Two distinguished real Banach algebras

Raymond Mortini
Université Paul Verlaine - Metz

Saarbrücken, October 27, 2008

The real disk-algebra

Let $C_{S}(\mathbb{T})$ be the set of all (complex-valued) continuous functions on the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ that are symmetric; this means that $\overline{f\left(e^{-i t}\right)}=f\left(e^{i t}\right)$.

The real disk-algebra
Let $C_{s}(\mathbb{T})$ be the set of all (complex-valued) continuous functions on the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ that are symmetric; this means that $\overline{f\left(e^{-i t}\right)}=f\left(e^{i t}\right)$.Associated with $C_{s}(\mathbb{T})$ is the subset, A_{s}, of those functions in $C_{s}(\mathbb{T})$ that admit a holomorphic extension to the interior \mathbb{D} of the unit disk.

The real disk-algebra
Let $C_{s}(\mathbb{T})$ be the set of all (complex-valued) continuous functions on the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ that are symmetric; this means that $\overline{f\left(e^{-i t}\right)}=f\left(e^{i t}\right)$.Associated with $C_{s}(\mathbb{T})$ is the subset, A_{s}, of those functions in $C_{s}(\mathbb{T})$ that admit a holomorphic extension to the interior \mathbb{D} of the unit disk. The holomorphic extension to the disk is given by the Poisson-integral

$$
P[f](z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \frac{1-|z|^{2}}{\left|z-e^{i \theta}\right|^{2}} d \theta
$$

Note that for $z=r e^{i t}$ this coincides with the convolution

$$
f * P_{r}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) P_{r}(t-\theta) d \theta
$$

of f with the Poisson-kernel $P_{r}(t):=\frac{1-r^{2}}{1+r^{2}-2 r \cos t}$. Using Fourier representation, we see that the Fourier series of an element $f \in A_{s}$ formally writes as $\mathcal{F}[f]=\sum_{n=0}^{\infty} \hat{f}_{n} e^{i n t}$, where the Fourier coefficients, given as usual by the formula $\hat{f}_{n}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) e^{-i n t} d t$, are real numbers.
of f with the Poisson-kernel $P_{r}(t):=\frac{1-r^{2}}{1+r^{2}-2 r \cos t}$. Using Fourier representation, we see that the Fourier series of an element $f \in A_{s}$ formally writes as $\mathcal{F}[f]=\sum_{n=0}^{\infty} \hat{f}_{n} e^{i n t}$, where the Fourier coefficients, given as usual by the formula $\hat{f}_{n}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) e^{-i n t} d t$, are real numbers.
It is standard knowledge that the Taylor-MacLaurin series for $P[f]$ writes as $P[f](z)=\sum_{n=0}^{\infty} \hat{f}_{n} z^{n}$.

When A_{s} is endowed with the supremum-topology, then A_{s} is isomorphically isometric to the real Banach algebra, $A_{\mathbb{R}}(\mathbb{D})$, of all holomorphic functions on the disk that are real on the interval] - 1, 1 [and that admit a continuous extension to the closure $\overline{\mathbb{D}}$ of \mathbb{D}.

When A_{s} is endowed with the supremum-topology, then A_{s} is isomorphically isometric to the real Banach algebra, $A_{\mathbb{R}}(\mathbb{D})$, of all holomorphic functions on the disk that are real on the interval] - 1, 1 [and that admit a continuous extension to the closure $\overline{\mathbb{D}}$ of \mathbb{D}.
Let $A(\mathbb{D})$ be the disk-algebra, that is the algebra of all functions continuous on $\overline{\mathbb{D}}$ and holomorphic in \mathbb{D}. This is the most prominent example of a complex Banach algebra. Its relation with $A_{\mathbb{R}}(\mathbb{D})$ is given by the following:

$$
A_{\mathbb{R}}(\mathbb{D})=\{f \in A(\mathbb{D}): \overline{f(\bar{z})}=f(z)\}
$$

By Gelfand-theory, the maximal ideals in a complex commutative unital Banach algebra are exactly the kernels of the \mathbb{C}-valued multiplicative linear functionals. Since the analytic polynomials are dense in $A(\mathbb{D})$ it follows from that theory that the \mathbb{C}-valued characters of $A(\mathbb{D})$ are exactly the point evaluations $\Phi_{a}: f \mapsto f(a)$ for some $a \in \overline{\mathbb{D}}$; hence each maximal ideal has the form $\{f \in A(\mathbb{D}): f(a)=0\}$.

Lemma

The set of rational functions of the form

$$
\frac{\sum_{n=0}^{M} a_{n} z^{n}}{z^{N}},|z|=1
$$

where $M, N \in \mathbb{N}$ and where a_{n} are real, is uniformly dense in $C_{s}(\mathbb{T})$.

$$
M_{a}:=\left\{f \in A_{\mathbb{R}}(\mathbb{D}): f(a)=0\right\} .
$$

M_{a} is an ideal. Is M_{a} maximal?

Lemma

Let I be an ideal in $A_{\mathbb{R}}(\mathbb{D})$. Suppose that for some $a \in \mathbb{D}$ the elements $f, g \in I$ satisfy $f(a)=0$ and $g(a) \neq 0$. Then the following assertions hold:
1 If $-1<a<1$, then $\frac{f}{z-a} \in I$;
2 If $a \in \mathbb{D} \backslash[-1,1]$, then $\frac{f}{(z-a)(z-\bar{a})} \in I$.

Proof $f(a)=0 \longrightarrow f(\bar{a})=0$.
$f(z) /(z-a) \in A_{\mathbb{R}}(\mathbb{D})$ whenever $\left.a \in\right]-1,1[$ and
$\frac{f}{(z-a)(z-\bar{a})} \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in \mathbb{D} \backslash[-1,1]$.

Proof $f(a)=0 \longrightarrow f(\bar{a})=0$.
$f(z) /(z-a) \in A_{\mathbb{R}}(\mathbb{D})$ whenever $\left.a \in\right]-1,1[$ and $\frac{f}{(z-a)(z-\bar{a})} \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in \mathbb{D} \backslash[-1,1]$. Similarly,

$$
\left.\frac{g(z)-g(a)}{z-a} \in A_{\mathbb{R}}(\mathbb{D}), \quad a \in\right]-1,1[
$$

Proof $f(a)=0 \longrightarrow f(\bar{a})=0$.
$f(z) /(z-a) \in A_{\mathbb{R}}(\mathbb{D})$ whenever $\left.a \in\right]-1,1[$ and $\frac{f}{(z-a)(z-\bar{a})} \in A_{\mathbb{R}}(\mathbb{D})$ whenever $a \in \mathbb{D} \backslash[-1,1]$. Similarly,

$$
\left.\frac{g(z)-g(a)}{z-a} \in A_{\mathbb{R}}(\mathbb{D}), \quad a \in\right]-1,1[
$$

and

$$
\frac{(g(z)-g(a))(g(z)-g(\bar{a}))}{(z-a)(z-\bar{a})} \in A_{\mathbb{R}}(\mathbb{D}), \quad a \in \mathbb{D} \backslash[-1,1]
$$

Note also that $g(\bar{a})=\overline{g(a)}$.

Assertion (1) now follows from

$$
\begin{equation*}
\frac{f(z)}{z-a}=-\frac{1}{g(a)}\left(\frac{g(z)-g(a)}{z-a} f(z)-\frac{f(z)}{z-a} g(z)\right) \tag{1}
\end{equation*}
$$

Assertion (1) now follows from

$$
\begin{equation*}
\frac{f(z)}{z-a}=-\frac{1}{g(a)}\left(\frac{g(z)-g(a)}{z-a} f(z)-\frac{f(z)}{z-a} g(z)\right) \tag{1}
\end{equation*}
$$

and (2) follows from

$$
\frac{f(z)}{(z-a)(z-\bar{a})}=
$$

$$
\frac{1}{|g(a)|^{2}}\left(\frac{(g(z)-g(a))(g(z)-g(\bar{a}))}{(z-a)(z-\bar{a})} f(z)-\frac{f(z)(g(z)-(g(a)+g(\bar{a}))}{(z-a)(z-\bar{a})} g(z)\right)
$$

Theorem

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M=M_{a}$ for some $a \in \overline{\mathbb{D}}$.

Theorem

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M=M_{a}$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_{a} are maximal.

Theorem

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M=M_{a}$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_{a} are maximal. So suppose that $f \in A_{\mathbb{R}}(\mathbb{D})$ does not vanish at a. Then
$(f-f(a))(f-\overline{f(a)}) \in M(a)$ and

Theorem

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M=M_{a}$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_{a} are maximal. So suppose that $f \in A_{\mathbb{R}}(\mathbb{D})$ does not vanish at a. Then
$(f-f(a))(f-\overline{f(a)}) \in M(a)$ and

$$
1=\frac{(f-f(a))(f-\overline{f(a)})}{|f(a)|^{2}}-f \frac{f-(f(a)+\overline{f(a)})}{|f(a)|^{2}}
$$

Theorem

An ideal M in $A_{\mathbb{R}}(\mathbb{D})$ is maximal if and only if $M=M_{a}$ for some $a \in \overline{\mathbb{D}}$.

Proof

We first show that the ideals M_{a} are maximal. So suppose that $f \in A_{\mathbb{R}}(\mathbb{D})$ does not vanish at a. Then
$(f-f(a))(f-\overline{f(a)}) \in M(a)$ and

$$
1=\frac{(f-f(a))(f-\overline{f(a)})}{|f(a)|^{2}}-f \frac{f-(f(a)+\overline{f(a)})}{|f(a)|^{2}}
$$

Hence the ideal, $\left[M_{a}, f\right]$, generated by M_{a} and f is the whole algebra and so M_{a} is maximal.

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$.

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_{a}.

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_{a}. Then for every $a \in \overline{\mathbb{D}}$ there exists $f_{a} \in M$ such that $f_{a}(a) \neq 0$.

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_{a}. Then for every $a \in \overline{\mathbb{D}}$ there exists $f_{a} \in M$ such that $f_{a}(a) \neq 0$. By a compactness argument, this shows that there are finitely many functions $f_{j} \in M$ such that

$$
\begin{equation*}
\delta:=\min _{z \in \overline{\mathbb{D}}} \sum_{j=1}^{n}\left|f_{j}(z)\right|^{2}>0 \tag{2}
\end{equation*}
$$

Next we show that every maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ has this form. First we note that a function $f \in A_{\mathbb{R}}(\mathbb{D})$ is invertible in $A_{\mathbb{R}}(\mathbb{D})$ if and only if f does not vanish on $\overline{\mathbb{D}}$. Now let M be a maximal ideal in $A_{\mathbb{R}}(\mathbb{D})$ and suppose that M is not contained in any ideal of the form M_{a}. Then for every $a \in \overline{\mathbb{D}}$ there exists $f_{a} \in M$ such that $f_{a}(a) \neq 0$. By a compactness argument, this shows that there are finitely many functions $f_{j} \in M$ such that

$$
\begin{equation*}
\delta:=\min _{z \in \overline{\mathbb{D}}} \sum_{j=1}^{n}\left|f_{j}(z)\right|^{2}>0 \tag{2}
\end{equation*}
$$

We are going to show that $1=\sum_{j=1}^{n} g_{j} f_{j}$ for some $g_{j} \in A_{\mathbb{R}}(\mathbb{D})$, contradicting the fact that M is a proper ideal.

Let

$$
q_{k}=\frac{\overline{f_{k}}}{\sum_{j=1}^{n}\left|f_{j}\right|^{2}}, k=1, \ldots, n
$$

Let

$$
q_{k}=\frac{\overline{f_{k}}}{\sum_{j=1}^{n}\left|f_{j}\right|^{2}}, k=1, \ldots, n
$$

Then $\sum_{k=1}^{n} q_{k} f_{k}=1$. This equality holds on $\overline{\mathbb{D}}$.

Let

$$
q_{k}=\frac{\overline{f_{k}}}{\sum_{j=1}^{n}\left|f_{j}\right|^{2}}, k=1, \ldots, n
$$

Then $\sum_{k=1}^{n} q_{k} f_{k}=1$. This equality holds on $\overline{\mathbb{D}}$.In order to get a solution $\left(g_{1}, \ldots, g_{n}\right) \in\left(A_{\mathbb{R}}(\mathbb{D})\right)^{n}$ of our Bezout equation $\sum_{k=1}^{n} g_{k} f_{k}$, we switch to the boundary \mathbb{T} of \mathbb{D}.

Let

$$
q_{k}=\frac{\overline{f_{k}}}{\sum_{j=1}^{n}\left|f_{j}\right|^{2}}, k=1, \ldots, n
$$

Then $\sum_{k=1}^{n} q_{k} f_{k}=1$. This equality holds on $\overline{\mathbb{D}}$.In order to get a solution $\left(g_{1}, \ldots, g_{n}\right) \in\left(A_{\mathbb{R}}(\mathbb{D})\right)^{n}$ of our Bezout equation $\sum_{k=1}^{n} g_{k} f_{k}$, we switch to the boundary \mathbb{T} of \mathbb{D}. Since $q_{k} \in C_{s}(\mathbb{T})$, there exist by Lemma 1 rational functions $r_{k}(z)=\frac{\sum_{j=0}^{M} a_{j} j^{j}}{z^{N}}$, $a_{j} \in \mathbb{R}$, such that on \mathbb{T}

$$
\left\|q_{k}-r_{k}\right\|_{\infty}<\frac{1}{2} \frac{1}{\sum_{j=1}^{n}\left\|f_{j}\right\|_{\infty}}
$$

Let

$$
q_{k}=\frac{\overline{f_{k}}}{\sum_{j=1}^{n}\left|f_{j}\right|^{2}}, k=1, \ldots, n
$$

Then $\sum_{k=1}^{n} q_{k} f_{k}=1$. This equality holds on $\overline{\mathbb{D}}$.In order to get a solution $\left(g_{1}, \ldots, g_{n}\right) \in\left(A_{\mathbb{R}}(\mathbb{D})\right)^{n}$ of our Bezout equation $\sum_{k=1}^{n} g_{k} f_{k}$, we switch to the boundary \mathbb{T} of \mathbb{D}. Since $q_{k} \in C_{s}(\mathbb{T})$, there exist by Lemma 1 rational functions $r_{k}(z)=\frac{\sum_{j=0}^{M} a_{j} j^{j}}{z^{N}}$, $a_{j} \in \mathbb{R}$, such that on \mathbb{T}

$$
\left\|q_{k}-r_{k}\right\|_{\infty}<\frac{1}{2} \frac{1}{\sum_{j=1}^{n}\left\|f_{j}\right\|_{\infty}}
$$

Note that N and M can be chosen to be independent of k (just by adding, if necessary, 0 coefficients).

Thus, on \mathbb{T},

$$
\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right|=\left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq
$$

Thus, on \mathbb{T},

$$
\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right|=\left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq
$$

$$
\left|\sum_{k=1}^{n} q_{k} f_{k}\right|-\sum_{k=1}^{n}\left\|q_{k}-r_{k}\right\|_{\infty}\left\|f_{k}\right\|_{\infty} \geq 1-1 / 2=1 / 2
$$

Thus, on \mathbb{T},

$$
\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right|=\left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq
$$

$$
\left|\sum_{k=1}^{n} q_{k} f_{k}\right|-\sum_{k=1}^{n}\left\|q_{k}-r_{k}\right\|_{\infty}\left\|f_{k}\right\|_{\infty} \geq 1-1 / 2=1 / 2
$$

Hence the function $q:=\sum_{k=1}^{n}\left(z^{N} r_{k}\right) f_{k}$ has no zeros on T.

Thus, on \mathbb{T},

$$
\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right|=\left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq
$$

$$
\left|\sum_{k=1}^{n} q_{k} f_{k}\right|-\sum_{k=1}^{n}\left\|q_{k}-r_{k}\right\|_{\infty}\left\|f_{k}\right\|_{\infty} \geq 1-1 / 2=1 / 2
$$

Hence the function $q:=\sum_{k=1}^{n}\left(z^{N} r_{k}\right) f_{k}$ has no zeros on T.Moreover, since $z^{N} r_{k}$ is a polynomial with real coefficients, it belongs to $A_{\mathbb{R}}(\mathbb{D})$. Thus $q \in A_{\mathbb{R}}(\mathbb{D})$.

Thus, on \mathbb{T},

$$
\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right|=\left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq
$$

$$
\left|\sum_{k=1}^{n} q_{k} f_{k}\right|-\sum_{k=1}^{n}\left\|q_{k}-r_{k}\right\|_{\infty}\left\|f_{k}\right\|_{\infty} \geq 1-1 / 2=1 / 2
$$

Hence the function $q:=\sum_{k=1}^{n}\left(z^{N} r_{k}\right) f_{k}$ has no zeros on T.Moreover, since $z^{N} r_{k}$ is a polynomial with real coefficients, it belongs to $A_{\mathbb{R}}(\mathbb{D})$. Thus $q \in A_{\mathbb{R}}(\mathbb{D})$. Moreover, $q \in I\left(f_{1}, \ldots, f_{n}\right)$, the ideal generated by the f_{j} in $A_{\mathbb{R}}(\mathbb{D})$.

Thus, on \mathbb{T},

$$
\left|\sum_{k=1}^{n} z^{N} r_{k} f_{k}\right|=\left|\sum_{k=1}^{n} r_{k} f_{k}\right| \geq
$$

$$
\left|\sum_{k=1}^{n} q_{k} f_{k}\right|-\sum_{k=1}^{n}\left\|q_{k}-r_{k}\right\|_{\infty}\left\|f_{k}\right\|_{\infty} \geq 1-1 / 2=1 / 2
$$

Hence the function $q:=\sum_{k=1}^{n}\left(z^{N} r_{k}\right) f_{k}$ has no zeros on T.Moreover, since $z^{N} r_{k}$ is a polynomial with real coefficients, it belongs to $A_{\mathbb{R}}(\mathbb{D})$. Thus $q \in A_{\mathbb{R}}(\mathbb{D})$. Moreover, $q \in I\left(f_{1}, \ldots, f_{n}\right)$, the ideal generated by the f_{j} in $A_{\mathbb{R}}(\mathbb{D})$.By analyticity, q has only finitely many zeros in \mathbb{D}. The symmetry of the functions in $A_{\mathbb{R}}(\mathbb{D})$ implies that these zeros are symmetric with respect to the real axis.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \bar{\xi})$ whenever the zero ξ is not real) without leaving the ideal $l\left(f_{1}, \ldots, f_{n}\right)$.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \bar{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I\left(f_{1}, \ldots, f_{n}\right)$. (Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in\left\{f_{1}, \ldots, f_{n}\right\}$ such that $g(a) \neq 0$.)

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \bar{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I\left(f_{1}, \ldots, f_{n}\right)$. (Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in\left\{f_{1}, \ldots, f_{n}\right\}$ such that $g(a) \neq 0$.)At the end, after finitely many steps, we obtain a function $f \in I\left(f_{1}, \ldots, f_{n}\right)$ that dose not have any zeros in $\overline{\mathbb{D}}$.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \bar{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I\left(f_{1}, \ldots, f_{n}\right)$. (Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in\left\{f_{1}, \ldots, f_{n}\right\}$ such that $g(a) \neq 0$.)At the end, after finitely many steps, we obtain a function $f \in I\left(f_{1}, \ldots, f_{n}\right)$ that dose not have any zeros in $\overline{\mathbb{D}}$. Hence f is invertible in $A_{\mathbb{R}}(\mathbb{D})$ and so $1=f\left(f^{-1}\right) \in I\left(f_{1}, \ldots, f_{n}\right) \subseteq M$.

Using Lemma 2 we shall now divide out these zeros (taking pairs $(\xi, \bar{\xi})$ whenever the zero ξ is not real) without leaving the ideal $I\left(f_{1}, \ldots, f_{n}\right)$. (Note that for each $a \in \overline{\mathbb{D}}$ there is $g \in\left\{f_{1}, \ldots, f_{n}\right\}$ such that $g(a) \neq 0$.)At the end, after finitely many steps, we obtain a function $f \in I\left(f_{1}, \ldots, f_{n}\right)$ that dose not have any zeros in $\overline{\mathbb{D}}$. Hence f is invertible in $A_{\mathbb{R}}(\mathbb{D})$ and so $1=f\left(f^{-1}\right) \in I\left(f_{1}, \ldots, f_{n}\right) \subseteq M$. This contradiction shows that M actually is contained in some M_{a}. Since M is maximal, $M=M_{a}$.

Whereas in complex (commutative unital) Banach algebras maximal ideals always have co-dimension 1, we are faced here with a different situation.

Whereas in complex (commutative unital) Banach algebras maximal ideals always have co-dimension 1, we are faced here with a different situation.

Theorem

Let $a \in \overline{\mathbb{D}}$. Then
$1 M_{a}$ has co-dimension 1 (in the real vector space $A_{\mathbb{R}}(\mathbb{D})$) if and only if $a \in[-1,1]$.
$2 M_{a}$ has co-dimension 2 if and only if $a \in \overline{\mathbb{D}} \backslash[-1,1]$.

Proof

For (1), let $a \in[-1,1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then $f(a)$ is real and so

$$
f=(f-f(a))+f(a) \cdot 1 \in \operatorname{vect}\left[M_{a}, 1\right]
$$

Proof

For (1), let $a \in[-1,1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then $f(a)$ is real and so

$$
f=(f-f(a))+f(a) \cdot 1 \in \operatorname{vect}\left[M_{a}, 1\right]
$$

For (2), let $a \in \overline{\mathbb{D}} \backslash[-1,1]$. We claim that $A_{\mathbb{R}}(\mathbb{D})=\operatorname{vect}\left[M_{a}, 1, z\right]$.

Proof

For (1), let $a \in[-1,1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then $f(a)$ is real and so

$$
f=(f-f(a))+f(a) \cdot 1 \in \operatorname{vect}\left[M_{a}, 1\right]
$$

For (2), let $a \in \overline{\mathbb{D}} \backslash[-1,1]$. We claim that $A_{\mathbb{R}}(\mathbb{D})=\operatorname{vect}\left[M_{a}, 1, z\right]$.Let $f \in A_{\mathbb{R}}(\mathbb{D})$. Since $\{1, a\}$ is a Hamel base of the real vector space \mathbb{C} over \mathbb{R}, every $f(a) \in \mathbb{C}$ writes as $f(a)=\sigma \cdot 1+\beta \cdot a$ where $\sigma, \beta \in \mathbb{R}$.

Proof

For (1), let $a \in[-1,1]$ and let $f \in A_{\mathbb{R}}(\mathbb{D})$. Then $f(a)$ is real and so

$$
f=(f-f(a))+f(a) \cdot 1 \in \operatorname{vect}\left[M_{a}, 1\right]
$$

For (2), let $a \in \overline{\mathbb{D}} \backslash[-1,1]$. We claim that $A_{\mathbb{R}}(\mathbb{D})=\operatorname{vect}\left[M_{a}, 1, z\right]$.Let $f \in A_{\mathbb{R}}(\mathbb{D})$. Since $\{1, a\}$ is a Hamel base of the real vector space \mathbb{C} over \mathbb{R}, every $f(a) \in \mathbb{C}$ writes as $f(a)=\sigma \cdot 1+\beta \cdot a$ where $\sigma, \beta \in \mathbb{R}$.Hence $f-(\sigma+\beta z) \in M_{a}$ and so

$$
f(z)=(f(z)-(\sigma+\beta z))+\sigma+\beta z \in \operatorname{vect}\left[M_{a}, 1, z\right]
$$

Next we shall determine the (non-zero) multiplicative linear functionals ϕ on $A_{\mathbb{R}}(\mathbb{D})$; we have to distinguish two cases:

Next we shall determine the (non-zero) multiplicative linear functionals ϕ on $A_{\mathbb{R}}(\mathbb{D})$; we have to distinguish two cases:either the target space of ϕ is the field of reals or it is the real division algebra \mathbb{C}, regarded as a vector space over \mathbb{R}. We denote it by ${ }^{\mathbb{R}} \mathbb{C}$.

Theorem
(1) The only multiplicative \mathbb{R}-linear functionals $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{R}$ on $A_{\mathbb{R}}(\mathbb{D})$ are given by $\phi(f)=f(a)$, where $a \in[-1,1]$.

Theorem

(1) The only multiplicative \mathbb{R}-linear functionals $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{R}$ on $A_{\mathbb{R}}(\mathbb{D})$ are given by $\phi(f)=f(a)$, where $a \in[-1,1]$. Their kernels are the maximal ideals M_{a} that have co-dimension 1 in the real vector space $A_{\mathbb{R}}(\mathbb{D})$.

Theorem

(1) The only multiplicative \mathbb{R}-linear functionals $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{R}$ on $A_{\mathbb{R}}(\mathbb{D})$ are given by $\phi(f)=f(a)$, where $a \in[-1,1]$. Their kernels are the maximal ideals M_{a} that have co-dimension 1 in the real vector space $A_{\mathbb{R}}(\mathbb{D})$.
(2) The remaining \mathbb{R}-linear multiplicative functionals have target space ${ }^{\mathbb{R}} \mathbb{C}$ and are given by $\phi(f)=f(a)$ or $\phi(f)=\overline{f(a)}$, where $a \in \overline{\mathbb{D}} \backslash[-1,1]$.

Theorem
(1) The only multiplicative \mathbb{R}-linear functionals $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{R}$ on $A_{\mathbb{R}}(\mathbb{D})$ are given by $\phi(f)=f(a)$, where $a \in[-1,1]$. Their kernels are the maximal ideals M_{a} that have co-dimension 1 in the real vector space $A_{\mathbb{R}}(\mathbb{D})$.
(2) The remaining \mathbb{R}-linear multiplicative functionals have target space ${ }^{\mathbb{R}} \mathbb{C}$ and are given by $\phi(f)=f(a)$ or $\phi(f)=\overline{f(a)}$, where $a \in \overline{\mathbb{D}} \backslash[-1,1]$. Their kernels are the maximal ideals M_{a} that have co-dimension 2 in the real vector space $A_{\mathbb{R}}(\mathbb{D})$.

Proof

First we note that the kernel of any multiplicative \mathbb{R}-linear functional $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or ${ }^{\mathbb{R}} \mathbb{C}$).

Proof

First we note that the kernel of any multiplicative \mathbb{R}-linear functional $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or ${ }^{\mathbb{R}} \mathbb{C}$). Indeed, let $I=$ ker ϕ. Then I is easily seen to be an ideal.

Proof

First we note that the kernel of any multiplicative \mathbb{R}-linear functional $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or ${ }^{\mathbb{R}} \mathbb{C}$). Indeed, let $I=\operatorname{ker} \phi$. Then I is easily seen to be an ideal. Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \backslash I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1)=1$.

Proof

First we note that the kernel of any multiplicative \mathbb{R}-linear functional $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or ${ }^{\mathbb{R}} \mathbb{C}$). Indeed, let $I=$ ker ϕ. Then I is easily seen to be an ideal. Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \backslash I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1)=1$.Using the identity $z^{2}-(2 \operatorname{Re} z) z+|z|^{2}=0$ for any $z \in \mathbb{C}$, we see that

$$
\phi((f-\phi(f))(f-\overline{\phi(f)}))=\phi\left(f^{2}\right)-(2 \operatorname{Re} \phi(f)) \phi(f)+|\phi(f)|^{2}=0
$$

Proof

First we note that the kernel of any multiplicative \mathbb{R}-linear functional $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or ${ }^{\mathbb{R}} \mathbb{C}$). Indeed, let $I=\operatorname{ker} \phi$. Then I is easily seen to be an ideal. Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \backslash I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1)=1$.Using the identity $z^{2}-(2 \operatorname{Re} z) z+|z|^{2}=0$ for any $z \in \mathbb{C}$, we see that

$$
\phi((f-\phi(f))(f-\overline{\phi(f)}))=\phi\left(f^{2}\right)-(2 \operatorname{Re} \phi(f)) \phi(f)+|\phi(f)|^{2}=0
$$

Thus we may conclude from

$$
1=\frac{(f-\phi(f))(f-\overline{\phi(f)})}{|\phi(f)|^{2}}-f \frac{f-(\phi(f)+\overline{\phi(f)})}{|\phi(f)|^{2}}
$$

Proof

First we note that the kernel of any multiplicative \mathbb{R}-linear functional $\phi: A_{\mathbb{R}}(\mathbb{D}) \rightarrow \mathbb{K}$ is a maximal ideal (here \mathbb{K} is either \mathbb{R} or ${ }^{\mathbb{R}} \mathbb{C}$). Indeed, let $I=\operatorname{ker} \phi$. Then I is easily seen to be an ideal. Now let $f \in A_{\mathbb{R}}(\mathbb{D}) \backslash I$. Then $\phi(f) \neq 0$. Moreover, $\phi(1)=1$.Using the identity $z^{2}-(2 \operatorname{Re} z) z+|z|^{2}=0$ for any $z \in \mathbb{C}$, we see that

$$
\phi((f-\phi(f))(f-\overline{\phi(f)}))=\phi\left(f^{2}\right)-(2 \operatorname{Re} \phi(f)) \phi(f)+|\phi(f)|^{2}=0
$$

Thus we may conclude from

$$
1=\frac{(f-\phi(f))(f-\overline{\phi(f)})}{|\phi(f)|^{2}}-f \frac{f-(\phi(f)+\overline{\phi(f)})}{|\phi(f)|^{2}}
$$

that the ideal generated by I and f is the whole algebra. Hence I is maximal.

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$.

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1)=1$.

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1)=1$.
For (1), suppose that $a \in[-1,1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f-f(a) \in M_{a}=\operatorname{ker} \phi$.

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1)=1$.

For (1), suppose that $a \in[-1,1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f-f(a) \in M_{a}=\operatorname{ker} \phi$. Thus we obtain from $f=(f-f(a))+f(a) \cdot 1$ that $\phi(f)=0+f(a) \phi(1)=f(a)$.

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1)=1$.

For (1), suppose that $a \in[-1,1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f-f(a) \in M_{a}=$ ker ϕ. Thus we obtain from $f=(f-f(a))+f(a) \cdot 1$ that $\phi(f)=0+f(a) \phi(1)=f(a)$.
For (2), let $a \in \overline{\mathbb{D}} \backslash[-1,1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in Proposition 4, we consider the affine function $\sigma+\beta z$, where $\sigma, \beta \in \mathbb{R}$ are chosen so that $\sigma+\beta a=f(a)$.

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1)=1$.
For (1), suppose that $a \in[-1,1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f-f(a) \in M_{a}=$ ker ϕ. Thus we obtain from
$f=(f-f(a))+f(a) \cdot 1$ that $\phi(f)=0+f(a) \phi(1)=f(a)$.
For (2), let $a \in \overline{\mathbb{D}} \backslash[-1,1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in Proposition 4, we consider the affine function $\sigma+\beta z$, where $\sigma, \beta \in \mathbb{R}$ are chosen so that $\sigma+\beta a=f(a)$. Then $f-(\sigma+\beta z) \in M_{a}=\operatorname{ker} \phi$; hence

Thus, by Theorem 3, ker $\phi=M_{a}$ for some $a \in \overline{\mathbb{D}}$. To prove the assertions (1) and (2) we recall that $\phi(1)=1$.
For (1), suppose that $a \in[-1,1]$. Then, for any $f \in A_{\mathbb{R}}(\mathbb{D})$, the constant function $z \mapsto f(a)$ is in $A_{\mathbb{R}}(\mathbb{D})$ and so $f-f(a) \in M_{a}=$ ker ϕ. Thus we obtain from
$f=(f-f(a))+f(a) \cdot 1$ that $\phi(f)=0+f(a) \phi(1)=f(a)$.
For (2), let $a \in \overline{\mathbb{D}} \backslash[-1,1]$ and $f \in A_{\mathbb{R}}(\mathbb{D})$. Then, as in Proposition 4, we consider the affine function $\sigma+\beta z$, where $\sigma, \beta \in \mathbb{R}$ are chosen so that $\sigma+\beta a=f(a)$. Then $f-(\sigma+\beta z) \in M_{a}=\operatorname{ker} \phi ;$ hence

$$
\begin{equation*}
\phi(f)=\phi((f-(\sigma+\beta z)+(\sigma+\beta z))=0+\sigma+\beta \phi(z) \tag{3}
\end{equation*}
$$

Now let $b:=\phi(z)$. The function $H(z)=(z-a)(z-\bar{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_{a}=\operatorname{ker} \phi$.

Now let $b:=\phi(z)$. The function $H(z)=(z-a)(z-\bar{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_{a}=$ ker ϕ. Hence

$$
0=\phi(H)=\phi\left(z^{2}\right)-2 \operatorname{Re} a \phi(z)+|a|^{2}=b^{2}-2 b \operatorname{Re} a+|a|^{2}
$$

Now let $b:=\phi(z)$. The function $H(z)=(z-a)(z-\bar{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_{a}=$ ker ϕ. Hence

$$
0=\phi(H)=\phi\left(z^{2}\right)-2 \operatorname{Re} a \phi(z)+|a|^{2}=b^{2}-2 b \operatorname{Re} a+|a|^{2}
$$

Solving this quadratic, yields $b=\operatorname{Re} a \pm i \operatorname{lm} a$. Hence $b=a$ or $b=\bar{a}$.

Now let $b:=\phi(z)$. The function $H(z)=(z-a)(z-\bar{a}) \in A_{\mathbb{R}}(\mathbb{D})$ and so it belongs to $M_{a}=$ ker ϕ. Hence

$$
0=\phi(H)=\phi\left(z^{2}\right)-2 \operatorname{Re} a \phi(z)+|a|^{2}=b^{2}-2 b \operatorname{Re} a+|a|^{2}
$$

Solving this quadratic, yields $b=\operatorname{Re} a \pm i \operatorname{lm} a$. Hence $b=a$ or $b=\overline{\mathrm{a}}$.By (3) we obtain $\phi(f)=\sigma+\beta a=f(a)$ or $\phi(f)=\sigma+\beta \bar{a}=\overline{f(a)}$.

$$
\phi(f)=\phi((f-(\sigma+\beta z)+(\sigma+\beta z))=0+\sigma+\beta \phi(z) .
$$

Bounded analytic functions

$$
\text { Let } H_{\mathbb{R}}^{\infty}(\mathbb{D})=\left\{f \in H^{\infty}: f(z)=\overline{f(\bar{z})}\right\} \text {. }
$$

Corona Theorem for $H_{\mathbb{R}}^{\infty}(\mathbb{D})$

Theorem

$1 \in I\left(f_{1}, \ldots, f_{n}\right) \Leftarrow: \inf \sum_{j=1}^{n}\left|f_{j}\right|>0$.

Bounded analytic functions

$$
\text { Let } H_{\mathbb{R}}^{\infty}(\mathbb{D})=\left\{f \in H^{\infty}: f(z)=\overline{f(\bar{z})}\right\} \text {. }
$$

Corona Theorem for $H_{\mathbb{R}}^{\infty}(\mathbb{D})$

Theorem

$1 \in I\left(f_{1}, \ldots, f_{n}\right) \Leftarrow: \inf \sum_{j=1}^{n}\left|f_{j}\right|>0$.

Proof

Carleson $\longrightarrow \exists g_{j} \in H^{\infty}: 1=\sum_{j=1}^{n} g_{j} f_{j}$ Let $h_{j}(z):=\frac{1}{2}\left(g_{j}(z)+\overline{g_{j}(\bar{z})}\right)$. Then $h_{j} \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ and $\sum_{j=1}^{n} h_{j} f_{j}=1$.

Theorem (Treil)
H^{∞} has the Bass stable rank one; that is:
$|f|+|g| \geq \delta>0 \longrightarrow \exists h \in H^{\infty}: f+h g$ invertible.

Theorem (Treil)

H^{∞} has the Bass stable rank one; that is:
$|f|+|g| \geq \delta>0 \longrightarrow \exists h \in H^{\infty}: f+h g$ invertible.

Does not work for $H_{\mathbb{R}}^{\infty}(\mathbb{D})$:

Theorem (Treil)

H^{∞} has the Bass stable rank one; that is:
$|f|+|g| \geq \delta>0 \longrightarrow \exists h \in H^{\infty}: f+h g$ invertible.

Does not work for $H_{\mathbb{R}}^{\infty}(\mathbb{D})$:
$f(z)=z, g(z)=1-z^{2}$; suppose $\left.u(z):=z+h\left(1-z^{2}\right) \in H_{\mathbb{R}}^{\infty}(\mathbb{D})\right)^{-1}$.

Theorem (Treil)

H^{∞} has the Bass stable rank one; that is:
$|f|+|g| \geq \delta>0 \longrightarrow \exists h \in H^{\infty}: f+h g$ invertible.

Does not work for $H_{\mathbb{R}}^{\infty}(\mathbb{D})$:
$f(z)=z, g(z)=1-z^{2}$; suppose $\left.u(z):=z+h\left(1-z^{2}\right) \in H_{\mathbb{R}}^{\infty}(\mathbb{D})\right)^{-1}$. Then on
] $-1,1$ [: $\lim _{x \rightarrow-1} u(x)=-1$ and $\lim _{x \rightarrow 1} u(x)=1$. Hence $\left.\exists x_{0} \in\right]-1,1\left[\right.$ such that $u\left(x_{0}\right)=0 . \sum$

Theorem (Treil)

H^{∞} has the Bass stable rank one; that is:
$|f|+|g| \geq \delta>0 \longrightarrow \exists h \in H^{\infty}: f+h g$ invertible.

Does not work for $H_{\mathbb{R}}^{\infty}(\mathbb{D})$:
$f(z)=z, g(z)=1-z^{2}$; suppose $\left.u(z):=z+h\left(1-z^{2}\right) \in H_{\mathbb{R}}^{\infty}(\mathbb{D})\right)^{-1}$. Then on
] $-1,1$ [: $\lim _{x \rightarrow-1} u(x)=-1$ and $\lim _{x \rightarrow 1} u(x)=1$. Hence $\left.\exists x_{0} \in\right]-1,1\left[\right.$ such that $u\left(x_{0}\right)=0 . \sum$

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is: $|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that $|f+a h|+|g+b h| \geq \delta>0$.

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is:
$|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that
$|f+a h|+|g+b h| \geq \delta>0$.

Proof

Let $(x, y, t) \in\left(H_{\mathbb{R}}^{\infty}\right)^{3}$ be such that $1=x f+y g+$ th.

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is:
$|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that
$|f+a h|+|g+b h| \geq \delta>0$.

Proof

Let $(x, y, t) \in\left(H_{\mathbb{R}}^{\infty}\right)^{3}$ be such that $1=x f+y g+t h$. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}), such that (\tilde{x}, \tilde{y}) is an invertible pair in $H_{\mathbb{R}}^{\infty}$.

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is:
$|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that
$|f+a h|+|g+b h| \geq \delta>0$.

Proof

Let $(x, y, t) \in\left(H_{\mathbb{R}}^{\infty}\right)^{3}$ be such that $1=x f+y g+t h$. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}), such that (\tilde{x}, \tilde{y}) is an invertible pair in H_{R}^{∞}. Now

$$
u:=\tilde{x} f+\tilde{y} g+t h=(x f+y g+t h)+(\tilde{x}-x) f+(\tilde{y}-y) g=1+\varepsilon .
$$

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is:
$|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that
$|f+a h|+|g+b h| \geq \delta>0$.

Proof

Let $(x, y, t) \in\left(H_{\mathbb{R}}^{\infty}\right)^{3}$ be such that $1=x f+y g+t h$. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}), such that (\tilde{x}, \tilde{y}) is an invertible pair in $H_{\mathbb{R}}^{\infty}$. Now $u:=\tilde{x} f+\tilde{y} g+t h=(x f+y g+t h)+(\tilde{x}-x) f+(\tilde{y}-y) g=1+\varepsilon$.Thus, if ε has small norm, u is invertible.

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is:
$|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that
$|f+a h|+|g+b h| \geq \delta>0$.

Proof

Let $(x, y, t) \in\left(H_{\mathbb{R}}^{\infty}\right)^{3}$ be such that $1=x f+y g+t h$. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}), such that (\tilde{x}, \tilde{y}) is an invertible pair in H_{R}^{∞}. Now $u:=\tilde{x} f+\tilde{y} g+t h=(x f+y g+t h)+(\tilde{x}-x) f+(\tilde{y}-y) g=1+\varepsilon$.Thus, if ε has small norm, u is invertible.
(\tilde{x}, \tilde{y}) being invertible $\longrightarrow t=a \tilde{x}+b \tilde{y}$; hence

Theorem (Mortini, Wick)

$H_{\mathbb{R}}^{\infty}(\mathbb{D})$ has the Bass stable rank 2; that is:
$|f|+|g|+|h| \geq \delta>0 \longrightarrow \exists a, b \in H_{\mathbb{R}}^{\infty}(\mathbb{D})$ such that
$|f+a h|+|g+b h| \geq \delta>0$.

Proof

Let $(x, y, t) \in\left(H_{\mathbb{R}}^{\infty}\right)^{3}$ be such that $1=x f+y g+t h$. The idea is to approximate (x, y) by (\tilde{x}, \tilde{y}), such that (\tilde{x}, \tilde{y}) is an invertible pair in H_{R}^{∞}. Now
$u:=\tilde{x} f+\tilde{y} g+t h=(x f+y g+t h)+(\tilde{x}-x) f+(\tilde{y}-y) g=1+\varepsilon$.Thus, if ε has small norm, u is invertible.
(\tilde{x}, \tilde{y}) being invertible $\longrightarrow t=a \tilde{x}+b \tilde{y}$; hence $u=\tilde{x} f+\tilde{y} g+(a \tilde{x}+b \tilde{y}) h=\tilde{x}(f+a h)+\tilde{y}(g+b h)$.

