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The real disk-algebra

Let Cs(T) be the set of all (complex-valued) continuous
functions on the unit circle T = {z ∈ C : |z| = 1} that are
symmetric; this means that f (e−it) = f (eit).

Associated with
Cs(T) is the subset, As, of those functions in Cs(T) that admit a
holomorphic extension to the interior D of the unit disk.
The holomorphic extension to the disk is given by the
Poisson-integral

P[f ](z) =
1

2π

∫ 2π

0
f (eiθ)

1− |z|2

|z − eiθ|2
dθ.

Note that for z = reit this coincides with the convolution

f ∗ Pr (t) =
1

2π

∫ 2π

0
f (eiθ)Pr (t − θ)dθ
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of f with the Poisson-kernel Pr (t) := 1−r2

1+r2−2r cos t . Using Fourier
representation, we see that the Fourier series of an element
f ∈ As formally writes as F [f ] =

∑∞
n=0 f̂neint , where the Fourier

coefficients, given as usual by the formula
f̂n := 1

2π

∫ 2π
0 f (eit)e−int dt , are real numbers.

It is standard knowledge that the Taylor-MacLaurin series for
P[f ] writes as P[f ](z) =

∑∞
n=0 f̂nzn.
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When As is endowed with the supremum-topology, then As is
isomorphically isometric to the real Banach algebra, AR(D), of
all holomorphic functions on the disk that are real on the
interval ]− 1, 1[ and that admit a continuous extension to the
closure D of D.

Let A(D) be the disk-algebra, that is the algebra of all functions
continuous on D and holomorphic in D. This is the most
prominent example of a complex Banach algebra. Its relation
with AR(D) is given by the following:

AR(D) = {f ∈ A(D) : f (z) = f (z)}.
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By Gelfand-theory, the maximal ideals in a complex
commutative unital Banach algebra are exactly the kernels of
the C-valued multiplicative linear functionals. Since the analytic
polynomials are dense in A(D) it follows from that theory that
the C-valued characters of A(D) are exactly the point
evaluations Φa : f 7→ f (a) for some a ∈ D; hence each maximal
ideal has the form {f ∈ A(D) : f (a) = 0}.
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Lemma

The set of rational functions of the form∑M
n=0 anzn

zN , |z| = 1,

where M, N ∈ N and where an are real, is uniformly dense in
Cs(T).
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Ma := {f ∈ AR(D) : f (a) = 0}.

Ma is an ideal. Is Ma maximal?

Lemma

Let I be an ideal in AR(D). Suppose that for some a ∈ D the
elements f , g ∈ I satisfy f (a) = 0 and g(a) 6= 0. Then the
following assertions hold:

1 If −1 < a < 1, then f
z−a ∈ I;

2 If a ∈ D \ [−1, 1], then f
(z−a)(z−a)

∈ I.
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Proof f (a) = 0 −→ f (a) = 0.
f (z)/(z − a) ∈ AR(D) whenever a ∈]− 1, 1[ and

f
(z−a)(z−a)

∈ AR(D) whenever a ∈ D \ [−1, 1].

Similarly,

g(z)− g(a)

z − a
∈ AR(D), a ∈ ]− 1, 1[,

and

(g(z)− g(a))(g(z)− g(a))

(z − a)(z − a)
∈ AR(D), a ∈ D \ [−1, 1].

Note also that g(a) = g(a).
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Assertion (1) now follows from

f (z)

z − a
= − 1

g(a)

(
g(z)− g(a)

z − a
f (z)− f (z)

z − a
g(z)

)
, (1)

and (2) follows from
f (z)

(z−a)(z−a)
=

1
|g(a)|2

(
(g(z)−g(a))(g(z)−g(a))

(z−a)(z−a)
f (z)− f (z)

(
g(z)−(g(a)+g(a)

)
(z−a)(z−a)

g(z)

)
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Theorem

An ideal M in AR(D) is maximal if and only if M = Ma for some
a ∈ D.

Proof
We first show that the ideals Ma are maximal. So suppose that
f ∈ AR(D) does not vanish at a. Then(
f − f (a)

) (
f − f (a)

)
∈ M(a) and

1 =

(
f − f (a)

) (
f − f (a)

)
|f (a)|2

− f
f − (f (a) + f (a))

|f (a)|2
.

Hence the ideal, [Ma, f ], generated by Ma and f is the whole
algebra and so Ma is maximal.
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Next we show that every maximal ideal in AR(D) has this form.
First we note that a function f ∈ AR(D) is invertible in AR(D) if
and only if f does not vanish on D.

Now let M be a maximal
ideal in AR(D) and suppose that M is not contained in any ideal
of the form Ma. Then for every a ∈ D there exists fa ∈ M such
that fa(a) 6= 0. By a compactness argument, this shows that
there are finitely many functions fj ∈ M such that

δ := min
z∈D

n∑
j=1

|fj(z)|2 > 0. (2)

We are going to show that 1 =
∑n

j=1 gj fj for some gj ∈ AR(D),
contradicting the fact that M is a proper ideal.
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Let

qk =
fk∑n

j=1 |fj |2
, k = 1, . . . , n.

Then
∑n

k=1 qk fk = 1. This equality holds on D.In order to get a
solution (g1, . . . , gn) ∈ (AR(D))n of our Bezout equation∑n

k=1 gk fk , we switch to the boundary T of D.Since qk ∈ Cs(T),

there exist by Lemma 1 rational functions rk (z) =
PM

j=0 aj z j

zN ,
aj ∈ R, such that on T

||qk − rk ||∞ <
1
2

1∑n
j=1 ||fj ||∞

.

Note that N and M can be chosen to be independent of k (just
by adding, if necessary, 0 coefficients).
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Thus, on T, ∣∣ n∑
k=1

zN rk fk
∣∣ =

∣∣ n∑
k=1

rk fk
∣∣ ≥

|
n∑

k=1

qk fk | −
n∑

k=1

||qk − rk ||∞ ||fk ||∞ ≥ 1− 1/2 = 1/2.

Hence the function q :=
∑n

k=1(z
N rk )fk has no zeros on

T.Moreover, since zN rk is a polynomial with real coefficients, it
belongs to AR(D). Thus q ∈ AR(D). Moreover, q ∈ I(f1, . . . , fn),
the ideal generated by the fj in AR(D).By analyticity, q has only
finitely many zeros in D. The symmetry of the functions in
AR(D) implies that these zeros are symmetric with respect to
the real axis.
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Using Lemma 2 we shall now divide out these zeros (taking
pairs (ξ, ξ) whenever the zero ξ is not real) without leaving the
ideal I(f1, . . . , fn).

(Note that for each a ∈ D there is
g ∈ {f1, . . . , fn} such that g(a) 6= 0.)At the end, after finitely
many steps, we obtain a function f ∈ I(f1, . . . , fn) that dose not
have any zeros in D. Hence f is invertible in AR(D) and so
1 = f (f−1) ∈ I(f1, . . . , fn) ⊆ M. This contradiction shows that M
actually is contained in some Ma. Since M is maximal, M = Ma.

R. Mortini Real Banach algebras



The real disk-algebra
Maximal ideals

bounded analytic functions

Using Lemma 2 we shall now divide out these zeros (taking
pairs (ξ, ξ) whenever the zero ξ is not real) without leaving the
ideal I(f1, . . . , fn).(Note that for each a ∈ D there is
g ∈ {f1, . . . , fn} such that g(a) 6= 0.)

At the end, after finitely
many steps, we obtain a function f ∈ I(f1, . . . , fn) that dose not
have any zeros in D. Hence f is invertible in AR(D) and so
1 = f (f−1) ∈ I(f1, . . . , fn) ⊆ M. This contradiction shows that M
actually is contained in some Ma. Since M is maximal, M = Ma.

R. Mortini Real Banach algebras



The real disk-algebra
Maximal ideals

bounded analytic functions

Using Lemma 2 we shall now divide out these zeros (taking
pairs (ξ, ξ) whenever the zero ξ is not real) without leaving the
ideal I(f1, . . . , fn).(Note that for each a ∈ D there is
g ∈ {f1, . . . , fn} such that g(a) 6= 0.)At the end, after finitely
many steps, we obtain a function f ∈ I(f1, . . . , fn) that dose not
have any zeros in D.

Hence f is invertible in AR(D) and so
1 = f (f−1) ∈ I(f1, . . . , fn) ⊆ M. This contradiction shows that M
actually is contained in some Ma. Since M is maximal, M = Ma.

R. Mortini Real Banach algebras



The real disk-algebra
Maximal ideals

bounded analytic functions

Using Lemma 2 we shall now divide out these zeros (taking
pairs (ξ, ξ) whenever the zero ξ is not real) without leaving the
ideal I(f1, . . . , fn).(Note that for each a ∈ D there is
g ∈ {f1, . . . , fn} such that g(a) 6= 0.)At the end, after finitely
many steps, we obtain a function f ∈ I(f1, . . . , fn) that dose not
have any zeros in D. Hence f is invertible in AR(D) and so
1 = f (f−1) ∈ I(f1, . . . , fn) ⊆ M.

This contradiction shows that M
actually is contained in some Ma. Since M is maximal, M = Ma.

R. Mortini Real Banach algebras



The real disk-algebra
Maximal ideals

bounded analytic functions

Using Lemma 2 we shall now divide out these zeros (taking
pairs (ξ, ξ) whenever the zero ξ is not real) without leaving the
ideal I(f1, . . . , fn).(Note that for each a ∈ D there is
g ∈ {f1, . . . , fn} such that g(a) 6= 0.)At the end, after finitely
many steps, we obtain a function f ∈ I(f1, . . . , fn) that dose not
have any zeros in D. Hence f is invertible in AR(D) and so
1 = f (f−1) ∈ I(f1, . . . , fn) ⊆ M. This contradiction shows that M
actually is contained in some Ma. Since M is maximal, M = Ma.

R. Mortini Real Banach algebras



The real disk-algebra
Maximal ideals

bounded analytic functions

Whereas in complex (commutative unital) Banach algebras
maximal ideals always have co-dimension 1, we are faced here
with a different situation.

Theorem

Let a ∈ D. Then

1 Ma has co-dimension 1 (in the real vector space AR(D)) if
and only if a ∈ [−1, 1].

2 Ma has co-dimension 2 if and only if a ∈ D \ [−1, 1].
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Proof
For (1), let a ∈ [−1, 1] and let f ∈ AR(D). Then f (a) is real and
so

f = (f − f (a)) + f (a) · 1 ∈ vect[Ma, 1].

For (2), let a ∈ D \ [−1, 1]. We claim that
AR(D) = vect[Ma, 1, z].Let f ∈ AR(D). Since {1, a} is a Hamel
base of the real vector space C over R, every f (a) ∈ C writes as
f (a) = σ · 1 + β · a where σ, β ∈ R.Hence f − (σ + βz) ∈ Ma and
so

f (z) =
(
f (z)− (σ + βz)

)
+ σ + βz ∈ vect[Ma, 1, z].
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Next we shall determine the (non-zero) multiplicative linear
functionals φ on AR(D); we have to distinguish two cases:

either
the target space of φ is the field of reals or it is the real division
algebra C, regarded as a vector space over R. We denote it by
RC.
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Theorem

(1) The only multiplicative R-linear functionals φ : AR(D) → R

on AR(D) are given by φ(f ) = f (a), where a ∈ [−1, 1].

Their
kernels are the maximal ideals Ma that have co-dimension
1 in the real vector space AR(D).

(2) The remaining R-linear multiplicative functionals have
target space RC and are given by φ(f ) = f (a) or
φ(f ) = f (a), where a ∈ D \ [−1, 1]. Their kernels are the
maximal ideals Ma that have co-dimension 2 in the real
vector space AR(D).
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Proof
First we note that the kernel of any multiplicative R-linear
functional φ : AR(D) → K is a maximal ideal (here K is either R
or RC).

Indeed, let I = ker φ. Then I is easily seen to be an
ideal.Now let f ∈ AR(D) \ I. Then φ(f ) 6= 0. Moreover,
φ(1) = 1.Using the identity z2 − (2 Re z)z + |z|2 = 0 for any
z ∈ C, we see that

φ
(
(f − φ(f )

)(
f − φ(f )

))
= φ(f 2)− (2 Re φ(f ))φ(f ) + |φ(f )|2 = 0.

Thus we may conclude from

1 =

(
f − φ(f )

) (
f − φ(f )

)
|φ(f )|2

− f
f − (φ(f ) + φ(f ))

|φ(f )|2
;

that the ideal generated by I and f is the whole algebra. Hence
I is maximal.
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Thus, by Theorem 3, ker φ = Ma for some a ∈ D.

To prove the
assertions (1) and (2) we recall that φ(1) = 1.

For (1), suppose that a ∈ [−1, 1]. Then, for any f ∈ AR(D), the
constant function z 7→ f (a) is in AR(D) and so
f − f (a) ∈ Ma = ker φ. Thus we obtain from
f = (f − f (a)) + f (a) · 1 that φ(f ) = 0 + f (a)φ(1) = f (a).

For (2), let a ∈ D \ [−1, 1] and f ∈ AR(D). Then, as in
Proposition 4, we consider the affine function σ + βz, where
σ, β ∈ R are chosen so that σ + βa = f (a). Then
f − (σ + βz) ∈ Ma = ker φ; hence

φ(f ) = φ
((

f − (σ + βz) + (σ + βz)
)

= 0 + σ + βφ(z). (3)
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Now let b := φ(z). The function H(z) = (z − a)(z − a) ∈ AR(D)
and so it belongs to Ma = ker φ.

Hence

0 = φ(H) = φ(z2)− 2Re a φ(z) + |a|2 = b2 − 2b Re a + |a|2.

Solving this quadratic, yields b = Re a± i Im a. Hence b = a or
b = a.By (3) we obtain φ(f ) = σ + βa = f (a) or
φ(f ) = σ + βa = f (a).

φ(f ) = φ
((

f − (σ + βz) + (σ + βz)
)

= 0 + σ + βφ(z).
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Bounded analytic functions

Let H∞
R

(D) = {f ∈ H∞ : f (z) = f (z)}.
Corona Theorem for H∞

R
(D)

Theorem

1 ∈ I(f1, . . . , fn) ⇐ : inf
∑n

j=1 |fj | > 0.

Proof
Carleson −→ ∃gj ∈ H∞ : 1 =

∑n
j=1 gj fj Let

hj(z) := 1
2(gj(z) + gj(z)). Then hj ∈ H∞

R
(D) and

∑n
j=1 hj fj = 1.
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Theorem (Treil)

H∞ has the Bass stable rank one; that is:
|f |+ |g| ≥ δ > 0 −→ ∃ h ∈ H∞ : f + hg invertible.

Does not work for H∞
R

(D):
f (z) = z, g(z) = 1− z2; suppose
u(z) := z + h(1− z2) ∈ H∞

R
(D))−1.Then on

]− 1, 1[: limx→−1 u(x) = −1 and limx→1 u(x) = 1. Hence

∃x0 ∈]− 1, 1[ such that u(x0) = 0. E
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Theorem (Mortini, Wick)

H∞
R

(D) has the Bass stable rank 2; that is:
|f |+ |g|+ |h| ≥ δ > 0 −→ ∃a, b ∈ H∞

R
(D) such that

|f + ah|+ |g + bh| ≥ δ > 0.

Proof
Let (x , y , t) ∈ (H∞

R
)3 be such that 1 = xf + yg + th. The idea is

to approximate (x , y) by (x̃ , ỹ), such that (x̃ , ỹ) is an invertible
pair in H∞

R
. Now

u := x̃ f +ỹg+th = (xf +yg+th)+(x̃−x)f +(ỹ−y)g = 1+ε.Thus,
if ε has small norm, u is invertible.
(x̃ , ỹ) being invertible −→ t = ax̃ + bỹ ; hence
u = x̃ f + ỹg + (ax̃ + bỹ)h = x̃(f + ah) + ỹ(g + bh).
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u := x̃ f +ỹg+th = (xf +yg+th)+(x̃−x)f +(ỹ−y)g = 1+ε.Thus,
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Thus,
if ε has small norm, u is invertible.
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