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Some canonical representations of zero-free functions

For a compact set S ⊆ C let A(S) be the space of all complex-valued
continuous functions on S that are holomorphic in the interior S◦ of S.

For a real-symmetric compact set K ⊆ C (z ∈ K ⇐⇒ z ∈ K ), let
A(K )sym = {f ∈ A(K ) : f (z) = f (z)}.

If f ∈ C(K ), let f ∗ be given by f ∗(z) = f (z)

For f ∈ C(K ), let Z (f ) = {z ∈ K : f (z) = 0} be the zero set of f .
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Some canonical representations of zero-free functions

Theorem (Borsuk)

Let K ⊆ C be compact. The following three conditions are equivalent:

1 Every continuous function f : K → C \ {0} has an extension to a
continuous function F : C→ C \ {0},

2 C \ K is connected, that is K has no holes;
3 Every continuous function f : K → C \ {0} has a continuous

logarithm on K .
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Some canonical representations of zero-free functions

Theorem (Eilenberg)

1 Let K ⊆ C be compact. Choose in each bounded component Cj of C \ K
a point aj .

Then for every invertible function f ∈ C(K ) there exist m ∈ N,
integers n1, . . . , nm ∈ Z and a function h ∈ C(K ) such that

f (z) =
∏m

j=1(z − aj)
nj eh(z) for z ∈ K .

If there are no bounded components then f admits a continuous
logarithm on K .If additionally f is in A(K ), then h can be chosen to be in
A(K ) as well.

2 If a, b are in the same connected component of C \ K , then there exists
h ∈ A(K ) such that

z − a
z − b

= eh(z) for z ∈ K .
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Bézout equation, reducibility, extensions

Problems we are interested in:

let A = A(K ) or A = A(K )sym.

Suppose that f , g ∈ A, |f |+ |g| 6= 0 on K (corona data).

i) Does there exist a solution (u, v) ∈ A2 to the Bézout equation
1 = uf + vg?
If so, (f , g) is said to be an invertible pair.

ii) Does there exist u ∈ A such that f + ug has no zeros on K ?
If so, (f , g) is said to be reducible in A.

iii) Does f |Z (g) admit an extension to an invertible element in A?
answer to i) answer to ii) answer to iii)
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Bézout equation, reducibility, extensions

Problems we are interested in:
let A = A(K ) or A = A(K )sym.

Suppose that f , g ∈ A, |f |+ |g| 6= 0 on K (corona data).

i) Does there exist a solution (u, v) ∈ A2 to the Bézout equation
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1 = uf + vg?
If so, (f , g) is said to be an invertible pair.

ii) Does there exist u ∈ A such that f + ug has no zeros on K ?
If so, (f , g) is said to be reducible in A.

iii) Does f |Z (g) admit an extension to an invertible element in A?
answer to i) answer to ii) answer to iii)

R. Mortini () Stable ranks 5 / 17



Bézout equation, reducibility, extensions

i) • R. Arens: the set of multiplicative linear functionals on A = A(K )
equals the set of point evaluations: {φa : a ∈ K}, where
φ(f ) = f (a), f ∈ A.

Hence I(f1, . . . , fn) = A(K ) ⇐⇒
⋂n

j=1 Z (fj) = ∅.

• For fj ∈ A = A(K )sym, let
∑n

j=1 |fj | 6= 0.
Then ∃(g1, . . . , gn) ∈ A(K )n : 1 =

∑n
j=1 gj fj .

Let hj = (gj + g∗
j )/2. Then hj ∈ A(K )sym.

Noticing that fj = f ∗j , we get

n∑
j=1

hj fj =
1
2

[ n∑
j=1

gj fj +
∑
j=1

g∗
j f ∗j

]
= 1.

Answers to ii) and iii) later
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Bass and topological stable rank

An n-tuple f := (f1, . . . , fn) in A is said to be invertible (not.: f ∈ Un(A)),
if there exists (g1, . . . , gn) ∈ An such that

∑n
j=1 fjgj = 1.

An element (f1, . . . , fn, g) ∈ Un+1(A) is said to be reducible, if there
exists (x1, . . . , xn) ∈ An so that

(f1 + x1g, . . . , fn + xng) ∈ Un(A).

The smallest integer n for which every element in Un+1(A) is reducible
is called the Bass stable rank of A and is denoted by bsr(A). If no such
integer exists, then bsr(A) = ∞.
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An interpolation theorem and a trick

Theorem (Izzo)

Let K ⊆ C be compact and suppose that E is a compact subset of K
with E◦ = ∅ such that each component of C \ E intersects C \ K . Then
A(K )|E is dense in C(E).

Lemma

Let K ⊆ C be a real-symmetric compact set, g ∈ A(K )sym, and let
K ′ = K \ Z (g)◦. Choose (f1, . . . , fn, g) ∈ Un+1(A(K )sym). Suppose that
the tuple (f1, . . . , fn, g2) is reducible in A(K ′)sym. Then the original tuple
(f1, . . . , fn, g) is reducible in A(K )sym. A similar result also holds for A(K )
on arbitrary compacta.
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An interpolation theorem and a trick

Proof
Since (f1, . . . , fn, g2) is reducible in A(K ′)sym, there exist hj ∈ A(K ′)sym

such that (f1 + h1g2, . . . , fn + hng2) is an invertible n-tuple in A(K ′)sym.

Now we use the facts that

∂Z (g)◦ ⊆ ∂K ,

K ′◦ = (K \ Z (g)◦)◦ = K ◦ \ Z (g)◦

and hence

K ◦ = (K ◦ \ Z (g)◦) ∪ Z (g)◦ =
(
K ◦ \ Z (g)◦

)
∪ Z (g)◦.

Therefore
K ◦ = K ′◦ ∪ Z (g)◦. (1)
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An interpolation theorem and a trick

Consider any real-symmetric Tietze extension of hj to K , denoted by
the same symbol. Then hjg ∈ C(K ).

Moreover, hjg is holomorphic at
each point z ∈ K ′◦ (since it is a product of two holomorphic functions
there)and on Z (g)◦ (because it is identically zero there). Thus, we see
that hjg actually belongs to A(K ). Moreover, the functions being
real-symmetric now imply that hjg ∈ A(K )sym. Thus we have shown that

(f1 + (h1g)g, . . . , fn + (hng)g)

is an invertible n-tuple in A(K )sym and so (f1, . . . , fn, g) is reducible in
A(K )sym.
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The stable rank for A(K)

Here is the Answer to ii)

Theorem

For compact planar sets K one has bsr(A(K )) = 1.

Proof
(f , g) invertible pair in A(K ) =⇒ f |Z (g) = reh, r rational function without
poles or zeros in Z (g), h ∈ C(K ).Since each hole of Z (g) contains a
hole of K , by shifting the poles and zeros, we may assume, by
Eilenberg’s Theorem, that r actually has no zeros and poles in K . Thus
on Z (g) we get that uf = 1, where u ∈ C(K ) is the invertible function
u = r−1e−h.
If Z (g)◦ = ∅ then, we may use Izzo’s theorem to uniformly approximate
h on Z (g) by a function H in A(K ). So on Z (g) we obtain that
|r−1e−H f − 1| < 1/2. Hence (f , g) is reducible in A(K ).
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The stable rank for A(K)

If Z (g)◦ 6= ∅, then we work on A(K ′) with K ′ = K \ Z (g)◦.

Since ZK ′(g)◦

is void, the reasoning above shows that the pair (f , g2) is reducible in
A(K ′).Say f + qg2 6= 0 on K ′ for some q ∈ A(K ′). By taking a Tietze
extension of q to K , we see that qg ∈ C(K ).Since qg ≡ 0 on Z (g)◦

and K ◦ (1)
= K ′◦ ∪ Z (g)◦, we finally obtain a solution qg ∈ A(K ) to

f + (qg)g 6= 0 on K (see Lemma 4.)
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The stable ranks for A(K )sym and C(K )sym

Theorem

Let K ⊆ C be compact and real-symmetric. Then
1 bsr(C(K )sym) = 1 if and only if K ◦ = ∅ and K ∩ R is totally

disconnected or empty;
2 bsr(C(K )sym) = 2 if and only if K ◦ 6= ∅ or K ∩ R contains an interval.

Theorem

Let K ⊆ C be compact and real-symmetric. Then
1 bsr(A(K )sym) = 1 if and only if K ∩ R is empty or totally

disconnected.
2 bsr(A(K )sym) = 2 if and only if K ∩ R contains an interval.
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reducibility in A(K )sym and C(K )sym

Theorem

Let (f , g) be an invertible pair in A(K )sym. Then the following assertions
are equivalent.

1 (f , g) is reducible in A(K )sym;
2 (signf )|Z (g)∩R admits a continuous extension to a sign-function in

the space C(K ∩ R)sym;
3 f has constant sign at each real zero of g on fixed components of

K ∩ R.

Corollary

Let (f , g) be an invertible pair in A(K )sym. Suppose that Z (g) ∩ R = ∅.
Then (f , g) is reducible.
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reducibility in A(K )sym and C(K )sym

Definition

Let E ⊆ C compact, f ∈ C(E) zero free. Let C be a bounded
component (=hole) of E \ C. Then C is called an essential hole for f if
the Brouwer degree d(f |∂C , C, 0) of f with respect to the component C
is not zero.

Theorem

Let K ⊆ C be compact and let (f , g) be an invertible pair in C(K ). Then
the following assertions are equivalent:

1 (f , g) is reducible;
2 each essential hole for f |Z (g) contains a hole of K .
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reducibility in A(K )sym and C(K )sym

Theorem

Let K ⊆ C be real-symmetric and compact. Suppose that (f , g) is an
invertible pair in C(K )sym. Then the following assertions are equivalent:

1 (f , g) is reducible;
2 each essential hole for f |Z (g) contains a hole of K and f has

constant sign at each real zero of g on fixed components of K ∩ R.
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extensions

Here is the answer to iii)

Proposition

The invertible pair (f , g) in C(K )sym is reducible if and only if f |Z (g)

admits an extension to an invertible function in C(K )sym.

Proposition

Let (f , g) be an invertible pair in A(K )sym. Then the following assertions
are equivalent.

1 (f , g) is reducible in A(K )sym;
2 f |Z (g) admits an extension to an invertible function in A(K )sym or

equivalently in C(K )sym.
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