The stable rank of $A(K)$ and $A(K)_{\text {sym }}$ joint work with R. Rupp

Raymond Mortini
Université Paul Verlaine - Metz

Metz, juillet, 2011

For a compact set $S \subseteq \mathbb{C}$ let $A(S)$ be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a compact set $S \subseteq \mathbb{C}$ let $A(S)$ be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a real-symmetric compact set $K \subseteq \mathbb{C}(z \in K \Longleftrightarrow \bar{z} \in K)$, let $A(K)_{\text {sym }}=\{f \in A(K): f(z)=\overline{f(\bar{z})}\}$.

For a compact set $S \subseteq \mathbb{C}$ let $A(S)$ be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a real-symmetric compact set $K \subseteq \mathbb{C}(z \in K \Longleftrightarrow \bar{z} \in K)$, let $A(K)_{\text {sym }}=\{f \in A(K): f(z)=\overline{f(\bar{z})}\}$.

If $f \in C(K)$, let f^{*} be given by $f^{*}(z)=\overline{f(\bar{z})}$

For a compact set $S \subseteq \mathbb{C}$ let $A(S)$ be the space of all complex-valued continuous functions on S that are holomorphic in the interior S° of S.

For a real-symmetric compact set $K \subseteq \mathbb{C}(z \in K \Longleftrightarrow \bar{z} \in K)$, let $A(K)_{\text {sym }}=\{f \in A(K): f(z)=\overline{f(\bar{z})}\}$.

If $f \in C(K)$, let f^{*} be given by $f^{*}(z)=\overline{f(\bar{z})}$
For $f \in C(K)$, let $Z(f)=\{z \in K: f(z)=0\}$ be the zero set of f.

Theorem (Borsuk)

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:

Theorem (Borsuk)

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:
(1) Every continuous function $f: K \rightarrow \mathbb{C} \backslash\{0\}$ has an extension to a continuous function $F: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$,

Theorem (Borsuk)

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:
(1) Every continuous function $f: K \rightarrow \mathbb{C} \backslash\{0\}$ has an extension to a continuous function $F: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$,
(2) $\mathbb{C} \backslash K$ is connected, that is K has no holes;

Theorem (Borsuk)

Let $K \subseteq \mathbb{C}$ be compact. The following three conditions are equivalent:
(1) Every continuous function $f: K \rightarrow \mathbb{C} \backslash\{0\}$ has an extension to a continuous function $F: \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$,
(2) $\mathbb{C} \backslash K$ is connected, that is K has no holes;
(3) Every continuous function $f: K \rightarrow \mathbb{C} \backslash\{0\}$ has a continuous logarithm on K.

Theorem (Eilenberg)

(1) Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_{j} of $\mathbb{C} \backslash K$ a point a_{j}.

Theorem (Eilenberg)

(1) Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_{j} of $\mathbb{C} \backslash K$ a point a_{j}. Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_{1}, \ldots, n_{m} \in \mathbb{Z}$ and a function $h \in C(K)$ such that

$$
f(z)=\prod_{j=1}^{m}\left(z-a_{j}\right)^{n_{j}} e^{h(z)} \text { for } z \in K .
$$

Theorem (Eilenberg)

(1) Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_{j} of $\mathbb{C} \backslash K$ a point a_{j}. Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_{1}, \ldots, n_{m} \in \mathbb{Z}$ and a function $h \in C(K)$ such that

$$
f(z)=\prod_{j=1}^{m}\left(z-a_{j}\right)^{n_{j}} e^{h(z)} \text { for } z \in K .
$$

If there are no bounded components then f admits a continuous logarithm on K.

Theorem (Eilenberg)

(1) Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_{j} of $\mathbb{C} \backslash K$ a point a_{j}. Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_{1}, \ldots, n_{m} \in \mathbb{Z}$ and a function $h \in C(K)$ such that

$$
f(z)=\prod_{j=1}^{m}\left(z-a_{j}\right)^{n_{j}} e^{h(z)} \text { for } z \in K .
$$

If there are no bounded components then f admits a continuous logarithm on K.If additionally f is in $A(K)$, then h can be chosen to be in $A(K)$ as well.

Theorem (Eilenberg)

(1) Let $K \subseteq \mathbb{C}$ be compact. Choose in each bounded component C_{j} of $\mathbb{C} \backslash K$ a point a_{j}. Then for every invertible function $f \in C(K)$ there exist $m \in \mathbb{N}$, integers $n_{1}, \ldots, n_{m} \in \mathbb{Z}$ and a function $h \in C(K)$ such that

$$
f(z)=\prod_{j=1}^{m}\left(z-a_{j}\right)^{n_{j}} e^{h(z)} \text { for } z \in K .
$$

If there are no bounded components then f admits a continuous logarithm on K.If additionally f is in $A(K)$, then h can be chosen to be in $A(K)$ as well.
(2) If a, b are in the same connected component of $\mathbb{C} \backslash K$, then there exists $h \in A(K)$ such that

$$
\frac{z-a}{z-b}=e^{h(z)} \text { for } z \in K
$$

Problems we are interested in:

Problems we are interested in:

 let $A=A(K)$ or $A=A(K)_{\text {sym }}$.Problems we are interested in: let $A=A(K)$ or $A=A(K)_{\text {sym }}$.
Suppose that $f, g \in A,|f|+|g| \neq 0$ on K (corona data).

Problems we are interested in: let $A=A(K)$ or $A=A(K)_{\text {sym }}$.
Suppose that $f, g \in A,|f|+|g| \neq 0$ on K (corona data).
i) Does there exist a solution $(u, v) \in A^{2}$ to the Bézout equation $1=u f+v g$?

Problems we are interested in: let $A=A(K)$ or $A=A(K)_{\text {sym }}$.
Suppose that $f, g \in A,|f|+|g| \neq 0$ on K (corona data).
i) Does there exist a solution $(u, v) \in A^{2}$ to the Bézout equation $1=u f+v g$?
If so, (f, g) is said to be an invertible pair.

Problems we are interested in: let $A=A(K)$ or $A=A(K)_{\text {sym }}$.
Suppose that $f, g \in A,|f|+|g| \neq 0$ on K (corona data).
i) Does there exist a solution $(u, v) \in A^{2}$ to the Bézout equation $1=u f+v g$?
If so, (f, g) is said to be an invertible pair.
ii) Does there exist $u \in A$ such that $f+u g$ has no zeros on K ?

Problems we are interested in: let $A=A(K)$ or $A=A(K)_{\text {sym }}$.
Suppose that $f, g \in A,|f|+|g| \neq 0$ on K (corona data).
i) Does there exist a solution $(u, v) \in A^{2}$ to the Bézout equation $1=u f+v g$?
If so, (f, g) is said to be an invertible pair.
ii) Does there exist $u \in A$ such that $f+u g$ has no zeros on K ? If so, (f, g) is said to be reducible in A.

Problems we are interested in: let $A=A(K)$ or $A=A(K)_{\text {sym }}$.
Suppose that $f, g \in A,|f|+|g| \neq 0$ on K (corona data).
i) Does there exist a solution $(u, v) \in A^{2}$ to the Bézout equation $1=u f+v g$?
If so, (f, g) is said to be an invertible pair.
ii) Does there exist $u \in A$ such that $f+u g$ has no zeros on K ? If so, (f, g) is said to be reducible in A.
iii) Does $\left.f\right|_{Z(g)}$ admit an extension to an invertible element in A ?
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
Hence $I\left(f_{1}, \ldots, f_{n}\right)=A(K) \Longleftrightarrow \bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$.
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
Hence $I\left(f_{1}, \ldots, f_{n}\right)=A(K) \Longleftrightarrow \bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$.

- For $f_{j} \in A=A(K)_{\text {sym }}$, let $\sum_{j=1}^{n}\left|f_{j}\right| \neq 0$.
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
Hence $I\left(f_{1}, \ldots, f_{n}\right)=A(K) \Longleftrightarrow \bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$.
- For $f_{j} \in A=A(K)_{\text {sym }}$, let $\sum_{j=1}^{n}\left|f_{j}\right| \neq 0$.

Then $\exists\left(g_{1}, \ldots, g_{n}\right) \in A(K)^{n}: 1=\sum_{j=1}^{n} g_{j} f_{j}$.
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
Hence $I\left(f_{1}, \ldots, f_{n}\right)=A(K) \Longleftrightarrow \bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$.

- For $f_{j} \in A=A(K)_{\text {sym }}$, let $\sum_{j=1}^{n}\left|f_{j}\right| \neq 0$.

Then $\exists\left(g_{1}, \ldots, g_{n}\right) \in A(K)^{n}: 1=\sum_{j=1}^{n} g_{j} f_{j}$.
Let $h_{j}=\left(g_{j}+g_{j}^{*}\right) / 2$. Then $h_{j} \in A(K)_{\text {sym }}$.
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
Hence $I\left(f_{1}, \ldots, f_{n}\right)=A(K) \Longleftrightarrow \bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$.

- For $f_{j} \in A=A(K)_{\text {sym }}$, let $\sum_{j=1}^{n}\left|f_{j}\right| \neq 0$.

Then $\exists\left(g_{1}, \ldots, g_{n}\right) \in A(K)^{n}: 1=\sum_{j=1}^{n} g_{j} f_{j}$.
Let $h_{j}=\left(g_{j}+g_{j}^{*}\right) / 2$. Then $h_{j} \in A(K)_{\text {sym }}$.
Noticing that $f_{j}=f_{j}^{*}$, we get
i) - R. Arens: the set of multiplicative linear functionals on $A=A(K)$ equals the set of point evaluations: $\left\{\phi_{a}: a \in K\right\}$, where $\phi(f)=f(a), f \in A$.
Hence $I\left(f_{1}, \ldots, f_{n}\right)=A(K) \Longleftrightarrow \bigcap_{j=1}^{n} Z\left(f_{j}\right)=\emptyset$.

- For $f_{j} \in A=A(K)_{\text {sym }}$, let $\sum_{j=1}^{n}\left|f_{j}\right| \neq 0$.

Then $\exists\left(g_{1}, \ldots, g_{n}\right) \in A(K)^{n}: 1=\sum_{j=1}^{n} g_{j} f_{j}$.
Let $h_{j}=\left(g_{j}+g_{j}^{*}\right) / 2$. Then $h_{j} \in A(K)_{\text {sym }}$.
Noticing that $f_{j}=f_{j}^{*}$, we get

$$
\sum_{j=1}^{n} h_{j} f_{j}=\frac{1}{2}\left[\sum_{j=1}^{n} g_{j} f_{j}+\sum_{j=1} g_{j}^{*} f_{j}^{*}\right]=1
$$

An n-tuple $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$ in A is said to be invertible (not.: $\mathbf{f} \in U_{n}(A)$), if there exists $\left(g_{1}, \ldots, g_{n}\right) \in A^{n}$ such that $\sum_{j=1}^{n} f_{j} g_{j}=1$.
An element $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(A)$ is said to be reducible, if there exists $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ so that

$$
\left(f_{1}+x_{1} g, \ldots, f_{n}+x_{n} g\right) \in U_{n}(A)
$$

An n-tuple $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$ in A is said to be invertible (not.: $\mathbf{f} \in U_{n}(A)$), if there exists $\left(g_{1}, \ldots, g_{n}\right) \in A^{n}$ such that $\sum_{j=1}^{n} f_{j} g_{j}=1$. An element $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(A)$ is said to be reducible, if there exists $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ so that

$$
\left(f_{1}+x_{1} g, \ldots, f_{n}+x_{n} g\right) \in U_{n}(A)
$$

The smallest integer n for which every element in $U_{n+1}(A)$ is reducible is called the Bass stable rank of A and is denoted by $\operatorname{bsr}(A)$. If no such integer exists, then $\operatorname{bsr}(A)=\infty$.

An n-tuple $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$ in A is said to be invertible (not.: $\mathbf{f} \in U_{n}(A)$), if there exists $\left(g_{1}, \ldots, g_{n}\right) \in A^{n}$ such that $\sum_{j=1}^{n} f_{j} g_{j}=1$. An element $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}(A)$ is said to be reducible, if there exists $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ so that

$$
\left(f_{1}+x_{1} g, \ldots, f_{n}+x_{n} g\right) \in U_{n}(A)
$$

The smallest integer n for which every element in $U_{n+1}(A)$ is reducible is called the Bass stable rank of A and is denoted by $\operatorname{bsr}(A)$. If no such integer exists, then $\operatorname{bsr}(A)=\infty$.

Theorem (Izzo)

Let $K \subseteq \mathbb{C}$ be compact and suppose that E is a compact subset of K with $E^{\circ}=\emptyset$ such that each component of $\mathbb{C} \backslash E$ intersects $\mathbb{C} \backslash K$. Then $\left.A(K)\right|_{E}$ is dense in $C(E)$.

Theorem (Izzo)

Let $K \subseteq \mathbb{C}$ be compact and suppose that E is a compact subset of K with $E^{\circ}=\emptyset$ such that each component of $\mathbb{C} \backslash E$ intersects $\mathbb{C} \backslash K$. Then $\left.A(K)\right|_{E}$ is dense in $C(E)$.

Lemma
Let $K \subseteq \mathbb{C}$ be a real-symmetric compact set, $g \in A(K)_{\text {sym }}$, and let $K^{\prime}=K \backslash Z(g)^{\circ}$. Choose $\left(f_{1}, \ldots, f_{n}, g\right) \in U_{n+1}\left(A(K)_{\text {sym }}\right)$. Suppose that the tuple $\left(f_{1}, \ldots, f_{n}, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)_{\text {sym }}$. Then the original tuple $\left(f_{1}, \ldots, f_{n}, g\right)$ is reducible in $A(K)_{\text {sym }}$. A similar result also holds for $A(K)$ on arbitrary compacta.

Proof

Since $\left(f_{1}, \ldots, f_{n}, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)_{\text {sym }}$, there exist $h_{j} \in A\left(K^{\prime}\right)_{\text {sym }}$ such that $\left(f_{1}+h_{1} g^{2}, \ldots, f_{n}+h_{n} g^{2}\right)$ is an invertible n-tuple in $A\left(K^{\prime}\right)_{\text {sym }}$.

Proof

Since $\left(f_{1}, \ldots, f_{n}, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)_{\text {sym }}$, there exist $h_{j} \in A\left(K^{\prime}\right)_{\text {sym }}$ such that $\left(f_{1}+h_{1} g^{2}, \ldots, f_{n}+h_{n} g^{2}\right)$ is an invertible n-tuple in $A\left(K^{\prime}\right)_{\text {sym }}$. Now we use the facts that

$$
\partial Z(g)^{\circ} \subseteq \partial K
$$

Proof

Since $\left(f_{1}, \ldots, f_{n}, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)_{\text {sym }}$, there exist $h_{j} \in A\left(K^{\prime}\right)_{\text {sym }}$ such that $\left(f_{1}+h_{1} g^{2}, \ldots, f_{n}+h_{n} g^{2}\right)$ is an invertible n-tuple in $A\left(K^{\prime}\right)_{\text {sym }}$. Now we use the facts that

$$
\begin{gathered}
\partial Z(g)^{\circ} \subseteq \partial K, \\
K^{\prime \circ}=\left(K \backslash Z(g)^{\circ}\right)^{\circ}=K^{\circ} \backslash \overline{Z(g)^{\circ}}
\end{gathered}
$$

and hence

Proof

Since $\left(f_{1}, \ldots, f_{n}, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)_{\text {sym }}$, there exist $h_{j} \in A\left(K^{\prime}\right)_{\text {sym }}$ such that $\left(f_{1}+h_{1} g^{2}, \ldots, f_{n}+h_{n} g^{2}\right)$ is an invertible n-tuple in $A\left(K^{\prime}\right)_{\text {sym }}$. Now we use the facts that

$$
\begin{gathered}
\partial Z(g)^{\circ} \subseteq \partial K, \\
K^{\prime \circ}=\left(K \backslash Z(g)^{\circ}\right)^{\circ}=K^{\circ} \backslash \overline{Z(g)^{\circ}}
\end{gathered}
$$

and hence

$$
K^{\circ}=\left(K^{\circ} \backslash Z(g)^{\circ}\right) \cup Z(g)^{\circ}=\left(K^{\circ} \backslash \overline{Z(g)^{\circ}}\right) \cup Z(g)^{\circ}
$$

Proof

Since $\left(f_{1}, \ldots, f_{n}, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)_{\text {sym }}$, there exist $h_{j} \in A\left(K^{\prime}\right)_{\text {sym }}$ such that $\left(f_{1}+h_{1} g^{2}, \ldots, f_{n}+h_{n} g^{2}\right)$ is an invertible n-tuple in $A\left(K^{\prime}\right)_{\text {sym }}$. Now we use the facts that

$$
\begin{gathered}
\partial Z(g)^{\circ} \subseteq \partial K, \\
K^{\prime \circ}=\left(K \backslash Z(g)^{\circ}\right)^{\circ}=K^{\circ} \backslash \overline{Z(g)^{\circ}}
\end{gathered}
$$

and hence

$$
K^{\circ}=\left(K^{\circ} \backslash Z(g)^{\circ}\right) \cup Z(g)^{\circ}=\left(K^{\circ} \backslash \overline{Z(g)^{\circ}}\right) \cup Z(g)^{\circ}
$$

Therefore

$$
\begin{equation*}
K^{\circ}=K^{\prime \circ} \cup Z(g)^{\circ} . \tag{1}
\end{equation*}
$$

Consider any real-symmetric Tietze extension of h_{j} to K, denoted by the same symbol. Then $h_{j} g \in C(K)$.

Consider any real-symmetric Tietze extension of h_{j} to K, denoted by the same symbol. Then $h_{j} g \in C(K)$. Moreover, $h_{j} g$ is holomorphic at each point $z \in K^{\prime \circ}$ (since it is a product of two holomorphic functions there)

Consider any real-symmetric Tietze extension of h_{j} to K, denoted by the same symbol. Then $h_{j} g \in C(K)$. Moreover, $h_{j} g$ is holomorphic at each point $z \in K^{\prime o}$ (since it is a product of two holomorphic functions there) and on $Z(g)^{\circ}$ (because it is identically zero there).

Consider any real-symmetric Tietze extension of h_{j} to K, denoted by the same symbol. Then $h_{j} g \in C(K)$. Moreover, $h_{j} g$ is holomorphic at each point $z \in K^{\prime \circ}$ (since it is a product of two holomorphic functions there) and on $Z(g)^{\circ}$ (because it is identically zero there). Thus, we see that $h_{j} g$ actually belongs to $A(K)$. Moreover, the functions being real-symmetric now imply that $h_{j} g \in A(K)_{\text {sym }}$.

Consider any real-symmetric Tietze extension of h_{j} to K, denoted by the same symbol. Then $h_{j} g \in C(K)$. Moreover, $h_{j} g$ is holomorphic at each point $z \in K^{\prime \circ}$ (since it is a product of two holomorphic functions there) and on $Z(g)^{\circ}$ (because it is identically zero there). Thus, we see that $h_{j} g$ actually belongs to $A(K)$. Moreover, the functions being real-symmetric now imply that $h_{j} g \in A(K)_{\text {sym }}$. Thus we have shown that

$$
\left(f_{1}+\left(h_{1} g\right) g, \ldots, f_{n}+\left(h_{n} g\right) g\right)
$$

is an invertible n-tuple in $A(K)_{\text {sym }}$ and so $\left(f_{1}, \ldots, f_{n}, g\right)$ is reducible in $A(K)_{\text {sym }}$.

4 Here is the Answer to ii)

Theorem
For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

4 Here is the Answer to ii)

Theorem
For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

Proof

(f, g) invertible pair in $\left.A(K) \Longrightarrow f\right|_{Z(g)}=r e^{h}, r$ rational function without poles or zeros in $Z(g), h \in C(K)$.

- Here is the Answer to ii)

Theorem

For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

Proof

(f, g) invertible pair in $\left.A(K) \Longrightarrow f\right|_{Z(g)}=r e^{h}, r$ rational function without poles or zeros in $Z(g), h \in C(K)$.Since each hole of $Z(g)$ contains a hole of K, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that r actually has no zeros and poles in K.

4 Here is the Answer to ii)

Theorem

For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

Proof

(f, g) invertible pair in $\left.A(K) \Longrightarrow f\right|_{Z(g)}=r e^{h}, r$ rational function without poles or zeros in $Z(g), h \in C(K)$. Since each hole of $Z(g)$ contains a hole of K, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that r actually has no zeros and poles in K. Thus on $Z(g)$ we get that $u f=1$, where $u \in C(K)$ is the invertible function $u=r^{-1} e^{-h}$.

Theorem

For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

Proof

(f, g) invertible pair in $\left.A(K) \Longrightarrow f\right|_{Z(g)}=r e^{h}, r$ rational function without poles or zeros in $Z(g), h \in C(K)$. Since each hole of $Z(g)$ contains a hole of K, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that r actually has no zeros and poles in K. Thus on $Z(g)$ we get that $u f=1$, where $u \in C(K)$ is the invertible function $u=r^{-1} e^{-h}$.
If $Z(g)^{\circ}=\emptyset$ then, we may use Izzo's theorem to uniformly approximate h on $Z(g)$ by a function H in $A(K)$.

Theorem

For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

Proof

(f, g) invertible pair in $\left.A(K) \Longrightarrow f\right|_{Z(g)}=r e^{h}, r$ rational function without poles or zeros in $Z(g), h \in C(K)$. Since each hole of $Z(g)$ contains a hole of K, by shifting the poles and zeros, we may assume, by Eilenberg's Theorem, that r actually has no zeros and poles in K. Thus on $Z(g)$ we get that $u f=1$, where $u \in C(K)$ is the invertible function $u=r^{-1} e^{-h}$.
If $Z(g)^{\circ}=\emptyset$ then, we may use Izzo's theorem to uniformly approximate h on $Z(g)$ by a function H in $A(K)$. So on $Z(g)$ we obtain that $\left|r^{-1} e^{-H_{f}}-1\right|<1 / 2$.

Theorem

For compact planar sets K one has $\operatorname{bsr}(A(K))=1$.

Proof

(f, g) invertible pair in $\left.A(K) \Longrightarrow f\right|_{Z(g)}=r e^{h}, r$ rational function without poles or zeros in $Z(g), h \in C(K)$. Since each hole of $Z(g)$ contains a hole of K, by shifting the poles and zeros, we may assume, by
Eilenberg's Theorem, that r actually has no zeros and poles in K. Thus on $Z(g)$ we get that $u f=1$, where $u \in C(K)$ is the invertible function $u=r^{-1} e^{-h}$.
If $Z(g)^{\circ}=\emptyset$ then, we may use Izzo's theorem to uniformly approximate h on $Z(g)$ by a function H in $A(K)$. So on $Z(g)$ we obtain that $\left|r^{-1} e^{-H} f-1\right|<1 / 2$. Hence (f, g) is reducible in $A(K)$.

If $Z(g)^{\circ} \neq \emptyset$, then we work on $A\left(K^{\prime}\right)$ with $K^{\prime}=K \backslash Z(g)^{\circ}$.

If $Z(g)^{\circ} \neq \emptyset$, then we work on $A\left(K^{\prime}\right)$ with $K^{\prime}=K \backslash Z(g)^{\circ}$. Since $Z_{K^{\prime}}(g)^{\circ}$ is void, the reasoning above shows that the pair $\left(f, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)$.

If $Z(g)^{\circ} \neq \emptyset$, then we work on $A\left(K^{\prime}\right)$ with $K^{\prime}=K \backslash Z(g)^{\circ}$. Since $Z_{K^{\prime}}(g)^{\circ}$ is void, the reasoning above shows that the pair $\left(f, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)$.Say $f+q g^{2} \neq 0$ on K^{\prime} for some $q \in A\left(K^{\prime}\right)$. By taking a Tietze extension of q to K, we see that $q g \in C(K)$.

If $Z(g)^{\circ} \neq \emptyset$, then we work on $A\left(K^{\prime}\right)$ with $K^{\prime}=K \backslash Z(g)^{\circ}$. Since $Z_{K^{\prime}}(g)^{\circ}$ is void, the reasoning above shows that the pair $\left(f, g^{2}\right)$ is reducible in $A\left(K^{\prime}\right)$.Say $f+q g^{2} \neq 0$ on K^{\prime} for some $q \in A\left(K^{\prime}\right)$. By taking a Tietze extension of q to K, we see that $q g \in C(K)$.Since $q g \equiv 0$ on $Z(g)^{\circ}$ and $K^{\circ} \stackrel{(1)}{=} K^{\prime \circ} \cup Z(g)^{\circ}$, we finally obtain a solution $q g \in A(K)$ to $f+(q g) g \neq 0$ on K (see Lemma 4.)

Theorem
Let $K \subseteq \mathbb{C}$ be compact and real-symmetric. Then
(1) $\operatorname{bsr}\left(C(K)_{\text {sym }}\right)=1$ if and only if $K^{\circ}=\emptyset$ and $K \cap \mathbb{R}$ is totally disconnected or empty;
(2) $\operatorname{bsr}\left(C(K)_{\text {sym }}\right)=2$ if and only if $K^{\circ} \neq \emptyset$ or $K \cap \mathbb{R}$ contains an interval.

Theorem

Let $K \subseteq \mathbb{C}$ be compact and real-symmetric. Then
(1) $\operatorname{bsr}\left(C(K)_{\text {sym }}\right)=1$ if and only if $K^{\circ}=\emptyset$ and $K \cap \mathbb{R}$ is totally disconnected or empty;
(2) $\operatorname{bsr}\left(C(K)_{\text {sym }}\right)=2$ if and only if $K^{\circ} \neq \emptyset$ or $K \cap \mathbb{R}$ contains an interval.

Theorem

Let $K \subseteq \mathbb{C}$ be compact and real-symmetric. Then
(1) $\operatorname{bsr}\left(A(K)_{\text {sym }}\right)=1$ if and only if $K \cap \mathbb{R}$ is empty or totally disconnected.
(2) $\operatorname{bsr}\left(A(K)_{\text {sym }}\right)=2$ if and only if $K \cap \mathbb{R}$ contains an interval.

Theorem

Let (f, g) be an invertible pair in $A(K)_{\text {sym }}$. Then the following assertions are equivalent.
(1) (f, g) is reducible in $A(K)_{\text {sym }}$;
(2) $\left.(\operatorname{sign} f)\right|_{z(g) \cap \mathbb{R}}$ admits a continuous extension to a sign-function in the space $C(K \cap \mathbb{R})_{\text {sym }}$;
(3) f has constant sign at each real zero of g on fixed components of $K \cap \mathbb{R}$.

Theorem

Let (f, g) be an invertible pair in $A(K)_{\text {sym }}$. Then the following assertions are equivalent.
(1) (f, g) is reducible in $A(K)_{\text {sym }}$;
(2) $\left.(\operatorname{sign} f)\right|_{z(g) \cap \mathbb{R}}$ admits a continuous extension to a sign-function in the space $C(K \cap \mathbb{R})_{\text {sym }}$;
(3) f has constant sign at each real zero of g on fixed components of $K \cap \mathbb{R}$.

Corollary
Let (f, g) be an invertible pair in $A(K)_{\text {sym }}$. Suppose that $Z(g) \cap \mathbb{R}=\emptyset$. Then (f, g) is reducible.

Definition

Let $E \subseteq \mathbb{C}$ compact, $f \in C(E)$ zero free. Let C be a bounded component (=hole) of $E \backslash C$. Then C is called an essential hole for f if the Brouwer degree $d\left(\left.f\right|_{\partial C}, C, 0\right)$ of f with respect to the component C is not zero.

Definition

Let $E \subseteq \mathbb{C}$ compact, $f \in C(E)$ zero free. Let C be a bounded component (=hole) of $E \backslash C$. Then C is called an essential hole for f if the Brouwer degree $d\left(\left.f\right|_{\partial C}, C, 0\right)$ of f with respect to the component C is not zero.

Theorem

Let $K \subseteq \mathbb{C}$ be compact and let (f, g) be an invertible pair in $C(K)$. Then the following assertions are equivalent:
(1) (f, g) is reducible;
(2) each essential hole for $\left.f\right|_{Z(g)}$ contains a hole of K.

Theorem

Let $K \subseteq \mathbb{C}$ be real-symmetric and compact. Suppose that (f, g) is an invertible pair in $C(K)_{\text {sym }}$. Then the following assertions are equivalent:
(1) (f, g) is reducible;
(2) each essential hole for $\left.f\right|_{Z(g)}$ contains a hole of K and f has constant sign at each real zero of g on fixed components of $K \cap \mathbb{R}$.

Proposition

The invertible pair (f, g) in $C(K)_{\text {sym }}$ is reducible if and only if $\left.f\right|_{Z(g)}$ admits an extension to an invertible function in $C(K)_{\text {sym }}$.

Proposition

The invertible pair (f, g) in $C(K)_{\text {sym }}$ is reducible if and only if $\left.f\right|_{Z(g)}$ admits an extension to an invertible function in $C(K)_{\text {sym }}$.

Proposition

Let (f, g) be an invertible pair in $A(K)_{\text {sym }}$. Then the following assertions are equivalent.
(1) (f, g) is reducible in $A(K)_{\text {sym }}$;
(2) $\left.f\right|_{Z(g)}$ admits an extension to an invertible function in $A(K)_{\text {sym }}$ or equivalently in $C(K)_{\text {sym }}$.

