , where *AP* is the uniform algebra of almost periodic functions on \mathbb{R} ; *AP* is generated by $g(t) = \sum_{j=1}^{n} c_j e^{i\lambda_j t}$, $c_k \in \mathbb{C}$, $\lambda_j \in \mathbb{R}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

<u>Proof</u> that $bsr H^{\infty}_{\mathbb{R}}(\mathbb{D}) > 1$:

◆□→ ◆御→ ◆注→ ◆注→

E DQC

$$rac{ extsf{Proof}}{f(z)} = z, g(z) = 1 - z^2; extsf{suppose}$$

 $u(z) := z + h(1 - z^2) \in H^{\infty}_{\mathbb{R}}(\mathbb{D}))^{-1}$

.

Proof that
$$\operatorname{bsr} H^{\infty}_{\mathbb{R}}(\mathbb{D}) > 1$$
:

$$f(z) = z, g(z) = 1 - z^2$$
; suppose
 $u(z) := z + h(1 - z^2) \in H^{\infty}_{\mathbb{R}}(\mathbb{D}))^{-1}$. Then on
 $] - 1, 1[: \lim_{x \to -1} u(x) = -1$ and $\lim_{x \to 1} u(x) = 1$. Hence
 $\exists x_0 \in] - 1, 1[$ such that $u(x_0) = 0$.

Proof that
$$\operatorname{bsr} H^{\infty}_{\mathbb{R}}(\mathbb{D}) > 1$$
:

$$f(z) = z, g(z) = 1 - z^2$$
; suppose
 $u(z) := z + h(1 - z^2) \in H^{\infty}_{\mathbb{R}}(\mathbb{D}))^{-1}$. Then on
 $] - 1, 1[: \lim_{x \to -1} u(x) = -1$ and $\lim_{x \to 1} u(x) = 1$. Hence
 $\exists x_0 \in] - 1, 1[$ such that $u(x_0) = 0$.

For the proof that $bsrA(\mathbb{D}) = 1$, we need the following Lemma of Corach/Suarez. **Lemma** Let *A* be a commutative unital Banach algebra. Then, for $g \in A$, the set

$$R_n(g) = \{(f_1, \ldots, f_n) \in A^n : (f_1, \ldots, f_n, g) \text{ is reducible } \}$$

is open-closed inside

$$I_n(g) = \{(f_1, \ldots, f_n) \in A^n : (f_1, \ldots, f_n, g) \in U_{n+1}(A)\}.$$

In particular, for n = 1, if $\phi : [0, 1] \rightarrow I(g)$ is a continuous curve and $(\phi(0), g)$ is reducible, then $(\phi(1), g)$ is reducible.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

(Proof that $bsrA(\mathbb{D}) = 1$)

◆□→ ◆御→ ◆注→ ◆注→

E

(<u>Proof</u> that $bsrA(\mathbb{D}) = 1$) Let $(f, g) \in U_2(A(\mathbb{D}))$. Approximating *f* by a polynomial *p*, it is sufficient to show reducibility of (p, g), where *p* and *g* have no common zeros in $\overline{\mathbb{D}}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Э.

(<u>Proof</u> that bsr $A(\mathbb{D}) = 1$) Let $(f, g) \in U_2(A(\mathbb{D}))$. Approximating *f* by a polynomial *p*, it is sufficient to show reducibility of (p, g), where *p* and *g* have no common zeros in $\overline{\mathbb{D}}$. Now $p(z) = \alpha \prod_j (z - a_j)$. Since the reducibility of (p_1, g) and (p_2, g) implies that of (p_1p_2, g) , we need only consider $(z - a_j, g)$ with $a_j \in \overline{\mathbb{D}}$.

(<u>Proof</u> that bsr $A(\mathbb{D}) = 1$) Let $(f, g) \in U_2(A(\mathbb{D}))$. Approximating f by a polynomial p, it is sufficient to show reducibility of (p, g), where p and g have no common zeros in $\overline{\mathbb{D}}$. Now $p(z) = \alpha \prod_j (z - a_j)$. Since the reducibility of (p_1, g) and (p_2, g) implies that of (p_1p_2, g) , we need only consider $(z - a_j, g)$ with $a_j \in \overline{\mathbb{D}}$. Let $\phi : [0, 1] \to I(g)$ be a continuous curve with $\phi(0) = a_i$ and $\phi(1) = 2$.

(<u>Proof</u> that bsr $A(\mathbb{D}) = 1$) Let $(f, g) \in U_2(A(\mathbb{D}))$. Approximating f by a polynomial p, it is sufficient to show reducibility of (p, g), where p and g have no common zeros in $\overline{\mathbb{D}}$. Now $p(z) = \alpha \prod_j (z - a_j)$. Since the reducibility of (p_1, g) and (p_2, g) implies that of (p_1p_2, g) , we need only consider $(z - a_j, g)$ with $a_j \in \overline{\mathbb{D}}$. Let $\phi : [0, 1] \rightarrow l(g)$ be a continuous curve with $\phi(0) = a_j$ and $\phi(1) = 2$. Since $z - \phi(1)$ is invertible, the pair $(z - \phi(1), g)$ is reducible. Thus we get from the Lemma the reducibility of $(z - a_j, g)$.

Further notions of stable ranks

Let **B** be the class of all commutative unital Banach algebras over a field \mathbb{K} .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

= 990

Further notions of stable ranks

Let **B** be the class of all commutative unital Banach algebras over a field \mathbb{K} . We will always assume that algebra homomorphisms, *f*, between members of **B** are continuous and satisfy $f(1_A) = 1_B$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э.

Further notions of stable ranks

Let **B** be the class of all commutative unital Banach algebras over a field \mathbb{K} . We will always assume that algebra homomorphisms, f, between members of **B** are continuous and satisfy $f(1_A) = 1_B$. Also, if $f : A \to B$ is an algebra homomorphism, then \underline{f} will denote the associated map given by $\underline{f} : (a_1, \ldots, a_n) \mapsto (f(a_1), \ldots, f(a_n))$ from A^n to B^n .

Def The surjective stable rank ssr(A) of $A \in \mathbf{B}$ is the smallest integer *n* such that for every $B \in \mathbf{B}$ and every surjective algebra homomorphism $f : A \to B$ the induced map of $U_n(A) \to U_n(B)$ is surjective, too. Again, if there is no such *n*, then we write $ssr(A) = \infty$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э.

Def The surjective stable rank ssr(A) of $A \in \mathbf{B}$ is the smallest integer *n* such that for every $B \in \mathbf{B}$ and every surjective algebra homomorphism $f : A \to B$ the induced map of $U_n(A) \to U_n(B)$ is surjective, too. Again, if there is no such *n*, then we write $ssr(A) = \infty$.

Def The dense stable rank dsr(*A*) of $A \in \mathbf{B}$ is the smallest integer *n* such that for every $B \in \mathbf{B}$ and every algebra homomorphism $f : A \to B$ with *dense image* the induced map $U_n(A) \to U_n(B)$ has dense image. If there is no such *n*, we write dsr(A) = ∞ .

Theorem (Corach, Larotonda; Mortini-Wick) Let *A* be a commutative unital Banach algebra. The following assertions are equivalent:

1 bsr(
$$A$$
) $\leq n$;

2 $\underline{\pi}(U_n(A)) = U_n(A/I)$ for every closed ideal *I* in *A*;

3 $\underline{\pi}(U_n(A))$ is dense in $U_n(A/I)$ for every closed ideal *I* in *A*. Here $\pi : A \to A/I$ is the canonical quotient mapping and $\underline{\pi}$ the associated map on A^n .

Theorem (Corach, Larotonda; Mortini-Wick) If *A* is a commutative unital Banach algebra, then

$$\operatorname{bsr}(A) = \operatorname{ssr}(A) \leq \operatorname{dsr}(A) \leq \operatorname{tsr}(A).$$

・ロン ・四 ・ ・ ヨン・

The assertion that bsr(A) = ssr(A) follows from Theorem above.

イロン イヨン イヨン イヨン

E

The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\underline{\pi}(U_n(A)) = U_n(A/I)$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э.

The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\underline{\pi}(U_n(A)) = U_n(A/I)$. Hence, by Theorem above, $m := bsr(A) \le n$.

The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\underline{\pi}(U_n(A)) = U_n(A/I)$. Hence, by Theorem above, $m := bsr(A) \le n$. To show that $n \le m$, let $f : A \to B$ be a surjective homomorphism.

The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\underline{\pi}(U_n(A)) = U_n(A/I)$. Hence, by Theorem above, $m := bsr(A) \le n$. To show that $n \le m$, let $f : A \to B$ be a surjective homomorphism. Then the canonical injection $\check{f} : \check{A} = A/\text{Ker} f \mapsto B$ is an algebra isomorphism and so $U_m(\tilde{A})$ is mapped onto $U_m(B)$ by $\underline{\check{f}}$.
The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\underline{\pi}(U_n(A)) = U_n(A/I)$. Hence, by Theorem above, $m := bsr(A) \le n$. To show that $n \le m$, let $f : A \to B$ be a surjective homomorphism. Then the canonical injection $\check{f} : \tilde{A} = A/\text{Ker} f \mapsto B$ is an algebra isomorphism and so $U_m(\tilde{A})$ is mapped onto $U_m(B)$ by \check{f} . Since m = bsr(A), by Theorem above, $\underline{\pi}(U_m(A)) = U_m(A/\text{Ker} f)$.

The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\underline{\pi}(U_n(A)) = U_n(A/I)$. Hence, by Theorem above, $m := bsr(A) \le n$. To show that $n \le m$, let $f : A \to B$ be a surjective homomorphism. Then the canonical injection $\check{f} : \check{A} = A/\text{Ker}f \mapsto B$ is an algebra isomorphism and so $U_m(\tilde{A})$ is mapped onto $U_m(B)$ by \check{f} . Since m = bsr(A), by Theorem above, $\underline{\pi}(U_m(A)) = U_m(A/\text{Ker}f)$. Thus $\underline{f}(U_m(A)) = U_m(B)$. This means that $ssr(A) \le m$.

The assertion that bsr(A) = ssr(A) follows from Theorem above. Indeed, let $n = ssr(A) < \infty$. Since for any closed ideal *I* the canonical map $\pi : A \to A/I$ is surjective, ssr(A) = n implies that $\pi(U_n(A)) = U_n(A/I)$. Hence, by Theorem above, $m := bsr(A) \le n$. To show that $n \le m$, let $f : A \to B$ be a surjective homomorphism. Then the canonical injection $\check{f}: \tilde{A} = A/\text{Ker}f \mapsto B$ is an algebra isomorphism and so $U_m(\tilde{A})$ is mapped onto $U_m(B)$ by \check{f} . Since m = bsr(A), by Theorem above, $\pi(U_m(A)) = U_m(A/\text{Ker}f)$. Thus $f(U_m(A)) = U_m(B)$. This means that ssr(A) < m. All together we have shown that bsr(A) = ssr(A).

The absolute stable rank

Def (Magurn,van der Kallen, Vaserstein (1988)) Let *A* be a uniform algebra, *M*(*A*) its spectrum and $Z(f) = \{x \in M(A) : f(x) = 0\}$. Let $(f_1, \ldots, f_n, g) \in A^{n+1}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

The absolute stable rank

Def (Magurn,van der Kallen, Vaserstein (1988)) Let *A* be a uniform algebra, *M*(*A*) its spectrum and $Z(f) = \{x \in M(A) : f(x) = 0\}$. Let $(f_1, \ldots, f_n, g) \in A^{n+1}$. Consider the property (Z): $\exists (x_1, \ldots, x_n) \in A^n$ such that $\bigcap_{j=1}^n Z(f_j + x_j g) \subseteq Z(g)$.

The absolute stable rank

Def (Magurn,van der Kallen, Vaserstein (1988)) Let *A* be a uniform algebra, *M*(*A*) its spectrum and $Z(f) = \{x \in M(A) : f(x) = 0\}$. Let $(f_1, \ldots, f_n, g) \in A^{n+1}$. Consider the property (Z): $\exists (x_1, \ldots, x_n) \in A^n$ such that $\bigcap_{j=1}^n Z(f_j + x_jg) \subseteq Z(g)$. Equivalently, the ideal generated by $\{f_j + x_jg : j = 1, \ldots, n\}$ is either unproper or is contained only in maximal ideals that contain *g*.

The absolute stable rank

Def (Magurn,van der Kallen, Vaserstein (1988)) Let *A* be a uniform algebra, *M*(*A*) its spectrum and $Z(f) = \{x \in M(A) : f(x) = 0\}$. Let $(f_1, \ldots, f_n, g) \in A^{n+1}$. Consider the property (*Z*): $\exists (x_1, \ldots, x_n) \in A^n$ such that $\bigcap_{j=1}^n Z(f_j + x_jg) \subseteq Z(g)$. Equivalently, the ideal generated by $\{f_j + x_jg : j = 1, \ldots, n\}$ is either unproper or is contained only in maximal ideals that contain *g*.

The absolute stable rank abs(A) is the least integer *n* for which each (n+1)-tuple in *A* has property *Z*.

Theorem (Swan, Vaserstein (1986)) abs C(X) = bsrC(X) = tsrC(X).

イロト イヨト イヨト イヨト

E

Theorem (Swan, Vaserstein (1986)) abs C(X) = bsr C(X) = tsr C(X).

Observation Mortini $absA(\mathbb{D}) \ge 2$ and $absH^{\infty}(\mathbb{D}) \ge 2$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

E

Theorem (Swan, Vaserstein (1986)) absC(X) = bsrC(X) = tsrC(X).

Observation Mortini

 $\operatorname{abs} A(\mathbb{D}) \geq 2$ and $\operatorname{abs} H^{\infty}(\mathbb{D}) \geq 2$

Proof

b infinite interpolating Blaschke product with positive zeros; then

 $(b(1-z), (1-z)^2) \in A(\mathbb{D})^2$ has not property (Z) since $b(1-z) + h(1-z)^2$ has always infinite many zeros in \mathbb{D} .

Theorem (Swan, Vaserstein (1986)) absC(X) = bsrC(X) = tsrC(X).

Observation Mortini abs $A(\mathbb{D}) > 2$ and $abs H^{\infty}(\mathbb{D}) > 2$

<u>Proof</u>

b infinite interpolating Blaschke product with positive zeros; then

 $(b(1-z), (1-z)^2) \in A(\mathbb{D})^2$ has not property (Z) since $b(1-z) + h(1-z)^2$ has always infinite many zeros in \mathbb{D} .

Open Problem: determine $absA(\mathbb{D})$ and $absH^{\infty}(\mathbb{D})$.

Matricial stable ranks

R. Mortini Stable ranks

◆□ → ◆御 → ◆臣 → ◆臣 →

<u>ا</u>

Matricial stable ranks

Theorem (Vaserstein)

Let *R* be a commutative unital ring, and let *A* be the ring of matrices $R^{n \times n}$ with entries from *R*. Then

$$\operatorname{bsr} A = \left\lceil \frac{\operatorname{bsr} R - 1}{n} \right\rceil + 1,$$

・ロト ・四ト ・ヨト ・ヨト

E

Theorem (Mortini, Rupp, Sasane; 2009) Let *R* be a normed commutative ring with identity having topological stable rank at most 2. Let $n \ge 2$ and $m \ge 1$. If $N \in \mathbb{R}^{n \times n}$ and $D \in \mathbb{R}^{m \times n}$, then given $\epsilon > 0$, there exist $\widetilde{N} \in \mathbb{R}^{n \times n}$, $\widetilde{D} \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{n \times n}$ and $Y \in \mathbb{R}^{n \times m}$ such that

$$\|\boldsymbol{D} - \widetilde{\boldsymbol{D}}\|_{op} + \|\boldsymbol{N} - \widetilde{\boldsymbol{N}}\|_{op} < \epsilon,$$

and

$$X\widetilde{N} + Y\widetilde{D} = I_n.$$

Moreover, if the Bass stable rank of R is 1, then X can be chosen to be invertible.