The generalized corona problem

Raymond Mortini Université Paul Verlaine - Metz

Oberwolfach , November, 2010

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Rubel's problem

R. Mortini

イロト イヨト イヨト イヨト

E

Rubel's problem

Let H^{∞} be the algebra of bounded analytic functions in the open unit disk \mathbb{D} .

・ロト ・四ト ・ヨト ・ヨト

E.

Rubel's problem

Let H^{∞} be the algebra of bounded analytic functions in the open unit disk \mathbb{D} . For $f_1, \ldots, f_n \in H^{\infty}$ let

$$I = I(f_1,\ldots,f_n) = \{\sum_{j=1}^n u_j f_j : u_j \in H^\infty\}$$

be the corresponding finitely generated ideal in H^{∞}

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

3

Rubel's problem

Let H^{∞} be the algebra of bounded analytic functions in the open unit disk \mathbb{D} . For $f_1, \ldots, f_n \in H^{\infty}$ let

$$I = I(f_1,\ldots,f_n) = \{\sum_{j=1}^n u_j f_j : u_j \in H^\infty\}$$

be the corresponding finitely generated ideal in H^{∞} and let

$$J = J(f_1, ..., f_n) = \{f \in H^\infty : \exists C = C(f) > 0, |f| \le C \sum_{j=1}^n |f_j|\}$$

be its associated *J*-form, which we will call an ideal of finite type.

Rubel's problem is to give a description of those ideals. The questions are:

イロト イヨト イヨト イヨト

E.

Rubel's problem is to give a description of those ideals. The questions are: i) When I = J?

・ロン ・四 ・ ・ ヨン・

E.

Rubel's problem is to give a description of those ideals. The questions are:

i) When I = J?

ii) When J is finitely generated?

・ロト ・四ト ・ヨト ・ヨト

E

- i) When I = J?
- ii) When J is finitely generated?

Recall that by Tolokonnikov $J = \bigcap_{b \text{ IBP}} (I + bH^{\infty})$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

E

- i) When I = J?
- ii) When J is finitely generated?

Recall that by Tolokonnikov $J = \bigcap_{b \text{ IBP}} (I + bH^{\infty})$.

iii) When a finite number of interpolating Blaschke products suffices to represent *J* in the form above?

・ロン ・四 ・ ・ ヨン・

3

- i) When I = J?
- ii) When J is finitely generated?

Recall that by Tolokonnikov $J = \bigcap_{b \text{ IBP}} (I + bH^{\infty})$.

iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above? Due to the Rubel-McVoy theorem , J then is finitely generated, and J contains a Carleson-Newman Blaschke product.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

- i) When I = J?
- ii) When J is finitely generated?

Recall that by Tolokonnikov $J = \bigcap_{b \text{ IBP}} (I + bH^{\infty})$.

iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above? Due to the Rubel-McVoy theorem, J then is finitely generated, and J contains a Carleson-Newman Blaschke product.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

iv) Is *J* finitely generated if and only if *J* contains a Carleson-Newman Blaschke product

- i) When I = J?
- ii) When J is finitely generated?

Recall that by Tolokonnikov $J = \bigcap_{b \text{ IBP}} (I + bH^{\infty})$.

iii) When a finite number of interpolating Blaschke products suffices to represent J in the form above? Due to the Rubel-McVoy theorem, J then is finitely generated, and J contains a Carleson-Newman Blaschke product.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3

iv) Is *J* finitely generated if and only if *J* contains a Carleson-Newman Blaschke product (or equivalently if and only if $Z(J) \subseteq G$)?

Exampleto iii) [Mo97]: If b_1 and b_2 are interpolating Blaschke products (without common zeros in \mathbb{D}) then

・ロン ・四 ・ ・ ヨン・

E.

Exampleto iii) [Mo97]: If b_1 and b_2 are interpolating Blaschke products (without common zeros in \mathbb{D}) then

$$J(b_1^N, b_2^N) = \bigcap_{j=1}^N (I + b_j H^\infty),$$

・ロン ・四 ・ ・ ヨン・

E.

Exampleto iii) [Mo97]: If b_1 and b_2 are interpolating Blaschke products (without common zeros in \mathbb{D}) then

$$J(b_1^N, b_2^N) = \bigcap_{j=1}^N (I + b_j H^\infty),$$

where b_j is the inner factor of $b_1 + \varepsilon_j b_2$, $\varepsilon_j > 0$ small, $\varepsilon_j \neq \varepsilon_k$, $j = 3, \ldots, N$,

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

R. Mortini

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

Theorem (Gorkin-Nicolau-Mortini, 1995)

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

Theorem (Gorkin-Nicolau-Mortini, 1995)

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

Theorem (Gorkin-Nicolau-Mortini, 1995)

Suppose that $f_1, f_2 \in H^{\infty}$ have no common factors. Let $I = I(f_1, f_2)$ and $J = J(f_1, f_2)$. Equivalent are: 1 I = J; 2 ord(I, m) = 1 for every $m \in Z(I)$;

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

Theorem (Gorkin-Nicolau-Mortini, 1995)

$$1 \quad I = J;$$

- 2 ord(I, m) = 1 for every $m \in Z(I)$;
- I contains an interpolating Blaschke product;

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

Theorem (Gorkin-Nicolau-Mortini, 1995)

1
$$I = J;$$

- 2 ord(I, m) = 1 for every $m \in Z(I)$;
- I contains an interpolating Blaschke product;
- J contains an interpolating Blaschke product;

When I = J?

Theorem (Corona theorem, Carleson 1962)

 $1 \in J \Longrightarrow I = J.$

Theorem (Gorkin-Nicolau-Mortini, 1995)

1
$$I = J;$$

- 2 ord(I, m) = 1 for every $m \in Z(I)$;
- I contains an interpolating Blaschke product;
- 4 J contains an interpolating Blaschke product;
- 5 $|f_1(z)|^2 + (1 |z|^2)|f_1'(z)| + |f_2(z)|^2 + (1 |z|^2)|f_2'(z)| \ge \delta > 0$ for every $z \in \mathbb{D}$.

Theorem (Mortini 1997)

Let B and C be interpolating Blaschke products. Then

$$\begin{split} &I(B^N, B^{N-1}C, B^{N-2}C^2, \dots, BC^{N-1}, C^N) = \\ &= J(B^N, B^{N-1}C, B^{N-2}C^2, \dots, BC^{N-1}, C^N) = J(B^N, C^N). \end{split}$$

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

Theorem (Mortini 1997)

Let B and C be interpolating Blaschke products. Then

$$egin{aligned} &I(B^N,B^{N-1}C,B^{N-2}C^2,\ldots,BC^{N-1},C^N)=\ &=J(B^N,B^{N-1}C,B^{N-2}C^2,\ldots,BC^{N-1},C^N)=J(B^N,C^N). \end{aligned}$$

• (Mortini) [> 1997]

Proposition

For j = 1, 2 let B_j, C_j be interpolating Blaschke products. Then

$$I(B_1B_2, B_1C_2, C_1C_2) = J(B_1B_2, B_1C_2, C_1C_2).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$.

R. Mortini

-2

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

ヘロン ヘロン ヘルン 小田 とうしょう

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

イロン イロン イロン イロン 一日

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \leq |B_1B_2|$.

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \le |B_1B_2|$. Thus, $f = xC_2 + yB_1B_2$ for some functions $x, y \in H^{\infty}$ (here we have used that C_2 is an interpolating Blaschke product).

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \le |B_1B_2|$. Thus, $f = xC_2 + yB_1B_2$ for some functions $x, y \in H^{\infty}$ (here we have used that C_2 is an interpolating Blaschke product). Dividing by C_1C_2 gives

$$\frac{f}{C_1 C_2} = \frac{y B_1 B_2}{C_1 C_2} + \frac{x}{C_1}$$
(2)

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \le |B_1B_2|$. Thus, $f = xC_2 + yB_1B_2$ for some functions $x, y \in H^{\infty}$ (here we have used that C_2 is an interpolating Blaschke product). Dividing by C_1C_2 gives

$$\frac{f}{C_1 C_2} = \frac{y B_1 B_2}{C_1 C_2} + \frac{x}{C_1}$$
(2)

But on $Z_{\mathbb{D}}(B_1)$ the quotient $\frac{f}{C_1C_2}$ is bounded (by (1)).

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \le |B_1B_2|$. Thus, $f = xC_2 + yB_1B_2$ for some functions $x, y \in H^{\infty}$ (here we have used that C_2 is an interpolating Blaschke product). Dividing by C_1C_2 gives

$$\frac{f}{C_1 C_2} = \frac{y B_1 B_2}{C_1 C_2} + \frac{x}{C_1}$$
(2)

But on $Z_{\mathbb{D}}(B_1)$ the quotient $\frac{f}{C_1C_2}$ is bounded (by (1)). Hence, by (2), $\frac{x}{C_1}$ is bounded on $Z_{\mathbb{D}}(B_1)$.

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \le |B_1B_2|$. Thus, $f = xC_2 + yB_1B_2$ for some functions $x, y \in H^{\infty}$ (here we have used that C_2 is an interpolating Blaschke product). Dividing by C_1C_2 gives

$$\frac{f}{C_1 C_2} = \frac{y B_1 B_2}{C_1 C_2} + \frac{x}{C_1}$$
(2)

But on $Z_{\mathbb{D}}(B_1)$ the quotient $\frac{f}{C_1C_2}$ is bounded (by (1)). Hence, by (2), $\frac{x}{C_1}$ is bounded on $Z_{\mathbb{D}}(B_1)$. So $x \in I(C_1, B_1)$ (note that B_1 is an interpolating Blaschke product.)

Beweis.

Wlog, we may assume that $Z_{\mathbb{D}}(I) = \emptyset$. Let $f \in H^{\infty}$ satisfy

$$|f| \le |B_1 B_2| + |B_1 C_2| + |C_1 C_2| \tag{1}$$

Then on $Z_{\mathbb{D}}(C_2)$ we have $|f| \le |B_1B_2|$. Thus, $f = xC_2 + yB_1B_2$ for some functions $x, y \in H^{\infty}$ (here we have used that C_2 is an interpolating Blaschke product). Dividing by C_1C_2 gives

$$\frac{f}{C_1 C_2} = \frac{y B_1 B_2}{C_1 C_2} + \frac{x}{C_1}$$
(2)

But on $Z_{\mathbb{D}}(B_1)$ the quotient $\frac{f}{C_1C_2}$ is bounded (by (1)). Hence, by (2), $\frac{x}{C_1}$ is bounded on $Z_{\mathbb{D}}(B_1)$. So $x \in I(C_1, B_1)$ (note that B_1 is an interpolating Blaschke product.) Hence $f = xC_2 + yB_1B_2 \in I(C_1C_2, B_1C_2, B_1B_2)$.

Theorem

Let $B_1, B_2, B_3, C_1, C_2, C_3$ be Blaschke products without common zeros and let $I = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, C_1C_2C_3),$

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

Theorem

Let $B_1, B_2, B_3, C_1, C_2, C_3$ be Blaschke products without common zeros and let $I = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, C_1C_2C_3),$ $I^* = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, B_2C_2C_3).$

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Theorem

Let $B_1, B_2, B_3, C_1, C_2, C_3$ be Blaschke products without common zeros and let $I = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, C_1C_2C_3),$ $I^* = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, B_2C_2C_3).$ Then

(1)
$$I^* = (I^* + B_1 H^{\infty}) \cap (I^* + B_2 H^{\infty}) \cap (I^* + C_3 H^{\infty}).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

Theorem

Let $B_1, B_2, B_3, C_1, C_2, C_3$ be Blaschke products without common zeros and let $I = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, C_1C_2C_3),$ $I^* = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, B_2C_2C_3).$ Then

(1)
$$I^* = (I^* + B_1 H^{\infty}) \cap (I^* + B_2 H^{\infty}) \cap (I^* + C_3 H^{\infty}).$$

(2) $I = I^*$ if and only if $I(B_1, B_2) = I(B_1, C_1)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ●

Theorem

Let $B_1, B_2, B_3, C_1, C_2, C_3$ be Blaschke products without common zeros and let $I = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, C_1C_2C_3),$ $I^* = I(B_1B_2B_3, B_1B_2C_3, B_1C_2C_3, B_2C_2C_3).$ Then

(1)
$$I^* = (I^* + B_1 H^{\infty}) \cap (I^* + B_2 H^{\infty}) \cap (I^* + C_3 H^{\infty}).$$

(2) $I = I^*$ if and only if $I(B_1, B_2) = I(B_1, C_1)$.

If B_1 , B_2 and C_3 are interpolating Blaschke products, then $I^* = J^*$, where J^* is the J-form of I^* .

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ●

Theorem

For $N \ge 3$ let I be the ideal

$$I\left(\prod_{j=1}^{N} B_{j}, \ (\prod_{j=1}^{N-1} B_{j})C_{N}, \ (\prod_{j=1}^{N-2} B_{j})C_{N-1}C_{N}, \dots, B_{1}(\prod_{j=2}^{N} C_{j}), \ \prod_{j=1}^{N} C_{j}\right),$$

▲ロ → ▲御 → ▲ 国 → ▲ 国 →

E DQC

Theorem

For $N \ge 3$ let I be the ideal

$$I\left(\prod_{j=1}^{N} B_{j}, (\prod_{j=1}^{N-1} B_{j})C_{N}, (\prod_{j=1}^{N-2} B_{j})C_{N-1}C_{N}, \dots, B_{1}(\prod_{j=2}^{N} C_{j}), \prod_{j=1}^{N} C_{j}\right),$$

and J the associated J-ideal,

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

Theorem

For $N \ge 3$ let I be the ideal

$$I\left(\prod_{j=1}^{N} B_{j}, \ (\prod_{j=1}^{N-1} B_{j})C_{N}, \ (\prod_{j=1}^{N-2} B_{j})C_{N-1}C_{N}, \dots, B_{1}(\prod_{j=2}^{N} C_{j}), \ \prod_{j=1}^{N} C_{j}\right),$$

and J the associated J-ideal, where the B_j and C_k are interpolating Blaschke products without common zeros in \mathbb{D} .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

E

Theorem

For $N \ge 3$ let I be the ideal

$$I\left(\prod_{j=1}^{N} B_{j}, (\prod_{j=1}^{N-1} B_{j})C_{N}, (\prod_{j=1}^{N-2} B_{j})C_{N-1}C_{N}, \dots, B_{1}(\prod_{j=2}^{N} C_{j}), \prod_{j=1}^{N} C_{j}\right),$$

and J the associated J-ideal, where the B_j and C_k are interpolating Blaschke products without common zeros in \mathbb{D} . Suppose that

$$rac{C_j}{B_j}$$
 is bounded on $Z(B_{k+1})$ for $j=1,2,\ldots,k$ and $k=1,2,\ldots,N-2$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Theorem

For $N \ge 3$ let I be the ideal

$$I\left(\prod_{j=1}^{N} B_{j}, (\prod_{j=1}^{N-1} B_{j})C_{N}, (\prod_{j=1}^{N-2} B_{j})C_{N-1}C_{N}, \dots, B_{1}(\prod_{j=2}^{N} C_{j}), \prod_{j=1}^{N} C_{j}\right),$$

and J the associated J-ideal, where the B_j and C_k are interpolating Blaschke products without common zeros in \mathbb{D} . Suppose that

$$\frac{C_j}{B_j}$$
 is bounded on $Z(B_{k+1})$ for $j = 1, 2, ..., k$ and $k = 1, 2, ..., N - 2$.

(日)

Then I = J. unsymmetric case

Some finitely generated J

R. Mortini

イロン イヨン イヨン イヨン

E

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal J(b, c) is three-generated.

(日)

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal J(b, c) is three-generated. Additionally, if b and c have no common zeros in D, then there exists interpolating Blaschke products B, B^* , C and C^{*} such that

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal J(b, c) is three-generated. Additionally, if b and c have no common zeros in \mathbb{D} , then there exists interpolating Blaschke products B, B^* , C and C* such that

1
$$b = BB^*, c = CC^*,$$

・ロッ ・雪 ・ ・ ヨ ・ ・

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal J(b, c) is three-generated. Additionally, if b and c have no common zeros in \mathbb{D} , then there exists interpolating Blaschke products B, B^{*}, C and C^{*} such that

1
$$b = BB^*, \ c = CC^*,$$

2
$$J(b,c) = I(BB^*, CC^*, BC).$$

・ロッ ・雪 ・ ・ ヨ ・ ・

Some finitely generated J

Theorem

Let b and c be two Carleson-Newman Blaschke products of order 2. Then the ideal J(b, c) is three-generated. Additionally, if b and c have no common zeros in \mathbb{D} , then there exists interpolating Blaschke products B, B^{*}, C and C^{*} such that

1
$$b = BB^*, \ c = CC^*,$$

2 $J(b, c) = I(BB^*, CC^*, BC).$

In particular we have $J(BB^*, CC^*, BC) = I(BB^*, CC^*, BC)$.

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Canonical generators

R. Mortini

◆□ → ◆御 → ◆臣 → ◆臣 →

E

Canonical generators

Theorem

Let $I = I(f_1, ..., f_m)$ be a finitely generated ideal of finite order N in H^{∞} , $N \in \mathbb{N}$.

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

Canonical generators

Theorem

Let $I = I(f_1, ..., f_m)$ be a finitely generated ideal of finite order N in H^{∞} , $N \in \mathbb{N}$. Then I is generated by N + 1 Carleson-Newman Blaschke products of order N.

(日)

Canonical generators

Theorem

Let $I = I(f_1, ..., f_m)$ be a finitely generated ideal of finite order N in H^{∞} , $N \in \mathbb{N}$. Then I is generated by N + 1 Carleson-Newman Blaschke products of order N. Moreover, fixing any function f in I of the form $f = \prod_{j=1}^{N} B_j$, where the B_j are interpolating Blaschke products, then there exist Carleson-Newman Blaschke products C_j of order j (j = 1, ..., N) such that

・ロン ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Canonical generators

Theorem

Let $I = I(f_1, ..., f_m)$ be a finitely generated ideal of finite order N in H^{∞} , $N \in \mathbb{N}$. Then I is generated by N + 1 Carleson-Newman Blaschke products of order N. Moreover, fixing any function f in I of the form $f = \prod_{j=1}^{N} B_j$, where the B_j are interpolating Blaschke products, then there exist Carleson-Newman Blaschke products C_j of order j (j = 1, ..., N) such that

$$I = I\left(\prod_{j=1}^{N} B_j, \quad C_1 \prod_{j=2}^{N} B_j, \quad C_2 \prod_{j=3}^{N} B_j, \quad \cdots \cdots, \quad C_{N-1} B_N, \quad C_N\right).$$

・ロッ ・雪 ・ ・ ヨ ・ ・

Э

The same result holds for *J*.

Theorem

Suppose that C and D are Blaschke products without common zeros in \mathbb{D} such that I(C, D) is a proper ideal.

・ロン ・四 ・ ・ ヨン・

E.

Theorem

Suppose that C and D are Blaschke products without common zeros in \mathbb{D} such that I(C, D) is a proper ideal. Let I be the ideal

$$I(C^{N}, C^{N-1}D, C^{N-2}D^{2}, \dots, CD^{N-1}, D^{N}).$$

・ロト ・四ト ・ヨト ・ヨト

E

Theorem

Suppose that C and D are Blaschke products without common zeros in \mathbb{D} such that I(C, D) is a proper ideal. Let I be the ideal

$$I(C^{N}, C^{N-1}D, C^{N-2}D^{2}, \dots, CD^{N-1}, D^{N}).$$

If $\{f_1, \ldots, f_m\}$ is another set of generators for *I*, then $m \ge N + 1$; that is N + 1 is the minimal number of generators for *I*.

・ロン ・四 ・ ・ ヨン・

Proposition

Let $f, g \in H^{\infty}$ have no common factor. Suppose that $Z^{\infty}(f) \cap Z^{\infty}(g) \neq \emptyset$. Then $I(f^{N}, f^{N-1}g, \dots, fg^{N-1}, g^{N}) \neq J(f^{N}, f^{N-1}g, \dots, fg^{N-1}, g^{N})$ Binomi

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ●