The generalized corona problem

Raymond Mortini
Université Paul Verlaine - Metz

Oberwolfach , November, 2010

Rubel's problem

When / equals J ?
Some finitely generated J
Canonical generators

Rubel's problem

Rubel's problem

Let H^{∞} be the algebra of bounded analytic functions in the open unit disk \mathbb{D}.

Rubel's problem

Let H^{∞} be the algebra of bounded analytic functions in the open unit disk \mathbb{D}.
For $f_{1}, \ldots, f_{n} \in H^{\infty}$ let

$$
I=I\left(f_{1}, \ldots, f_{n}\right)=\left\{\sum_{j=1}^{n} u_{j} f_{j}: u_{j} \in H^{\infty}\right\}
$$

be the corresponding finitely generated ideal in H^{∞}

Rubel's problem

Let H^{∞} be the algebra of bounded analytic functions in the open unit disk \mathbb{D}.
For $f_{1}, \ldots, f_{n} \in H^{\infty}$ let

$$
I=I\left(f_{1}, \ldots, f_{n}\right)=\left\{\sum_{j=1}^{n} u_{j} f_{j}: u_{j} \in H^{\infty}\right\}
$$

be the corresponding finitely generated ideal in H^{∞} and let

$$
J=J\left(f_{1}, \ldots, f_{n}\right)=\left\{f \in H^{\infty}: \exists C=C(f)>0,|f| \leq C \sum_{j=1}^{n}\left|f_{j}\right|\right\}
$$

be its associated J-form, which we will call an ideal of finite type.

Rubel's problem is to give a description of those ideals. The questions are:

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?
ii) When J is finitely generated?

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?
ii) When J is finitely generated?

Recall that by Tolokonnikov $J=\bigcap_{b \text { IBP }}\left(I+b H^{\infty}\right)$.

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?
ii) When J is finitely generated?

Recall that by Tolokonnikov $J=\bigcap_{b \text { IBP }}\left(I+b H^{\infty}\right)$.
iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above?

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?
ii) When J is finitely generated?

Recall that by Tolokonnikov $J=\bigcap_{b \mathrm{IBP}}\left(I+b H^{\infty}\right)$.
iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above?
Due to the Rubel-McVoy theorem, J then is finitely generated, and J contains a Carleson-Newman Blaschke product.

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?
ii) When J is finitely generated?

Recall that by Tolokonnikov $J=\bigcap_{b \text { IBP }}\left(I+b H^{\infty}\right)$.
iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above?
Due to the Rubel-McVoy theorem, J then is finitely generated, and J contains a Carleson-Newman Blaschke product.
iv) Is J finitely generated if and only if J contains a

Carleson-Newman Blaschke product

Rubel's problem is to give a description of those ideals.
The questions are:
i) When $I=J$?
ii) When J is finitely generated?

Recall that by Tolokonnikov $J=\bigcap_{b \text { IBP }}\left(I+b H^{\infty}\right)$.
iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above?
Due to the Rubel-McVoy theorem, J then is finitely generated, and J contains a Carleson-Newman Blaschke product.
iv) Is J finitely generated if and only if J contains a

Carleson-Newman Blaschke product (or equivalently if and only if $Z(J) \subseteq G$)?

Exampleto iii) [Mo97]: If b_{1} and b_{2} are interpolating Blaschke products (without common zeros in \mathbb{D}) then

Exampleto iii) [Mo97]: If b_{1} and b_{2} are interpolating Blaschke products (without common zeros in \mathbb{D}) then

$$
J\left(b_{1}^{N}, b_{2}^{N}\right)=\bigcap_{j=1}^{N}\left(I+b_{j} H^{\infty}\right)
$$

Exampleto iii) [Mo97]: If b_{1} and b_{2} are interpolating Blaschke products (without common zeros in \mathbb{D}) then

$$
J\left(b_{1}^{N}, b_{2}^{N}\right)=\bigcap_{j=1}^{N}\left(I+b_{j} H^{\infty}\right)
$$

where b_{j} is the inner factor of $b_{1}+\varepsilon_{j} b_{2}, \varepsilon_{j}>0$ small, $\varepsilon_{j} \neq \varepsilon_{k}$, $j=3, \ldots, N$,

When $I=J$?

When $I=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

When $I=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_{1}, f_{2} \in H^{\infty}$ have no common factors. Let $I=I\left(f_{1}, f_{2}\right)$ and $J=J\left(f_{1}, f_{2}\right)$. Equivalent are:

When $I=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_{1}, f_{2} \in H^{\infty}$ have no common factors. Let $I=I\left(f_{1}, f_{2}\right)$ and $J=J\left(f_{1}, f_{2}\right)$. Equivalent are:
$1 \quad I=J$;

When $I=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_{1}, f_{2} \in H^{\infty}$ have no common factors. Let $I=I\left(f_{1}, f_{2}\right)$ and $J=J\left(f_{1}, f_{2}\right)$. Equivalent are:
$1 \quad I=J$;
$2 \operatorname{ord}(I, m)=1$ for every $m \in Z(I)$;

When $I=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_{1}, f_{2} \in H^{\infty}$ have no common factors. Let $I=I\left(f_{1}, f_{2}\right)$ and $J=J\left(f_{1}, f_{2}\right)$. Equivalent are:
$1 \quad I=J$;
$2 \operatorname{ord}(I, m)=1$ for every $m \in Z(I)$;
3 I contains an interpolating Blaschke product;

When $I=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_{1}, f_{2} \in H^{\infty}$ have no common factors. Let $I=I\left(f_{1}, f_{2}\right)$ and $J=J\left(f_{1}, f_{2}\right)$. Equivalent are:
$1 \quad I=J$;
$2 \operatorname{ord}(I, m)=1$ for every $m \in Z(I)$;
3 I contains an interpolating Blaschke product;
4 J contains an interpolating Blaschke product;

When $/=J$?

Theorem (Corona theorem, Carleson 1962)

$1 \in J \Longrightarrow I=J$.

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_{1}, f_{2} \in H^{\infty}$ have no common factors. Let $I=I\left(f_{1}, f_{2}\right)$ and $J=J\left(f_{1}, f_{2}\right)$. Equivalent are:
$1 \quad I=J$;
$2 \operatorname{ord}(I, m)=1$ for every $m \in Z(I)$;
3 I contains an interpolating Blaschke product;
$4 J$ contains an interpolating Blaschke product;
$5\left|f_{1}(z)\right|^{2}+\left(1-|z|^{2}\right)\left|f_{1}^{\prime}(z)\right|+\left|f_{2}(z)\right|^{2}+\left(1-|z|^{2}\right)\left|f_{2}^{\prime}(z)\right| \geq \delta>0$ for every $z \in \mathbb{D}$.

Theorem (Mortini 1997)

Let B and C be interpolating Blaschke products. Then

$$
\begin{gathered}
I\left(B^{N}, B^{N-1} C, B^{N-2} C^{2}, \ldots, B C^{N-1}, C^{N}\right)= \\
=J\left(B^{N}, B^{N-1} C, B^{N-2} C^{2}, \ldots, B C^{N-1}, C^{N}\right)=J\left(B^{N}, C^{N}\right)
\end{gathered}
$$

Theorem (Mortini 1997)

Let B and C be interpolating Blaschke products. Then

$$
\begin{gathered}
I\left(B^{N}, B^{N-1} C, B^{N-2} C^{2}, \ldots, B C^{N-1}, C^{N}\right)= \\
=J\left(B^{N}, B^{N-1} C, B^{N-2} C^{2}, \ldots, B C^{N-1}, C^{N}\right)=J\left(B^{N}, C^{N}\right)
\end{gathered}
$$

- (Mortini) [> 1997]

Proposition

For $j=1,2$ let B_{j}, C_{j} be interpolating Blaschke products. Then

$$
I\left(B_{1} B_{2}, B_{1} C_{2}, C_{1} C_{2}\right)=J\left(B_{1} B_{2}, B_{1} C_{2}, C_{1} C_{2}\right) .
$$

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$.

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$.

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$. Thus, $f=x C_{2}+y B_{1} B_{2}$ for some functions $x, y \in H^{\infty}$ (here we have used that C_{2} is an interpolating Blaschke product).

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$. Thus, $f=x C_{2}+y B_{1} B_{2}$ for some functions $x, y \in H^{\infty}$ (here we have used that C_{2} is an interpolating Blaschke product). Dividing by $C_{1} C_{2}$ gives

$$
\begin{equation*}
\frac{f}{C_{1} C_{2}}=\frac{y B_{1} B_{2}}{C_{1} C_{2}}+\frac{x}{C_{1}} \tag{2}
\end{equation*}
$$

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$. Thus, $f=x C_{2}+y B_{1} B_{2}$ for some functions $x, y \in H^{\infty}$ (here we have used that C_{2} is an interpolating Blaschke product). Dividing by $C_{1} C_{2}$ gives

$$
\begin{equation*}
\frac{f}{C_{1} C_{2}}=\frac{y B_{1} B_{2}}{C_{1} C_{2}}+\frac{x}{C_{1}} \tag{2}
\end{equation*}
$$

But on $Z_{\mathbb{D}}\left(B_{1}\right)$ the quotient $\frac{f}{C_{1} C_{2}}$ is bounded (by (1)).

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$. Thus, $f=x C_{2}+y B_{1} B_{2}$ for some functions $x, y \in H^{\infty}$ (here we have used that C_{2} is an interpolating Blaschke product). Dividing by $C_{1} C_{2}$ gives

$$
\begin{equation*}
\frac{f}{C_{1} C_{2}}=\frac{y B_{1} B_{2}}{C_{1} C_{2}}+\frac{x}{C_{1}} \tag{2}
\end{equation*}
$$

But on $Z_{\mathbb{D}}\left(B_{1}\right)$ the quotient $\frac{f}{C_{1} C_{2}}$ is bounded (by (1)). Hence, by (2), $\frac{x}{C_{1}}$ is bounded on $Z_{\mathbb{D}}\left(B_{1}\right)$.

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$. Thus, $f=x C_{2}+y B_{1} B_{2}$ for some functions $x, y \in H^{\infty}$ (here we have used that C_{2} is an interpolating Blaschke product). Dividing by $C_{1} C_{2}$ gives

$$
\begin{equation*}
\frac{f}{C_{1} C_{2}}=\frac{y B_{1} B_{2}}{C_{1} C_{2}}+\frac{x}{C_{1}} \tag{2}
\end{equation*}
$$

But on $Z_{\mathbb{D}}\left(B_{1}\right)$ the quotient $\frac{f}{C_{1} C_{2}}$ is bounded (by (1)). Hence, by (2), $\frac{x}{C_{1}}$ is bounded on $Z_{\mathbb{D}}\left(B_{1}\right)$. So $x \in I\left(C_{1}, B_{1}\right)$ (note that B_{1} is an interpolating Blaschke product.)

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I)=\emptyset$. Let $f \in H^{\infty}$ satisfy

$$
\begin{equation*}
|f| \leq\left|B_{1} B_{2}\right|+\left|B_{1} C_{2}\right|+\left|C_{1} C_{2}\right| \tag{1}
\end{equation*}
$$

Then on $Z_{\mathbb{D}}\left(C_{2}\right)$ we have $|f| \leq\left|B_{1} B_{2}\right|$. Thus, $f=x C_{2}+y B_{1} B_{2}$ for some functions $x, y \in H^{\infty}$ (here we have used that C_{2} is an interpolating Blaschke product). Dividing by $C_{1} C_{2}$ gives

$$
\begin{equation*}
\frac{f}{C_{1} C_{2}}=\frac{y B_{1} B_{2}}{C_{1} C_{2}}+\frac{x}{C_{1}} \tag{2}
\end{equation*}
$$

But on $Z_{\mathbb{D}}\left(B_{1}\right)$ the quotient $\frac{f}{C_{1} C_{2}}$ is bounded (by (1)). Hence, by (2), $\frac{x}{C_{1}}$ is bounded on $Z_{\mathbb{D}}\left(B_{1}\right)$. So $x \in I\left(C_{1}, B_{1}\right)$ (note that B_{1} is an interpolating Blaschke product.) Hence $f=x C_{2}+y B_{1} B_{2} \in I\left(C_{1} C_{2}, B_{1} C_{2}, B_{1} B_{2}\right)$.

Theorem

Let $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ be Blaschke products without common zeros and let $I=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, C_{1} C_{2} C_{3}\right)$,

Theorem

Let $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ be Blaschke products without common zeros and let
$I=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, C_{1} C_{2} C_{3}\right)$,
$I^{*}=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, B_{2} C_{2} C_{3}\right)$.

Theorem

Let $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ be Blaschke products without common zeros and let
$I=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, C_{1} C_{2} C_{3}\right)$, $I^{*}=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, B_{2} C_{2} C_{3}\right)$.
Then
(1) $I^{*}=\left(I^{*}+B_{1} H^{\infty}\right) \cap\left(I^{*}+B_{2} H^{\infty}\right) \cap\left(I^{*}+C_{3} H^{\infty}\right)$.

Theorem

Let $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ be Blaschke products without common zeros and let
$I=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, C_{1} C_{2} C_{3}\right)$, $I^{*}=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, B_{2} C_{2} C_{3}\right)$.
Then
(1) $I^{*}=\left(I^{*}+B_{1} H^{\infty}\right) \cap\left(I^{*}+B_{2} H^{\infty}\right) \cap\left(I^{*}+C_{3} H^{\infty}\right)$.
(2) $I=I^{*}$ if and only if $I\left(B_{1}, B_{2}\right)=I\left(B_{1}, C_{1}\right)$.

Theorem

Let $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ be Blaschke products without common zeros and let
$I=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, C_{1} C_{2} C_{3}\right)$, $I^{*}=I\left(B_{1} B_{2} B_{3}, B_{1} B_{2} C_{3}, B_{1} C_{2} C_{3}, \mathbf{B}_{2} C_{2} C_{3}\right)$.
Then
(1) $I^{*}=\left(I^{*}+B_{1} H^{\infty}\right) \cap\left(I^{*}+B_{2} H^{\infty}\right) \cap\left(I^{*}+C_{3} H^{\infty}\right)$.
(2) $I=I^{*}$ if and only if $I\left(B_{1}, B_{2}\right)=I\left(B_{1}, C_{1}\right)$.

If B_{1}, B_{2} and C_{3} are interpolating Blaschke products, then $I^{*}=J^{*}$, where J^{*} is the J-form of I^{*}.

Theorem

For $N \geq 3$ let I be the ideal
$\prime\left(\prod_{j=1}^{N} B_{j}\left(\prod_{j=1}^{N-1} B_{j} C_{N},\left(\prod_{j=1}^{N-2} B_{j} C_{N-1} C_{N} \ldots, B_{i}\left(\prod_{j=2}^{N} C_{j}\right), \prod_{j=1}^{N} c_{i}\right)\right.\right.$,

Theorem

For $N \geq 3$ let I be the ideal
$\prime\left(\prod_{j=1}^{N} B_{j}\left(\prod_{j=1}^{N-1} B_{j} C_{N},\left(\prod_{j=1}^{N-2} B_{j} C_{N-1} C_{N}, \ldots, B_{i}\left(\prod_{j=2}^{N} C_{j}\right), \prod_{j=1}^{N} c_{j}\right)\right.\right.$,
and J the associated J-ideal,

Theorem

For $N \geq 3$ let I be the ideal
$\prime\left(\prod_{j=1}^{N} B_{j},\left(\prod_{j=1}^{N-1} B_{j}\right) C_{N},\left(\prod_{j=1}^{N-2} B_{j}\right) C_{N-1} C_{N}, \ldots, B_{1}\left(\prod_{j=2}^{N} C_{j}\right), \prod_{j=1}^{N} C_{j}\right)$,
and J the associated J-ideal, where the B_{j} and C_{k} are interpolating Blaschke products without common zeros in \mathbb{D}.

Theorem

For $N \geq 3$ let I be the ideal
$I\left(\prod_{j=1}^{N} B_{j},\left(\prod_{j=1}^{N-1} B_{j}\right) C_{N},\left(\prod_{j=1}^{N-2} B_{j}\right) C_{N-1} C_{N}, \ldots, B_{1}\left(\prod_{j=2}^{N} C_{j}\right), \prod_{j=1}^{N} C_{j}\right)$,
and J the associated J-ideal, where the B_{j} and C_{k} are interpolating Blaschke products without common zeros in \mathbb{D}.
Suppose that
$\frac{C_{j}}{B_{j}}$ is bounded on $Z\left(B_{k+1}\right)$ for $j=1,2, \ldots, k$ and $k=1,2, \ldots, N-2$.

Theorem

For $N \geq 3$ let I be the ideal
$I\left(\prod_{j=1}^{N} B_{j},\left(\prod_{j=1}^{N-1} B_{j}\right) C_{N},\left(\prod_{j=1}^{N-2} B_{j}\right) C_{N-1} C_{N}, \ldots, B_{1}\left(\prod_{j=2}^{N} C_{j}\right), \prod_{j=1}^{N} C_{j}\right)$,
and J the associated J-ideal, where the B_{j} and C_{k} are interpolating Blaschke products without common zeros in \mathbb{D}.
Suppose that
$\frac{C_{j}}{B_{j}}$ is bounded on $Z\left(B_{k+1}\right)$ for $j=1,2, \ldots, k$ and $k=1,2, \ldots, N-2$.
Then $I=J$. unsymmetric case

Rubel's problem
When / equals J?
Some finitely generated J
Canonical generators

Some finitely generated J

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal $J(b, c)$ is three-generated.

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal $J(b, c)$ is three-generated. Additionally, if b and c have no common zeros in \mathbb{D}, then there exists interpolating Blaschke products B, B^{*}, C and C^{*} such that

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal $J(b, c)$ is three-generated. Additionally, if b and c have no common zeros in \mathbb{D}, then there exists interpolating Blaschke products B, B^{*}, C and C^{*} such that
$1 b=B B^{*}, c=C C^{*}$,

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal $J(b, c)$ is three-generated. Additionally, if b and c have no common zeros in \mathbb{D}, then there exists interpolating Blaschke products B, B^{*}, C and C^{*} such that
$1 b=B B^{*}, c=C C^{*}$,
$2 J(b, c)=I\left(B B^{*}, C C^{*}, B C\right)$.

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal $J(b, c)$ is three-generated. Additionally, if b and c have no common zeros in \mathbb{D}, then there exists interpolating Blaschke products B, B^{*}, C and C^{*} such that
$1 b=B B^{*}, c=C C^{*}$,
$2 J(b, c)=I\left(B B^{*}, C C^{*}, B C\right)$.
In particular we have $J\left(B B^{*}, C C^{*}, B C\right)=I\left(B B^{*}, C C^{*}, B C\right)$.

Canonical generators

Canonical generators

Theorem

Let $I=I\left(f_{1}, \ldots, f_{m}\right)$ be a finitely generated ideal of finite order N in $H^{\infty}, N \in \mathbb{N}$.

Canonical generators

Theorem

Let $I=I\left(f_{1}, \ldots, f_{m}\right)$ be a finitely generated ideal of finite order N in $H^{\infty}, N \in \mathbb{N}$. Then I is generated by $N+1$ Carleson-Newman Blaschke products of order N.

Canonical generators

Theorem

Let $I=I\left(f_{1}, \ldots, f_{m}\right)$ be a finitely generated ideal of finite order N in $H^{\infty}, N \in \mathbb{N}$. Then I is generated by $N+1$ Carleson-Newman Blaschke products of order N. Moreover, fixing any function f in I of the form $f=\prod_{j=1}^{N} B_{j}$, where the B_{j} are interpolating Blaschke products, then there exist Carleson-Newman Blaschke products C_{j} of order $j(j=1, \ldots, N)$ such that

Canonical generators

Theorem

Let $I=I\left(f_{1}, \ldots, f_{m}\right)$ be a finitely generated ideal of finite order N in $H^{\infty}, N \in \mathbb{N}$. Then I is generated by $N+1$ Carleson-Newman Blaschke products of order N. Moreover, fixing any function f in I of the form $f=\prod_{j=1}^{N} B_{j}$, where the B_{j} are interpolating Blaschke products, then there exist Carleson-Newman Blaschke products C_{j} of order $j(j=1, \ldots, N)$ such that

$$
I=I\left(\prod_{j=1}^{N} B_{j}, \quad C_{1} \prod_{j=2}^{N} B_{j}, \quad C_{2} \prod_{j=3}^{N} B_{j}, \cdots \cdots, \quad C_{N-1} B_{N}, \quad C_{N}\right)
$$

The same result holds for J.

Theorem

Suppose that C and D are Blaschke products without common zeros in \mathbb{D} such that $I(C, D)$ is a proper ideal.

Theorem

Suppose that C and D are Blaschke products without common zeros in \mathbb{D} such that $I(C, D)$ is a proper ideal. Let I be the ideal

$$
I\left(C^{N}, C^{N-1} D, C^{N-2} D^{2}, \ldots, C D^{N-1}, D^{N}\right) .
$$

Theorem

Suppose that C and D are Blaschke products without common zeros in \mathbb{D} such that $I(C, D)$ is a proper ideal. Let I be the ideal

$$
I\left(C^{N}, C^{N-1} D, C^{N-2} D^{2}, \ldots, C D^{N-1}, D^{N}\right)
$$

If $\left\{f_{1}, \ldots, f_{m}\right\}$ is another set of generators for I, then $m \geq N+1$; that is $N+1$ is the minimal number of generators for l.

Proposition

Let $f, g \in H^{\infty}$ have no common factor. Suppose that $Z^{\infty}(f) \cap Z^{\infty}(g) \neq \emptyset$. Then
$l\left(f^{N}, f^{N-1} g, \ldots, f g^{N-1}, g^{N}\right) \neq J\left(f^{N}, f^{N-1} g, \ldots, f g^{N-1}, g^{N}\right)$

