The stable rank of A(K) and $A(K)_{sym}$

joint work with R. Rupp

Raymond Mortini Université Paul Verlaine - Metz

Metz, juillet, 2011

R. Mortini ()

Stable ranks

< 同 → < Ξ →

For a compact set $S \subseteq \mathbb{C}$ let A(S) be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

< 🗇 > < 🖻 >

For a compact set $S \subseteq \mathbb{C}$ let A(S) be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a real-symmetric compact set $K \subseteq \mathbb{C}$ ($z \in K \iff \overline{z} \in K$), let $A(K)_{sym} = \{f \in A(K) : f(z) = \overline{f(\overline{z})}\}.$

For a compact set $S \subseteq \mathbb{C}$ let A(S) be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a real-symmetric compact set $K \subseteq \mathbb{C}$ ($z \in K \iff \overline{z} \in K$), let $A(K)_{sym} = \{f \in A(K) : f(z) = \overline{f(\overline{z})}\}.$

If $f \in C(K)$, let f^* be given by $f^*(z) = \overline{f(\overline{z})}$

< ロ > < 同 > < 回 > < 回 > < - > <

For a compact set $S \subseteq \mathbb{C}$ let A(S) be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a real-symmetric compact set $K \subseteq \mathbb{C}$ ($z \in K \iff \overline{z} \in K$), let $A(K)_{sym} = \{f \in A(K) : f(z) = \overline{f(\overline{z})}\}.$

If $f \in C(K)$, let f^* be given by $f^*(z) = \overline{f(\overline{z})}$

For $f \in C(K)$, let $Z(f) = \{z \in K : f(z) = 0\}$ be the zero set of f.

イロト イポト イヨト イヨト 一日

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:

A 10

∃ >

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:

Every continuous function f : K → C \ {0} has an extension to a continuous function F : C → C \ {0},

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:

- Every continuous function f : K → C \ {0} has an extension to a continuous function F : C → C \ {0},
- **2** $\mathbb{C} \setminus K$ is connected, that is K has no holes;

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:

- Every continuous function f : K → C \ {0} has an extension to a continuous function F : C → C \ {0},
- **2** $\mathbb{C} \setminus K$ is connected, that is K has no holes;
- Severy continuous function $f : K \to \mathbb{C} \setminus \{0\}$ has a continuous logarithm on K.

< 同 > < 三 > <

• Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_j of $\mathbb{C} \setminus K$ a point a_j .

< ロ > < 同 > < 回 > < 回 >

● Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_j of $\mathbb{C} \setminus K$ a point a_j . Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_1, \ldots, n_m \in \mathbb{Z}$ and a function $h \in C(K)$ such that

 $f(z) = \prod_{j=1}^{m} (z - a_j)^{n_j} e^{h(z)}$ for $z \in K$.

(日)

● Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_j of $\mathbb{C} \setminus K$ a point a_j . Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_1, \ldots, n_m \in \mathbb{Z}$ and a function $h \in C(K)$ such that

 $f(z) = \prod_{j=1}^{m} (z - a_j)^{n_j} e^{h(z)}$ for $z \in K$.

If there are no bounded components then f admits a continuous logarithm on K.

< ロ > < 同 > < 回 > < 回 > < 回 > <

● Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_j of $\mathbb{C} \setminus K$ a point a_j . Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_1, \ldots, n_m \in \mathbb{Z}$ and a function $h \in C(K)$ such that

 $f(z) = \prod_{j=1}^{m} (z - a_j)^{n_j} e^{h(z)}$ for $z \in K$.

If there are no bounded components then f admits a continuous logarithm on K. If additionally f is in A(K), then h can be chosen to be in A(K) as well.

< ロ > < 同 > < 回 > < 回 > .

● Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_j of $\mathbb{C} \setminus K$ a point a_j . Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_1, \ldots, n_m \in \mathbb{Z}$ and a function $h \in C(K)$ such that

 $f(z) = \prod_{j=1}^{m} (z - a_j)^{n_j} e^{h(z)}$ for $z \in K$.

If there are no bounded components then f admits a continuous logarithm on K. If additionally f is in A(K), then h can be chosen to be in A(K) as well.

2 If a, b are in the same connected component of $\mathbb{C} \setminus K$, then there exists $h \in A(K)$ such that

$$\frac{z-a}{z-b}=e^{h(z)} \text{ for } z\in K.$$

æ

<ロ> <同> <同> < 同> < 同> 、

Problems we are interested in: let A = A(K) or $A = A(K)_{sym}$.

э

<ロ> <同> <同> < 同> < 同> 、

let A = A(K) or $A = A(K)_{sym}$.

Suppose that $f, g \in A$, $|f| + |g| \neq 0$ on K (corona data).

э

let A = A(K) or $A = A(K)_{sym}$.

Suppose that $f, g \in A$, $|f| + |g| \neq 0$ on K (corona data).

i) Does there exist a solution $(u, v) \in A^2$ to the Bézout equation 1 = uf + vg?

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

let A = A(K) or $A = A(K)_{sym}$.

Suppose that $f, g \in A$, $|f| + |g| \neq 0$ on K (corona data).

i) Does there exist a solution $(u, v) \in A^2$ to the Bézout equation 1 = uf + vg?

If so, (f, g) is said to be an invertible pair.

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

let A = A(K) or $A = A(K)_{sym}$.

Suppose that $f, g \in A$, $|f| + |g| \neq 0$ on K (corona data).

i) Does there exist a solution $(u, v) \in A^2$ to the Bézout equation 1 = uf + vg?

If so, (f, g) is said to be an invertible pair.

ii) Does there exist $u \in A$ such that f + ug has no zeros on K?

let A = A(K) or $A = A(K)_{sym}$.

Suppose that $f, g \in A$, $|f| + |g| \neq 0$ on K (corona data).

i) Does there exist a solution $(u, v) \in A^2$ to the Bézout equation 1 = uf + vg?

If so, (f, g) is said to be an invertible pair.

ii) Does there exist $u \in A$ such that f + ug has no zeros on K? If so, (f, g) is said to be reducible in A.

let A = A(K) or $A = A(K)_{sym}$.

Suppose that $f, g \in A$, $|f| + |g| \neq 0$ on K (corona data).

i) Does there exist a solution $(u, v) \in A^2$ to the Bézout equation 1 = uf + vg?

If so, (f, g) is said to be an invertible pair.

ii) Does there exist $u \in A$ such that f + ug has no zeros on *K*? If so, (f, g) is said to be reducible in *A*.

iii) Does $f|_{Z(g)}$ admit an extension to an invertible element in A? answer to i) answer to ii) answer to iii)

(日)

i) • R. Arens: the set of multiplicative linear functionals on A = A(K) equals the set of point evaluations: { $\phi_a : a \in K$ }, where $\phi(f) = f(a), f \in A$.

э

i) • R. Arens: the set of multiplicative linear functionals on A = A(K)equals the set of point evaluations: { $\phi_a : a \in K$ }, where $\phi(f) = f(a), f \in A$. Hence $I(f_1, \ldots, f_n) = A(K) \iff \bigcap_{j=1}^n Z(f_j) = \emptyset$.

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

i) • R. Arens: the set of multiplicative linear functionals on A = A(K)equals the set of point evaluations: { $\phi_a : a \in K$ }, where $\phi(f) = f(a), f \in A$. Hence $I(f_1, \dots, f_n) = A(K) \iff \bigcap_{j=1}^n Z(f_j) = \emptyset$.

• For $f_j \in A = A(K)_{\text{sym}}$, let $\sum_{j=1}^n |f_j| \neq 0$.

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

i) • R. Arens: the set of multiplicative linear functionals on A = A(K)equals the set of point evaluations: { $\phi_a : a \in K$ }, where $\phi(f) = f(a), f \in A$. Hence $I(f_1, \ldots, f_n) = A(K) \iff \bigcap_{j=1}^n Z(f_j) = \emptyset$.

• For $f_j \in A = A(K)_{\text{sym}}$, let $\sum_{j=1}^n |f_j| \neq 0$. Then $\exists (g_1, \dots, g_n) \in A(K)^n : 1 = \sum_{j=1}^n g_j f_j$.

i) • R. Arens: the set of multiplicative linear functionals on A = A(K)equals the set of point evaluations: { $\phi_a : a \in K$ }, where $\phi(f) = f(a), f \in A$. Hence $I(f_1, \dots, f_n) = A(K) \iff \bigcap_{j=1}^n Z(f_j) = \emptyset$.

• For $f_j \in A = A(K)_{sym}$, let $\sum_{j=1}^n |f_j| \neq 0$. Then $\exists (g_1, \dots, g_n) \in A(K)^n : 1 = \sum_{j=1}^n g_j f_j$. Let $h_j = (g_j + g_j^*)/2$. Then $h_j \in A(K)_{sym}$.

i) • R. Arens: the set of multiplicative linear functionals on A = A(K)equals the set of point evaluations: $\{\phi_a : a \in K\}$, where $\phi(f) = f(a), f \in A$. Hence $I(f_1, \ldots, f_n) = A(K) \iff \bigcap_{j=1}^n Z(f_j) = \emptyset$.

• For $f_j \in A = A(K)_{sym}$, let $\sum_{j=1}^n |f_j| \neq 0$. Then $\exists (g_1, \dots, g_n) \in A(K)^n : 1 = \sum_{j=1}^n g_j f_j$. Let $h_j = (g_j + g_j^*)/2$. Then $h_j \in A(K)_{sym}$. Noticing that $f_j = f_j^*$, we get

i) • R. Arens: the set of multiplicative linear functionals on A = A(K) equals the set of point evaluations: { $\phi_a : a \in K$ }, where $\phi(f) = f(a), f \in A$. Hence $I(f_1, \dots, f_n) = A(K) \iff \bigcap_{j=1}^n Z(f_j) = \emptyset$.

• For
$$f_j \in A = A(K)_{sym}$$
, let $\sum_{j=1}^{n} |f_j| \neq 0$.
Then $\exists (g_1, \dots, g_n) \in A(K)^n : 1 = \sum_{j=1}^{n} g_j f_j$.
Let $h_j = (g_j + g_j^*)/2$. Then $h_j \in A(K)_{sym}$.
Noticing that $f_j = f_j^*$, we get

$$\sum_{j=1}^{n} h_j f_j = \frac{1}{2} \left[\sum_{j=1}^{n} g_j f_j + \sum_{j=1} g_j^* f_j^* \right] = 1.$$

Answers to ii) and iii) later

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

An *n*-tuple $\mathbf{f} := (f_1, \ldots, f_n)$ in A is said to be invertible (not.: $\mathbf{f} \in U_n(A)$), if there exists $(g_1, \ldots, g_n) \in A^n$ such that $\sum_{j=1}^n f_j g_j = 1$. An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(\mathbf{x}_1, \ldots, \mathbf{x}_n) \in A^n$ so that

 $(f_1 + x_1g, \ldots, f_n + x_ng) \in U_n(A).$

An *n*-tuple $\mathbf{f} := (f_1, \ldots, f_n)$ in A is said to be invertible (not.: $\mathbf{f} \in U_n(A)$), if there exists $(g_1, \ldots, g_n) \in A^n$ such that $\sum_{j=1}^n f_j g_j = 1$. An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(\mathbf{x}_1, \ldots, \mathbf{x}_n) \in A^n$ so that

 $(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(A). If no such integer exists, then $bsr(A) = \infty$.

An *n*-tuple $\mathbf{f} := (f_1, \ldots, f_n)$ in A is said to be invertible (not.: $\mathbf{f} \in U_n(A)$), if there exists $(g_1, \ldots, g_n) \in A^n$ such that $\sum_{j=1}^n f_j g_j = 1$. An element $(f_1, \ldots, f_n, g) \in U_{n+1}(A)$ is said to be *reducible*, if there exists $(\mathbf{x}_1, \ldots, \mathbf{x}_n) \in A^n$ so that

 $(f_1+x_1g,\ldots,f_n+x_ng)\in U_n(A).$

The smallest integer *n* for which every element in $U_{n+1}(A)$ is reducible is called the *Bass stable rank* of *A* and is denoted by bsr(A). If no such integer exists, then $bsr(A) = \infty$.

Theorem (Izzo)

Let $K \subseteq \mathbb{C}$ be compact and suppose that E is a compact subset of Kwith $E^{\circ} = \emptyset$ such that each component of $\mathbb{C} \setminus E$ intersects $\mathbb{C} \setminus K$. Then $A(K)|_E$ is dense in C(E).

< 🗇 > < 🖻 >

Theorem (Izzo)

Let $K \subseteq \mathbb{C}$ be compact and suppose that E is a compact subset of K with $E^{\circ} = \emptyset$ such that each component of $\mathbb{C} \setminus E$ intersects $\mathbb{C} \setminus K$. Then $A(K)|_E$ is dense in C(E).

Lemma

Let $K \subseteq \mathbb{C}$ be a real-symmetric compact set, $g \in A(K)_{sym}$, and let $K' = K \setminus Z(g)^{\circ}$. Choose $(f_1, \ldots, f_n, g) \in U_{n+1}(A(K)_{sym})$. Suppose that the tuple (f_1, \ldots, f_n, g^2) is reducible in $A(K')_{sym}$. Then the original tuple (f_1, \ldots, f_n, g) is reducible in $A(K)_{sym}$. A similar result also holds for A(K) on arbitrary compacta.

< ロ > < 同 > < 回 > < 回 > .

Proof

Since (f_1, \ldots, f_n, g^2) is reducible in $A(K')_{sym}$, there exist $h_j \in A(K')_{sym}$ such that $(f_1 + h_1g^2, \ldots, f_n + h_ng^2)$ is an invertible *n*-tuple in $A(K')_{sym}$.

< ロ > < 同 > < 回 > < 回 > .

Proof

Since (f_1, \ldots, f_n, g^2) is reducible in $A(K')_{sym}$, there exist $h_j \in A(K')_{sym}$ such that $(f_1 + h_1 g^2, \ldots, f_n + h_n g^2)$ is an invertible *n*-tuple in $A(K')_{sym}$. Now we use the facts that

 $\partial Z(g)^{\circ} \subseteq \partial K$,

Proof

Since (f_1, \ldots, f_n, g^2) is reducible in $A(K')_{sym}$, there exist $h_j \in A(K')_{sym}$ such that $(f_1 + h_1 g^2, \ldots, f_n + h_n g^2)$ is an invertible *n*-tuple in $A(K')_{sym}$. Now we use the facts that

 $\partial Z(g)^{\circ} \subseteq \partial K$,

$$\mathcal{K}'^\circ = (\mathcal{K} \setminus Z(g)^\circ)^\circ = \mathcal{K}^\circ \setminus \overline{Z(g)^\circ}$$

and hence

Proof

Since (f_1, \ldots, f_n, g^2) is reducible in $A(K')_{sym}$, there exist $h_j \in A(K')_{sym}$ such that $(f_1 + h_1 g^2, \ldots, f_n + h_n g^2)$ is an invertible *n*-tuple in $A(K')_{sym}$. Now we use the facts that

 $\partial Z(g)^{\circ} \subseteq \partial K$,

$$\mathcal{K}'^\circ = (\mathcal{K} \setminus Z(g)^\circ)^\circ = \mathcal{K}^\circ \setminus \overline{Z(g)^\circ}$$

and hence

 ${\mathcal K}^\circ = ({\mathcal K}^\circ \setminus Z(g)^\circ) \cup Z(g)^\circ = ig({\mathcal K}^\circ \setminus \overline{Z(g)^\circ}ig) \cup Z(g)^\circ.$

Proof

Since (f_1, \ldots, f_n, g^2) is reducible in $A(K')_{sym}$, there exist $h_j \in A(K')_{sym}$ such that $(f_1 + h_1 g^2, \ldots, f_n + h_n g^2)$ is an invertible *n*-tuple in $A(K')_{sym}$. Now we use the facts that

 $\partial Z(g)^{\circ} \subseteq \partial K$,

$$\mathcal{K}'^\circ = (\mathcal{K} \setminus Z(g)^\circ)^\circ = \mathcal{K}^\circ \setminus \overline{Z(g)^\circ}$$

and hence

 $\mathcal{K}^\circ = (\mathcal{K}^\circ \setminus Z(g)^\circ) \cup Z(g)^\circ = \left(\mathcal{K}^\circ \setminus \overline{Z(g)^\circ}\right) \cup Z(g)^\circ.$

Therefore

$$\mathbf{K}^{\circ} = \mathbf{K}^{\prime \circ} \cup \mathbf{Z}(\mathbf{g})^{\circ}. \tag{1}$$

Consider any real-symmetric Tietze extension of h_j to K, denoted by the same symbol. Then $h_j g \in C(K)$.

Consider any real-symmetric Tietze extension of h_j to K, denoted by the same symbol. Then $h_jg \in C(K)$. Moreover, h_jg is holomorphic at each point $z \in K'^{\circ}$ (since it is a product of two holomorphic functions there)

Consider any real-symmetric Tietze extension of h_j to K, denoted by the same symbol. Then $h_jg \in C(K)$. Moreover, h_jg is holomorphic at each point $z \in K'^{\circ}$ (since it is a product of two holomorphic functions there)and on $Z(g)^{\circ}$ (because it is identically zero there).

Consider any real-symmetric Tietze extension of h_j to K, denoted by the same symbol. Then $h_j g \in C(K)$. Moreover, $h_j g$ is holomorphic at each point $z \in K'^{\circ}$ (since it is a product of two holomorphic functions there)and on $Z(g)^{\circ}$ (because it is identically zero there). Thus, we see that $h_j g$ actually belongs to A(K). Moreover, the functions being real-symmetric now imply that $h_j g \in A(K)_{sym}$.

Consider any real-symmetric Tietze extension of h_j to K, denoted by the same symbol. Then $h_jg \in C(K)$. Moreover, h_jg is holomorphic at each point $z \in K'^{\circ}$ (since it is a product of two holomorphic functions there)and on $Z(g)^{\circ}$ (because it is identically zero there). Thus, we see that h_jg actually belongs to A(K). Moreover, the functions being real-symmetric now imply that $h_jg \in A(K)_{sym}$. Thus we have shown that

 $(f_1+(h_1g)g,\ldots,f_n+(h_ng)g)$

is an invertible *n*-tuple in $A(K)_{sym}$ and so (f_1, \ldots, f_n, g) is reducible in $A(K)_{sym}$.

Theorem

For compact planar sets *K* one has bsr(A(K)) = 1.

æ

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Theorem

For compact planar sets K one has bsr(A(K)) = 1.

Proof

(f, g) invertible pair in $A(K) \Longrightarrow f|_{Z(g)} = re^{h}$, *r* rational function without poles or zeros in Z(g), $h \in C(K)$.

Theorem

For compact planar sets K one has bsr(A(K)) = 1.

Proof

(f, g) invertible pair in $A(K) \implies f|_{Z(g)} = re^h$, *r* rational function without poles or zeros in Z(g), $h \in C(K)$. Since each hole of Z(g) contains a hole of *K*, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that *r* actually has no zeros and poles in *K*.

Theorem

For compact planar sets K one has bsr(A(K)) = 1.

Proof

(f, g) invertible pair in $A(K) \implies f|_{Z(g)} = re^h$, *r* rational function without poles or zeros in Z(g), $h \in C(K)$. Since each hole of Z(g) contains a hole of *K*, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that *r* actually has no zeros and poles in *K*. Thus on Z(g) we get that uf = 1, where $u \in C(K)$ is the invertible function $u = r^{-1}e^{-h}$.

Theorem

For compact planar sets K one has bsr(A(K)) = 1.

Proof

(f, g) invertible pair in $A(K) \implies f|_{Z(g)} = re^h$, *r* rational function without poles or zeros in Z(g), $h \in C(K)$. Since each hole of Z(g) contains a hole of *K*, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that *r* actually has no zeros and poles in *K*. Thus on Z(g) we get that uf = 1, where $u \in C(K)$ is the invertible function $u = r^{-1}e^{-h}$.

If $Z(g)^{\circ} = \emptyset$ then, we may use Izzo's theorem to uniformly approximate *h* on Z(g) by a function *H* in A(K).

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Theorem

For compact planar sets K one has bsr(A(K)) = 1.

Proof

(f, g) invertible pair in $A(K) \implies f|_{Z(g)} = re^h$, *r* rational function without poles or zeros in Z(g), $h \in C(K)$. Since each hole of Z(g) contains a hole of *K*, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that *r* actually has no zeros and poles in *K*. Thus on Z(g) we get that uf = 1, where $u \in C(K)$ is the invertible function $u = r^{-1}e^{-h}$. If $Z(g)^\circ = \emptyset$ then, we may use Izzo's theorem to uniformly approximate

h on *Z*(*g*) by a function *H* in *A*(*K*). So on *Z*(*g*) we obtain that $|r^{-1}e^{-H}f - 1| < 1/2$.

3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem

For compact planar sets K one has bsr(A(K)) = 1.

Proof

(f, g) invertible pair in $A(K) \implies f|_{Z(g)} = re^h$, *r* rational function without poles or zeros in Z(g), $h \in C(K)$. Since each hole of Z(g) contains a hole of *K*, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that *r* actually has no zeros and poles in *K*. Thus on Z(g) we get that uf = 1, where $u \in C(K)$ is the invertible function $u = r^{-1}e^{-h}$.

If $Z(g)^{\circ} = \emptyset$ then, we may use Izzo's theorem to uniformly approximate h on Z(g) by a function H in A(K). So on Z(g) we obtain that $|r^{-1}e^{-H}f - 1| < 1/2$. Hence (f, g) is reducible in A(K).

(日)

If $Z(g)^{\circ} \neq \emptyset$, then we work on A(K') with $K' = K \setminus Z(g)^{\circ}$.

æ.

If $Z(g)^{\circ} \neq \emptyset$, then we work on A(K') with $K' = K \setminus Z(g)^{\circ}$. Since $Z_{K'}(g)^{\circ}$ is void, the reasoning above shows that the pair (f, g^2) is reducible in A(K').

< ロ > < 同 > < 回 > < 回 > < 回 > <

If $Z(g)^{\circ} \neq \emptyset$, then we work on A(K') with $K' = K \setminus Z(g)^{\circ}$. Since $Z_{K'}(g)^{\circ}$ is void, the reasoning above shows that the pair (f, g^2) is reducible in A(K'). Say $f + qg^2 \neq 0$ on K' for some $q \in A(K')$. By taking a Tietze extension of q to K, we see that $qg \in C(K)$.

If $Z(g)^{\circ} \neq \emptyset$, then we work on A(K') with $K' = K \setminus Z(g)^{\circ}$. Since $Z_{K'}(g)^{\circ}$ is void, the reasoning above shows that the pair (f, g^2) is reducible in A(K'). Say $f + qg^2 \neq 0$ on K' for some $q \in A(K')$. By taking a Tietze extension of q to K, we see that $qg \in C(K)$. Since $qg \equiv 0$ on $Z(g)^{\circ}$ and $K^{\circ} \stackrel{(1)}{=} K'^{\circ} \cup Z(g)^{\circ}$, we finally obtain a solution $qg \in A(K)$ to $f + (qg)g \neq 0$ on K (see Lemma 4.)

-

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let $\mathbf{K} \subseteq \mathbb{C}$ be compact and real-symmetric. Then

- $bsr(C(K)_{sym}) = 1$ if and only if $K^{\circ} = \emptyset$ and $K \cap \mathbb{R}$ is totally disconnected or empty;
- ② $bsr(C(K)_{sym}) = 2$ if and only if $K^{\circ} \neq \emptyset$ or $K \cap \mathbb{R}$ contains an interval.

• • • • • • • • • • • • •

Let $\mathbf{K} \subseteq \mathbb{C}$ be compact and real-symmetric. Then

- If and only if K° = Ø and K ∩ ℝ is totally disconnected or empty;
- ② $bsr(C(K)_{sym}) = 2$ if and only if $K^{\circ} \neq \emptyset$ or $K \cap \mathbb{R}$ contains an interval.

Theorem

Let $\mathbf{K} \subseteq \mathbb{C}$ be compact and real-symmetric. Then

- $bsr(A(K)_{sym}) = 1$ if and only if $K \cap \mathbb{R}$ is empty or totally disconnected.
- ② $bsr(A(K)_{sym}) = 2$ if and only if $K \cap \mathbb{R}$ contains an interval.

э

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let (f, g) be an invertible pair in $A(K)_{sym}$. Then the following assertions are equivalent.

- (1, g) is reducible in $A(K)_{sym}$;
- (sign f)|_{Z(g)∩ℝ} admits a continuous extension to a sign-function in the space C(K ∩ ℝ)_{sym};
- I has constant sign at each real zero of g on fixed components of K ∩ R.

< 同 > < ∃ >

Let (f, g) be an invertible pair in $A(K)_{sym}$. Then the following assertions are equivalent.

- (f, g) is reducible in $A(K)_{sym}$;
- (sign f)|_{Z(g)∩ℝ} admits a continuous extension to a sign-function in the space C(K ∩ ℝ)_{sym};
- I has constant sign at each real zero of g on fixed components of K ∩ R.

Corollary

Let (f, g) be an invertible pair in $A(K)_{sym}$. Suppose that $Z(g) \cap \mathbb{R} = \emptyset$. Then (f, g) is reducible.

Definition

Let $E \subseteq \mathbb{C}$ compact, $f \in C(E)$ zero free. Let C be a bounded component (=hole) of $E \setminus C$. Then C is called an essential hole for f if the Brouwer degree $d(f|_{\partial C}, C, 0)$ of f with respect to the component C is not zero.

< 同 > < ∃ >

Definition

Let $E \subseteq \mathbb{C}$ compact, $f \in C(E)$ zero free. Let C be a bounded component (=hole) of $E \setminus C$. Then C is called an essential hole for f if the Brouwer degree $d(f|_{\partial C}, C, 0)$ of f with respect to the component C is not zero.

Theorem

Let $K \subseteq \mathbb{C}$ be compact and let (f, g) be an invertible pair in C(K). Then the following assertions are equivalent:

- (f, g) is reducible;
- 2 each essential hole for $f|_{Z(g)}$ contains a hole of K.

< 同 > < 三 > < 三 > -

Let $K \subseteq \mathbb{C}$ be real-symmetric and compact. Suppose that (f, g) is an invertible pair in $C(K)_{sym}$. Then the following assertions are equivalent:

- (f, g) is reducible;
- each essential hole for f|_{Z(g)} contains a hole of K and f has constant sign at each real zero of g on fixed components of K ∩ R.

Proposition

The invertible pair (f, g) in $C(K)_{sym}$ is reducible if and only if $f|_{Z(g)}$ admits an extension to an invertible function in $C(K)_{sym}$.

Proposition

The invertible pair (f, g) in $C(K)_{sym}$ is reducible if and only if $f|_{Z(g)}$ admits an extension to an invertible function in $C(K)_{sym}$.

Proposition

Let (f, g) be an invertible pair in $A(K)_{sym}$. Then the following assertions are equivalent.

(1, g) is reducible in $A(K)_{sym}$;

If |Z(g) admits an extension to an invertible function in A(K)_{sym} or equivalently in C(K)_{sym}.