Two distinguished real Banach algebras

Raymond Mortini Université Paul Verlaine - Metz

Saarbrücken, October 27, 2008

The real disk-algebra

Let $C_s(\mathbb{T})$ be the set of all (complex-valued) continuous functions on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ that are symmetric; this means that $\overline{f(e^{-it})} = f(e^{it})$.

The real disk-algebra

Let $C_s(\mathbb{T})$ be the set of all (complex-valued) continuous functions on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ that are symmetric; this means that $\overline{f(e^{-it})} = f(e^{it})$. Associated with $C_s(\mathbb{T})$ is the subset, A_s , of those functions in $C_s(\mathbb{T})$ that admit a holomorphic extension to the interior \mathbb{D} of the unit disk.

The real disk-algebra

Let $C_s(\mathbb{T})$ be the set of all (complex-valued) continuous functions on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ that are symmetric; this means that $\overline{f(e^{-it})} = f(e^{it})$. Associated with $C_s(\mathbb{T})$ is the subset, A_s , of those functions in $C_s(\mathbb{T})$ that admit a holomorphic extension to the interior \mathbb{D} of the unit disk. The holomorphic extension to the disk is given by the Poisson-integral

$$P[f](z) = rac{1}{2\pi} \int_0^{2\pi} f(e^{i heta}) rac{1-|z|^2}{|z-e^{i heta}|^2} d heta.$$

Note that for $z = re^{it}$ this coincides with the convolution

$$f * P_r(t) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) P_r(t-\theta) d\theta$$

of *f* with the Poisson-kernel $P_r(t) := \frac{1-r^2}{1+r^2-2r\cos t}$. Using Fourier representation, we see that the Fourier series of an element $f \in A_s$ formally writes as $\mathcal{F}[f] = \sum_{n=0}^{\infty} \hat{f}_n e^{int}$, where the Fourier coefficients, given as usual by the formula $\hat{f}_n := \frac{1}{2\pi} \int_0^{2\pi} f(e^{it})e^{-int} dt$, are *real* numbers.

of *f* with the Poisson-kernel $P_r(t) := \frac{1-r^2}{1+r^2-2r\cos t}$. Using Fourier representation, we see that the Fourier series of an element $f \in A_s$ formally writes as $\mathcal{F}[f] = \sum_{n=0}^{\infty} \hat{f}_n e^{int}$, where the Fourier coefficients, given as usual by the formula $\hat{f}_n := \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) e^{-int} dt$, are *real* numbers. It is standard knowledge that the Taylor-MacLaurin series for P[f] writes as $P[f](z) = \sum_{n=0}^{\infty} \hat{f}_n z^n$.

When A_s is endowed with the supremum-topology, then A_s is isomorphically isometric to the real Banach algebra, $A_{\mathbb{R}}(\mathbb{D})$, of all holomorphic functions on the disk that are real on the interval] - 1, 1[and that admit a continuous extension to the closure $\overline{\mathbb{D}}$ of \mathbb{D} .

When A_s is endowed with the supremum-topology, then A_s is isomorphically isometric to the real Banach algebra, $A_{\mathbb{R}}(\mathbb{D})$, of all holomorphic functions on the disk that are real on the interval] - 1, 1[and that admit a continuous extension to the closure $\overline{\mathbb{D}}$ of \mathbb{D} .

Let $A(\mathbb{D})$ be the disk-algebra, that is the algebra of all functions continuous on $\overline{\mathbb{D}}$ and holomorphic in \mathbb{D} . This is the most prominent example of a complex Banach algebra. Its relation with $A_{\mathbb{R}}(\mathbb{D})$ is given by the following:

$$A_{\mathbb{R}}(\mathbb{D}) = \{ f \in A(\mathbb{D}) : \overline{f(\overline{z})} = f(z) \}.$$

By Gelfand-theory, the maximal ideals in a complex commutative unital Banach algebra are exactly the kernels of the \mathbb{C} -valued multiplicative linear functionals. Since the analytic polynomials are dense in $A(\mathbb{D})$ it follows from that theory that the \mathbb{C} -valued characters of $A(\mathbb{D})$ are exactly the point evaluations $\Phi_a : f \mapsto f(a)$ for some $a \in \overline{\mathbb{D}}$; hence each maximal ideal has the form $\{f \in A(\mathbb{D}) : f(a) = 0\}$.

Lemma

The set of rational functions of the form

$$\frac{\sum_{n=0}^{M}a_nz^n}{z^N}, \ |z|=1,$$

where $M, N \in \mathbb{N}$ and where a_n are real, is uniformly dense in $C_s(\mathbb{T})$.

$$M_a := \{f \in A_{\mathbb{R}}(\mathbb{D}) : f(a) = 0\}.$$

 M_a is an ideal. Is M_a maximal?

Lemma

Let I be an ideal in $A_{\mathbb{R}}(\mathbb{D})$. Suppose that for some $a \in \mathbb{D}$ the elements $f, g \in I$ satisfy f(a) = 0 and $g(a) \neq 0$. Then the following assertions hold:

1 If
$$-1 < a < 1$$
, then $\frac{f}{z-a} \in I$;
2 If $a \in \mathbb{D} \setminus [-1, 1]$, then $\frac{f}{(z-a)(z-\overline{a})} \in I$

$$\begin{array}{l} \textbf{Proof } f(a) = 0 \longrightarrow f(\overline{a}) = 0.\\ f(z)/(z-a) \in \mathcal{A}_{\mathbb{R}}(\mathbb{D}) \text{ whenever } a \in]-1,1[\text{ and} \\ \frac{f}{(z-a)(z-\overline{a})} \in \mathcal{A}_{\mathbb{R}}(\mathbb{D}) \text{ whenever } a \in \mathbb{D} \setminus [-1,1]. \end{array}$$

Proof
$$f(a) = 0 \longrightarrow f(\overline{a}) = 0$$
.
 $f(z)/(z-a) \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in]-1, 1[$ and $\frac{f}{(z-a)(z-\overline{a})} \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in \mathbb{D} \setminus [-1, 1]$. Similarly,

$$rac{g(z)-g(a)}{z-a}\in A_{\mathbb{R}}(\mathbb{D}), \;\; a\in \,]-1,1[,$$

Proof
$$f(a) = 0 \longrightarrow f(\overline{a}) = 0$$
.
 $f(z)/(z - a) \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in]-1, 1[$ and $\frac{f}{(z-a)(z-\overline{a})} \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in \mathbb{D} \setminus [-1, 1]$. Similarly

$$rac{g(z)-g(a)}{z-a}\in A_{\mathbb{R}}(\mathbb{D}), \;\; a\in \,]-1,1[,$$

and

Not

$$rac{(g(z)-g(a))(g(z)-g(\overline{a}))}{(z-a)(z-\overline{a})}\in A_{\mathbb{R}}(\mathbb{D}), \ \ a\in\mathbb{D}\setminus[-1,1].$$
e also that $g(\overline{a})=\overline{g(a)}.$

Assertion (1) now follows from

$$\frac{f(z)}{z-a} = -\frac{1}{g(a)} \left(\frac{g(z)-g(a)}{z-a} f(z) - \frac{f(z)}{z-a} g(z) \right), \quad (1)$$

Assertion (1) now follows from

$$\frac{f(z)}{z-a} = -\frac{1}{g(a)} \left(\frac{g(z) - g(a)}{z-a} f(z) - \frac{f(z)}{z-a} g(z) \right), \quad (1)$$

and (2) follows from

$$\frac{\frac{f(z)}{(z-a)(z-\overline{a})} = \frac{1}{|g(a)|^2} \left(\frac{(g(z)-g(a))(g(z)-g(\overline{a}))}{(z-a)(z-\overline{a})} f(z) - \frac{f(z)(g(z)-(g(a)+g(\overline{a}))}{(z-a)(z-\overline{a})} g(z) \right)$$

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M = M_a$ for some $a \in \overline{\mathbb{D}}$.

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M = M_a$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_a are maximal.

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M = M_a$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_a are maximal. So suppose that $f \in A_{\mathbb{R}}(\mathbb{D})$ does not vanish at *a*. Then $(f - f(a)) (f - \overline{f(a)}) \in M(a)$ and

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M = M_a$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_a are maximal. So suppose that $f \in A_{\mathbb{R}}(\mathbb{D})$ does not vanish at *a*. Then $(f - f(a)) (f - \overline{f(a)}) \in M(a)$ and

$$1 = \frac{\left(f - f(a)\right)\left(f - \overline{f(a)}\right)}{|f(a)|^2} - f \frac{f - \left(f(a) + \overline{f(a)}\right)}{|f(a)|^2}$$

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M = M_a$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_a are maximal. So suppose that $f \in A_{\mathbb{R}}(\mathbb{D})$ does not vanish at *a*. Then $(f - f(a)) (f - \overline{f(a)}) \in M(a)$ and

$$1 = \frac{\left(f - f(a)\right)\left(f - \overline{f(a)}\right)}{|f(a)|^2} - f \frac{f - \left(f(a) + \overline{f(a)}\right)}{|f(a)|^2}$$

Hence the ideal, $[M_a, f]$, generated by M_a and f is the whole algebra and so M_a is maximal.

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if *f* does not vanish on $\overline{\mathbb{D}}$. Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_a . Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_a . Then for every $a \in \overline{\mathbb{D}}$ there exists $f_a \in M$ such that $f_a(a) \neq 0$. Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_a . Then for every $a \in \overline{\mathbb{D}}$ there exists $f_a \in M$ such that $f_a(a) \neq 0$. By a compactness argument, this shows that there are finitely many functions $f_i \in M$ such that

$$\delta := \min_{z \in \overline{\mathbb{D}}} \sum_{j=1}^{n} |f_j(z)|^2 > 0.$$
(2)

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_a . Then for every $a \in \overline{\mathbb{D}}$ there exists $f_a \in M$ such that $f_a(a) \neq 0$. By a compactness argument, this shows that there are finitely many functions $f_i \in M$ such that

$$\delta := \min_{z \in \overline{\mathbb{D}}} \sum_{j=1}^{n} |f_j(z)|^2 > 0.$$
(2)

We are going to show that $1 = \sum_{j=1}^{n} g_j f_j$ for some $g_j \in A_{\mathbb{R}}(\mathbb{D})$, contradicting the fact that *M* is a proper ideal.

Let

$$q_k = \frac{\overline{f_k}}{\sum_{j=1}^n |f_j|^2}, k = 1, \ldots, n.$$

R. Mortini Real Banach algebras

Let

$$q_k = \frac{\overline{f_k}}{\sum_{j=1}^n |f_j|^2}, k = 1, \ldots, n.$$

Then $\sum_{k=1}^{n} q_k f_k = 1$. This equality holds on $\overline{\mathbb{D}}$.

Let

$$q_k = \frac{\overline{f_k}}{\sum_{j=1}^n |f_j|^2}, k = 1, \dots, n.$$

Then $\sum_{k=1}^{n} q_k f_k = 1$. This equality holds on $\overline{\mathbb{D}}$. In order to get a solution $(g_1, \ldots, g_n) \in (A_{\mathbb{R}}(\mathbb{D}))^n$ of our Bezout equation $\sum_{k=1}^{n} g_k f_k$, we switch to the boundary \mathbb{T} of \mathbb{D} .

Let

$$q_k = \frac{\overline{f_k}}{\sum_{j=1}^n |f_j|^2}, k = 1, \ldots, n.$$

Then $\sum_{k=1}^{n} q_k f_k = 1$. This equality holds on $\overline{\mathbb{D}}$. In order to get a solution $(g_1, \ldots, g_n) \in (A_{\mathbb{R}}(\mathbb{D}))^n$ of our Bezout equation $\sum_{k=1}^{n} g_k f_k$, we switch to the boundary \mathbb{T} of \mathbb{D} . Since $q_k \in C_s(\mathbb{T})$, there exist by Lemma 1 rational functions $r_k(z) = \frac{\sum_{j=0}^{M} a_j z^j}{z^N}$, $a_j \in \mathbb{R}$, such that on \mathbb{T}

$$||q_k - r_k||_{\infty} < \frac{1}{2} \frac{1}{\sum_{j=1}^n ||f_j||_{\infty}}$$

Let

$$q_k = \frac{\overline{f_k}}{\sum_{j=1}^n |f_j|^2}, k = 1, \ldots, n.$$

Then $\sum_{k=1}^{n} q_k f_k = 1$. This equality holds on $\overline{\mathbb{D}}$. In order to get a solution $(g_1, \ldots, g_n) \in (A_{\mathbb{R}}(\mathbb{D}))^n$ of our Bezout equation $\sum_{k=1}^{n} g_k f_k$, we switch to the boundary \mathbb{T} of \mathbb{D} . Since $q_k \in C_s(\mathbb{T})$, there exist by Lemma 1 rational functions $r_k(z) = \frac{\sum_{j=0}^{M} a_j z^j}{z^N}$, $a_j \in \mathbb{R}$, such that on \mathbb{T}

$$||q_k - r_k||_{\infty} < rac{1}{2} \, rac{1}{\sum_{j=1}^n ||f_j||_{\infty}}$$

Note that N and M can be chosen to be independent of k (just by adding, if necessary, 0 coefficients).

Thus, on \mathbb{T} ,

 $\big|\sum_{k=1}^n z^N r_k f_k\big| = \big|\sum_{k=1}^n r_k f_k\big| \ge$

R. Mortini Real Banach algebras

Thus, on *T*,

$$\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right| = \left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq$$

$$|\sum_{k=1}^{n} q_k f_k| - \sum_{k=1}^{n} ||q_k - r_k||_{\infty} ||f_k||_{\infty} \ge 1 - 1/2 = 1/2.$$

Thus, on \mathbb{T} ,

$$\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right| = \left|\sum_{k=1}^{n} r_{k} f_{k}\right| \ge$$

$$|\sum_{k=1}^{n} q_k f_k| - \sum_{k=1}^{n} ||q_k - r_k||_{\infty} ||f_k||_{\infty} \ge 1 - 1/2 = 1/2.$$

Hence the function $q := \sum_{k=1}^{n} (z^{N}r_{k})f_{k}$ has no zeros on \mathbb{T} .

Thus, on *T*,

$$\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right| = \left|\sum_{k=1}^{n} r_{k} f_{k}\right| \ge$$

$$|\sum_{k=1}^{n} q_k f_k| - \sum_{k=1}^{n} ||q_k - r_k||_{\infty} ||f_k||_{\infty} \ge 1 - 1/2 = 1/2.$$

Hence the function $q := \sum_{k=1}^{n} (z^{N}r_{k})f_{k}$ has no zeros on T.Moreover, since $z^{N}r_{k}$ is a polynomial with real coefficients, it belongs to $A_{\mathbb{R}}(\mathbb{D})$. Thus $q \in A_{\mathbb{R}}(\mathbb{D})$.

Thus, on \mathbb{T} ,

$$\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right| = \left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq$$

$$|\sum_{k=1}^{n} q_k f_k| - \sum_{k=1}^{n} ||q_k - r_k||_{\infty} ||f_k||_{\infty} \ge 1 - 1/2 = 1/2.$$

Hence the function $q := \sum_{k=1}^{n} (z^{N}r_{k})f_{k}$ has no zeros on \mathbb{T} . Moreover, since $z^{N}r_{k}$ is a polynomial with real coefficients, it belongs to $A_{\mathbb{R}}(\mathbb{D})$. Thus $q \in A_{\mathbb{R}}(\mathbb{D})$. Moreover, $q \in I(f_{1}, \ldots, f_{n})$, the ideal generated by the f_{j} in $A_{\mathbb{R}}(\mathbb{D})$.
Thus, on *T*,

$$\left|\sum_{k=1}^{n} \mathbf{z}^{N} \mathbf{r}_{k} \mathbf{f}_{k}\right| = \left|\sum_{k=1}^{n} \mathbf{r}_{k} \mathbf{f}_{k}\right| \geq$$

$$|\sum_{k=1}^{n} q_k f_k| - \sum_{k=1}^{n} ||q_k - r_k||_{\infty} ||f_k||_{\infty} \ge 1 - 1/2 = 1/2.$$

Hence the function $q := \sum_{k=1}^{n} (z^{N}r_{k})f_{k}$ has no zeros on \mathbb{T} . Moreover, since $z^{N}r_{k}$ is a polynomial with real coefficients, it belongs to $A_{\mathbb{R}}(\mathbb{D})$. Thus $q \in A_{\mathbb{R}}(\mathbb{D})$. Moreover, $q \in I(f_{1}, \ldots, f_{n})$, the ideal generated by the f_{j} in $A_{\mathbb{R}}(\mathbb{D})$. By analyticity, q has only finitely many zeros in \mathbb{D} . The symmetry of the functions in $A_{\mathbb{R}}(\mathbb{D})$ implies that these zeros are symmetric with respect to the real axis.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \overline{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I(f_1, \ldots, f_n)$.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \overline{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I(f_1, \ldots, f_n)$.(Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in \{f_1, \ldots, f_n\}$ such that $g(a) \neq 0$.)

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \overline{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I(f_1, \ldots, f_n)$.(Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in \{f_1, \ldots, f_n\}$ such that $g(a) \neq 0$.)At the end, after finitely many steps, we obtain a function $f \in I(f_1, \ldots, f_n)$ that dose not have any zeros in $\overline{\mathbb{D}}$.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \overline{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I(f_1, \ldots, f_n)$.(Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in \{f_1, \ldots, f_n\}$ such that $g(a) \neq 0$.)At the end, after finitely many steps, we obtain a function $f \in I(f_1, \ldots, f_n)$ that dose not have any zeros in $\overline{\mathbb{D}}$. Hence f is invertible in $A_{\mathbb{R}}(\mathbb{D})$ and so $1 = f(f^{-1}) \in I(f_1, \ldots, f_n) \subseteq M$.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \overline{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I(f_1, \ldots, f_n)$.(Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in \{f_1, \ldots, f_n\}$ such that $g(a) \neq 0$.)At the end, after finitely many steps, we obtain a function $f \in I(f_1, \ldots, f_n)$ that dose not have any zeros in $\overline{\mathbb{D}}$. Hence *f* is invertible in $A_{\mathbb{R}}(\mathbb{D})$ and so $1 = f(f^{-1}) \in I(f_1, \ldots, f_n) \subseteq M$. This contradiction shows that *M* actually *is* contained in some M_a . Since *M* is maximal, $M = M_a$.

Whereas in complex (commutative unital) Banach algebras maximal ideals always have co-dimension 1, we are faced here with a different situation.

Whereas in complex (commutative unital) Banach algebras maximal ideals always have co-dimension 1, we are faced here with a different situation.

Theorem

Let $a \in \overline{\mathbb{D}}$. Then

- 1 M_a has co-dimension 1 (in the real vector space $A_{\mathbb{R}}(\mathbb{D})$) if and only if $a \in [-1, 1]$.
- **2** M_a has co-dimension 2 if and only if $a \in \overline{\mathbb{D}} \setminus [-1, 1]$.

Proof For (1), let $a \in [-1, 1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then f(a) is real and so

$$f = (f - f(a)) + f(a) \cdot 1 \in \operatorname{vect}[M_a, 1].$$

For (1), let $a \in [-1, 1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then f(a) is real and so

$$f = (f - f(a)) + f(a) \cdot 1 \in \operatorname{vect}[M_a, 1].$$

For (2), let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$. We claim that $A_{\mathbb{R}}(\mathbb{D}) = \text{vect}[M_a, 1, z]$.

For (1), let $a \in [-1, 1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then f(a) is real and so

$$f = (f - f(a)) + f(a) \cdot 1 \in \text{vect}[M_a, 1].$$

For (2), let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$. We claim that $A_{\mathbb{R}}(\mathbb{D}) = \operatorname{vect}[M_a, 1, z]$.Let $f \in A_{\mathbb{R}}(\mathbb{D})$. Since $\{1, a\}$ is a Hamel base of the real vector space \mathbb{C} over \mathbb{R} , every $f(a) \in \mathbb{C}$ writes as $f(a) = \sigma \cdot 1 + \beta \cdot a$ where $\sigma, \beta \in \mathbb{R}$.

For (1), let $a \in [-1, 1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then f(a) is real and so

$$f = (f - f(a)) + f(a) \cdot 1 \in \text{vect}[M_a, 1].$$

For (2), let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$. We claim that $A_{\mathbb{R}}(\mathbb{D}) = \operatorname{vect}[M_a, 1, z]$.Let $f \in A_{\mathbb{R}}(\mathbb{D})$. Since $\{1, a\}$ is a Hamel base of the real vector space \mathbb{C} over \mathbb{R} , every $f(a) \in \mathbb{C}$ writes as $f(a) = \sigma \cdot 1 + \beta \cdot a$ where $\sigma, \beta \in \mathbb{R}$.Hence $f - (\sigma + \beta z) \in M_a$ and so

$$f(z) = (f(z) - (\sigma + \beta z)) + \sigma + \beta z \in \text{vect}[M_a, 1, z].$$

Next we shall determine the (non-zero) multiplicative linear functionals ϕ on $A_{\mathbb{R}}(\mathbb{D})$; we have to distinguish two cases:

Next we shall determine the (non-zero) multiplicative linear functionals ϕ on $A_{\mathbb{R}}(\mathbb{D})$; we have to distinguish two cases:either the target space of ϕ is the field of reals or it is the real division algebra \mathbb{C} , regarded as a vector space over \mathbb{R} . We denote it by ${}^{\mathbb{R}}\mathbb{C}$.

 The only multiplicative ℝ-linear functionals φ : A_ℝ(D) → ℝ on A_ℝ(D) are given by φ(f) = f(a), where a ∈ [-1, 1].

 The only multiplicative ℝ-linear functionals φ : A_ℝ(D) → ℝ on A_ℝ(D) are given by φ(f) = f(a), where a ∈ [-1, 1]. Their kernels are the maximal ideals M_a that have co-dimension 1 in the real vector space A_ℝ(D).

- The only multiplicative ℝ-linear functionals φ : A_ℝ(D) → ℝ on A_ℝ(D) are given by φ(f) = f(a), where a ∈ [-1, 1]. Their kernels are the maximal ideals M_a that have co-dimension 1 in the real vector space A_ℝ(D).
- (2) The remaining ℝ-linear multiplicative functionals have target space ^ℝC and are given by φ(f) = f(a) or φ(f) = f(a), where a ∈ D \ [-1, 1].

- The only multiplicative ℝ-linear functionals φ : A_ℝ(D) → ℝ on A_ℝ(D) are given by φ(f) = f(a), where a ∈ [-1, 1]. Their kernels are the maximal ideals M_a that have co-dimension 1 in the real vector space A_ℝ(D).
- (2) The remaining R-linear multiplicative functionals have target space ^RC and are given by φ(f) = f(a) or φ(f) = f(a), where a ∈ D \ [-1,1]. Their kernels are the maximal ideals M_a that have co-dimension 2 in the real vector space A_R(D).

Proof

First we note that the kernel of any multiplicative \mathbb{R} -linear functional $\phi : A_{\mathbb{R}}(\mathbb{D}) \to \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or $^{\mathbb{R}}\mathbb{C}$).

Proof

First we note that the kernel of any multiplicative \mathbb{R} -linear functional $\phi : A_{\mathbb{R}}(\mathbb{D}) \to \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or $^{\mathbb{R}}\mathbb{C}$).Indeed, let $I = \ker \phi$. Then I is easily seen to be an ideal.

Proof

First we note that the kernel of any multiplicative \mathbb{R} -linear functional $\phi : A_{\mathbb{R}}(\mathbb{D}) \to \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or $\mathbb{R}\mathbb{C}$).Indeed, let $I = \ker \phi$. Then I is easily seen to be an ideal.Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \setminus I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1) = 1$.

First we note that the kernel of any multiplicative \mathbb{R} -linear functional $\phi : A_{\mathbb{R}}(\mathbb{D}) \to \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or $\mathbb{R}\mathbb{C}$).Indeed, let $I = \ker \phi$. Then I is easily seen to be an ideal.Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \setminus I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1) = 1$.Using the identity $z^2 - (2 \operatorname{Re} z)z + |z|^2 = 0$ for any $z \in \mathbb{C}$, we see that

$$\phi\big((f-\phi(f))\big(f-\overline{\phi(f)}\big)\big)=\phi(f^2)-(2\operatorname{\mathsf{Re}}\phi(f))\phi(f)+|\phi(f)|^2=0.$$

First we note that the kernel of any multiplicative \mathbb{R} -linear functional $\phi : A_{\mathbb{R}}(\mathbb{D}) \to \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or $\mathbb{R}\mathbb{C}$).Indeed, let $I = \ker \phi$. Then I is easily seen to be an ideal.Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \setminus I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1) = 1$.Using the identity $z^2 - (2 \operatorname{Re} z)z + |z|^2 = 0$ for any $z \in \mathbb{C}$, we see that

$$\phi\big((f-\phi(f))\big(f-\overline{\phi(f)}\big)\big)=\phi(f^2)-(2\operatorname{\mathsf{Re}}\phi(f))\phi(f)+|\phi(f)|^2=0.$$

Thus we may conclude from

$$1 = \frac{\left(f - \phi(f)\right)\left(f - \overline{\phi(f)}\right)}{|\phi(f)|^2} - f \frac{f - \left(\phi(f) + \overline{\phi(f)}\right)}{|\phi(f)|^2};$$

First we note that the kernel of any multiplicative \mathbb{R} -linear functional $\phi : A_{\mathbb{R}}(\mathbb{D}) \to \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or $\mathbb{R}\mathbb{C}$).Indeed, let $I = \ker \phi$. Then I is easily seen to be an ideal.Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \setminus I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1) = 1$.Using the identity $z^2 - (2 \operatorname{Re} z)z + |z|^2 = 0$ for any $z \in \mathbb{C}$, we see that

$$\phi\big((f-\phi(f))\big(f-\overline{\phi(f)}\big)\big)=\phi(f^2)-(2\operatorname{\mathsf{Re}}\phi(f))\phi(f)+|\phi(f)|^2=0.$$

Thus we may conclude from

$$1 = \frac{\left(f - \phi(f)\right)\left(f - \overline{\phi(f)}\right)}{|\phi(f)|^2} - f \frac{f - \left(\phi(f) + \overline{\phi(f)}\right)}{|\phi(f)|^2};$$

that the ideal generated by I and f is the whole algebra. Hence I is maximal.

Thus, by Theorem 3, ker $\phi = M_a$ for some $a \in \overline{\mathbb{D}}$.

R. Mortini Real Banach algebras

Thus, by Theorem 3, ker $\phi = M_a$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1) = 1$.

For (1), suppose that $a \in [-1, 1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f - f(a) \in M_a = \ker \phi$.

For (1), suppose that $a \in [-1, 1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f - f(a) \in M_a = \ker \phi$. Thus we obtain from $f = (f - f(a)) + f(a) \cdot 1$ that $\phi(f) = 0 + f(a)\phi(1) = f(a)$.

For (1), suppose that $a \in [-1, 1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f - f(a) \in M_a = \ker \phi$. Thus we obtain from $f = (f - f(a)) + f(a) \cdot 1$ that $\phi(f) = 0 + f(a)\phi(1) = f(a)$. For (2) let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in

For (2), let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in Proposition 4, we consider the affine function $\sigma + \beta z$, where $\sigma, \beta \in \mathbb{R}$ are chosen so that $\sigma + \beta a = f(a)$.

For (1), suppose that $a \in [-1, 1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f - f(a) \in M_a = \ker \phi$. Thus we obtain from $f = (f - f(a)) + f(a) \cdot 1$ that $\phi(f) = 0 + f(a)\phi(1) = f(a)$. For (2), let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in Proposition 4, we consider the affine function $\sigma + \beta z$, where $\sigma, \beta \in \mathbb{R}$ are chosen so that $\sigma + \beta a = f(a)$. Then $f - (\sigma + \beta z) \in M_a = \ker \phi$; hence

For (1), suppose that $a \in [-1, 1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f - f(a) \in M_a = \ker \phi$. Thus we obtain from $f = (f - f(a)) + f(a) \cdot 1$ that $\phi(f) = 0 + f(a)\phi(1) = f(a)$. For (2), let $a \in \overline{\mathbb{D}} \setminus [-1, 1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in Proposition 4, we consider the affine function $\sigma + \beta z$, where $\sigma, \beta \in \mathbb{R}$ are chosen so that $\sigma + \beta a = f(a)$. Then

 $f - (\sigma + \beta z) \in M_a = \ker \phi$; hence

$$\phi(f) = \phi\left(\left(f - (\sigma + \beta z) + (\sigma + \beta z)\right) = 0 + \sigma + \beta \phi(z).$$
(3)

Now let $b := \phi(z)$. The function $H(z) = (z - a)(z - \overline{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_a = \ker \phi$. Now let $b := \phi(z)$. The function $H(z) = (z - a)(z - \overline{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_a = \ker \phi$. Hence

 $0 = \phi(H) = \phi(z^2) - 2\operatorname{Re} a \phi(z) + |a|^2 = b^2 - 2b\operatorname{Re} a + |a|^2.$

Now let $b := \phi(z)$. The function $H(z) = (z - a)(z - \overline{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_a = \ker \phi$. Hence

$$0 = \phi(H) = \phi(z^2) - 2\operatorname{Re} a \phi(z) + |a|^2 = b^2 - 2b\operatorname{Re} a + |a|^2.$$

Solving this quadratic, yields $b = \text{Re } a \pm i \text{ Im } a$. Hence b = a or $b = \overline{a}$.

Now let $b := \phi(z)$. The function $H(z) = (z - a)(z - \overline{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_a = \ker \phi$. Hence

$$0 = \phi(H) = \phi(z^2) - 2\operatorname{Re} a \phi(z) + |a|^2 = b^2 - 2b\operatorname{Re} a + |a|^2.$$

Solving this quadratic, yields $b = \text{Re } a \pm i \text{ Im } a$. Hence b = a or $b = \overline{a}$.By (3) we obtain $\phi(f) = \sigma + \beta a = f(a)$ or $\phi(f) = \sigma + \beta \overline{a} = \overline{f(a)}$.

$$\phi(f) = \phi\left(\left(f - (\sigma + \beta z) + (\sigma + \beta z)\right) = \mathbf{0} + \sigma + \beta \phi(z).$$

Bounded analytic functions

Let
$$H^{\infty}_{\mathbb{R}}(\mathbb{D}) = \{f \in H^{\infty} : f(z) = f(\overline{z})\}.$$

Corona Theorem for $H^{\infty}_{\mathbb{R}}(\mathbb{D})$

Theorem

$$1 \in I(f_1,\ldots,f_n) \Leftarrow : \inf \sum_{j=1}^n |f_j| > 0.$$
The real disk-algebra Maximal ideals bounded analytic functions

Bounded analytic functions

Let
$$H^{\infty}_{\mathbb{R}}(\mathbb{D}) = \{ f \in H^{\infty} : f(z) = f(\overline{z}) \}.$$

Corona Theorem for $H^{\infty}_{\mathbb{R}}(\mathbb{D})$

Theorem

$$1 \in I(f_1,\ldots,f_n) \Leftarrow : \inf \sum_{j=1}^n |f_j| > 0.$$

Proof

Carleson $\longrightarrow \exists g_j \in H^{\infty} : 1 = \sum_{j=1}^n g_j f_j$ Let $h_j(z) := \frac{1}{2}(g_j(z) + \overline{g_j(\overline{z})})$. Then $h_j \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ and $\sum_{j=1}^n h_j f_j = 1$.

H^{∞} has the Bass stable rank one; that is: $|f| + |g| \ge \delta > 0 \longrightarrow \exists h \in H^{\infty} : f + hg$ invertible.

H^{∞} has the Bass stable rank one; that is: $|f| + |g| \ge \delta > 0 \longrightarrow \exists h \in H^{\infty} : f + hg$ invertible.

Does not work for $H^{\infty}_{\mathbb{R}}(\mathbb{D})$:

 H^{∞} has the Bass stable rank one; that is: $|f| + |g| \ge \delta > 0 \longrightarrow \exists h \in H^{\infty} : f + hg$ invertible.

Does not work for $H^{\infty}_{\mathbb{R}}(\mathbb{D})$: $f(z) = z, g(z) = 1 - z^2$; suppose $u(z) := z + h(1 - z^2) \in H^{\infty}_{\mathbb{R}}(\mathbb{D}))^{-1}$.

 H^{∞} has the Bass stable rank one; that is: $|f| + |g| \ge \delta > 0 \longrightarrow \exists h \in H^{\infty} : f + hg$ invertible.

Does not work for
$$H^{\infty}_{\mathbb{R}}(\mathbb{D})$$
:
 $f(z) = z, g(z) = 1 - z^2$; suppose
 $u(z) := z + h(1 - z^2) \in H^{\infty}_{\mathbb{R}}(\mathbb{D}))^{-1}$. Then on
 $] - 1, 1[: \lim_{x \to -1} u(x) = -1$ and $\lim_{x \to 1} u(x) = 1$. Hence
 $\exists x_0 \in] - 1, 1[$ such that $u(x_0) = 0$.

 H^{∞} has the Bass stable rank one; that is: $|f| + |g| \ge \delta > 0 \longrightarrow \exists h \in H^{\infty} : f + hg$ invertible.

Does not work for
$$H^{\infty}_{\mathbb{R}}(\mathbb{D})$$
:
 $f(z) = z, g(z) = 1 - z^2$; suppose
 $u(z) := z + h(1 - z^2) \in H^{\infty}_{\mathbb{R}}(\mathbb{D}))^{-1}$. Then on
 $] - 1, 1[: \lim_{x \to -1} u(x) = -1$ and $\lim_{x \to 1} u(x) = 1$. Hence
 $\exists x_0 \in] - 1, 1[$ such that $u(x_0) = 0$.

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

Proof Let $(x, y, t) \in (H^{\infty}_{\mathbb{R}})^3$ be such that 1 = xf + yg + th.

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

Proof

Let $(x, y, t) \in (H^{\infty}_{\mathbb{R}})^3$ be such that 1 = xf + yg + th. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}) , such that (\tilde{x}, \tilde{y}) is an invertible pair in $H^{\infty}_{\mathbb{R}}$.

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

Proof

Let $(x, y, t) \in (H^{\infty}_{\mathbb{R}})^3$ be such that 1 = xf + yg + th. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}) , such that (\tilde{x}, \tilde{y}) is an invertible pair in $H^{\infty}_{\mathbb{R}}$. Now $u := \tilde{x}f + \tilde{y}g + th = (xf + yg + th) + (\tilde{x} - x)f + (\tilde{y} - y)g = 1 + \varepsilon$.

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

Proof

Let $(x, y, t) \in (H_{\mathbb{R}}^{\infty})^3$ be such that 1 = xf + yg + th. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}) , such that (\tilde{x}, \tilde{y}) is an invertible pair in $H_{\mathbb{R}}^{\infty}$. Now $u := \tilde{x}f + \tilde{y}g + th = (xf + yg + th) + (\tilde{x} - x)f + (\tilde{y} - y)g = 1 + \varepsilon$. Thus, if ε has small norm, u is invertible.

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

Proof

Let $(x, y, t) \in (H^{\infty}_{\mathbb{R}})^3$ be such that 1 = xf + yg + th. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}) , such that (\tilde{x}, \tilde{y}) is an invertible pair in $H^{\infty}_{\mathbb{R}}$. Now $u := \tilde{x}f + \tilde{y}g + th = (xf + yg + th) + (\tilde{x} - x)f + (\tilde{y} - y)g = 1 + \varepsilon$. Thus, if ε has small norm, u is invertible. (\tilde{x}, \tilde{y}) being invertible $\longrightarrow t = a\tilde{x} + b\tilde{y}$; hence

 $H^{\infty}_{\mathbb{R}}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f| + |g| + |h| \ge \delta > 0 \longrightarrow \exists a, b \in H^{\infty}_{\mathbb{R}}(\mathbb{D})$ such that $|f + ah| + |g + bh| \ge \delta > 0.$

Proof

Let $(x, y, t) \in (H_{\mathbb{R}}^{\infty})^3$ be such that 1 = xf + yg + th. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}) , such that (\tilde{x}, \tilde{y}) is an invertible pair in $H_{\mathbb{R}}^{\infty}$. Now $u := \tilde{x}f + \tilde{y}g + th = (xf + yg + th) + (\tilde{x} - x)f + (\tilde{y} - y)g = 1 + \varepsilon$. Thus, if ε has small norm, u is invertible. (\tilde{x}, \tilde{y}) being invertible $\longrightarrow t = a\tilde{x} + b\tilde{y}$; hence $u = \tilde{x}f + \tilde{y}g + (a\tilde{x} + b\tilde{y})h = \tilde{x}(f + ah) + \tilde{y}(g + bh)$.