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The Nullstellensatz

For a compact planar set K, let A(K) be the algebra of all
continuous complex-valued functions on K that are
holomorphic in the interior K° of K.

We present two elementary proofs of Arens’ Nullstellensatz and
the characterization of the maximal ideals of the algebra A(K)
without using Zorn’s Lemma, the Hahn-Banach Theorem and
the fundamental theorem of Gelfand theory. Our methods
involve only elementary d-calculus and Weierstrass'’
approximation theorem.
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The Nullstellensatz

Theorem (Nullstellensatz)

Let f; € A(K) and suppose that (_; Z(f;) = 0. Then there are
g; € A(K) such that 3!, gjf; = 1.

Corollary

An ideal M in the algebra A(K) is maximal if and only if there is
a € K such that

| \

M = M, := {f € A(K) : f(a) = O}.
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The Nullstellensatz

Standard proof: "=—-"Let M = Ker ¢ for some multiplicative
linear functional ¢ on A. Put a := ¢(z). Since z — b is invertible
in Aforb ¢ K (;1; € A), we seethata € K. Ifa € K°, and

feA, w € A. Ifa € 0K, take a Tietze extension of f to C,
uniformly approximate f on C by f, € C(C) with f, holomorphic
on K° and holomorphic on a neighborhood U of a. Then
f(z)=h(@) ¢ A Using that ¢(1) =

o(f) —f(a) = lim[g(fa) —fn(a)] 1)
= moff @) )
~ ime(m =@y a0 (@)

Hence ¢(f) = f(a) and so M = M,. The theorem now follows
using Gelfand theory.
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Tools from )-calculus

Idea for the new proof: replace this local approximation theorem
with a global one:

Proposition (1zzo)

C(9K) = A(K)[9K + R(9K),

where R(9K) denotes the uniform closure in C(0K)) of the
algebra of rational functions with poles outside 0K .
Follows together with Weierstrass’ approximation theorem from

Let K C C be compact. For every function f, twice continuously
differentiable in a neighborhood of K, there exists g € A(K)
such thatf —g € R(9K).
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Tools from )-calculus

Proof Justletg : K — C be defined as

02) = 1)+ [ Tdoe),

s A

and use the following two results.
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Tools from )-calculus

Lemma

Let K C C be compact, X C K Borel-measurable and
h € C(K). The Cauchy transforms

i@ =2 [ 2409z e )

m Xé-*z

have the following properties:

e If K, C K° is a monotone increasing sequence of compact
sets with K, K, then i, - converges uniformly on C to

i ko -
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Tools from )-calculus

Let K C C be compact, f € C(K) N C*(K°) and for z € C let

v(z):l/ (&) do(§).

T K§—Z

Then the following assertions hold:

(i) v € C(C),v holomorphicin C\ K, and v(c0) = 0;
(i) v € CHK®);

(i) ov = finKe.
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Second proof of the Nullstellensatz

Proof. NZ(fj) =0 = 36 > Osuchthat )" , [fi| > § > 0 on K.
Let

_ T
Yot [fif2
Then gx € C(9K) and Y ;_; gkfx = 1 on 9K. By Proposition 3,

we can choose rational functions ry without poles on 0K and
functions hy € A(K) such that for every k

Ok =

gk — (hk + nio)lla 7( ZHfHOK) : 4)

Let r, = pk/qk, where px and g are polynomials such that g
has no zeros on 0K. Let Ry = (gxhk + px)/Ak-
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Second proof of the Nullstellensatz

Then, by (4),
n
’Zkak’ > ‘ngfk’ ZHRk*ngdK“k\ (5)
k=1
1 1

If we define q = [[i; q;, then qRy € A(K).

Hence f := >} _(gRk)fx belongs to the ideal | = I(fy,... )
generated by the fy.

Moreover, f has no zeros on oK.
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Second proof of the Nullstellensatz

Letz1,...,zp be the zeros of f in K°, including multiplicities.
Since ﬂj”:l Z(f;) = 0, there exists for every z; a generator

F; € {f1,....fa} such that Fj(z;) # 0. By using the stability of
A(K) (thatis f € A(K),f(a) =0, a € K°, implies

(f —f(a)) / (z —a) € A(K)), and the formula

f(z) 1 f(z) Fi(z) — Fi(z1)
zZ—-2; - Fi(z1) |z —lel(Z)_ : z —211 :

f(z)| €,

we obtain a factor hy € | of f that has one zero less than f.
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Second proof of the Nullstellensatz

Reapplying the same formula to the function h; and the zero z,
(note that z; = z, is possible), yields that
f(z)

()= e ) <

After p-steps, we achieve that h, = f /( J!0:1(2 —zj) € 1.Buthp
has no zeros at all. Since A(K) is inversionally closed, we
conclude that I(fq,....fy) = A(K).
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Third proof of the Nullstellensatz

Yet another constructive proof of the Nullstellensatz is based on
the inhomogeneous Cauchy-Riemann equation dv = f.

For a bounded open set  in the plane, let C;($2) be the set of
all complex-valued functions f continuous on the closure 2 of
Q, continuously differentiable in Q with of ¢ C*(Q) and such
that Of admits a continuous extension to . C5(Q) actually is an
algebra.

Suppose that the functions f1, ... f, € C5 (ﬁ) have no common
zero on . Then the Bézout equatlon >im1%ify = 1 admits a

solution (X, . .., Xn) in C5(Q).
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Third proof of the Nullstellensatz

Proof. Let B
fi
>kt [fl?
Then g; € C(Q) and 1", gy = 1. By Weierstrass’
approximation theorem choose a polynomial p;(z,Z) such that

q =

on Q )
p—al < (23 Iffillee)
k=1
Then
n n l
>_pifi] > qu — Do —w)fi| > 5.
j=1 j=1
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Third proof of the Nullstellensatz

Note that 3" ; pjfj € C;(Q). Because Cy(Q) is inversionally
closed, we get that

Pj =
Xj = =——— € C5(9Q).
L R P o)
Since Zj”:l xifi = 1, we see that (xy, ..., X,) is the desired

solution to the Bézout equation in C5(<).
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Third proof of the Nullstellensatz

Third Proof of the Nullstellensatz for ~ A(K)
Assume that Zj”:l fi| > ¢ > 0on K. Applying Theorem 7 to

Q) = K°, there is a solution (x1,...,X,) € C5(Q2)" € C(K) to
Zjnzl Xjfj =1.

Consider f = (f1,...,fy) as a row matrix; its transpose is
denoted by f'. Let [f|> = Y77, [fj|?; thatis [f[? = ff".

The Bézout equation now reads as xf' = 1. It is well-known
that any other solution u € C(K)) to the Bézout equation

uf' = 1 is given by

ut = x'  Hft,
or equivalently
u=x—fH,
where H is an antisymmetric matrix over C(K); thatis H' = —H.
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Third proof of the Nullstellensatz

Let

_ Nt 2\ 1
F= <(0xt -f) — oxt -f) 3
Since x € C5(Q)", we see that F is an antisymmetric matrix
over C(K) N CY(K®). Thus, by Theorem 6, the system oH = F
admits a matrix solution H over C(K) N C*(K®). Note that H is
antisymmetric, too.
It is now easy to check that Ju = 0
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Third proof of the Nullstellensatz

In fact

U —0x —f-9H —0x _f (f‘.ax_axt.f)flzz

(foxt)-f  a(fxY)-f  axf)t-f 0
LI I

Thusu =x —fH € A(K). Hence u is the solution to our Bézout
equation in A(K).
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The Aryabattha-B ézout equation in

Let us now consider the Aryabattha-Bézout equation

N
D XA =1,
j=1

where the A; are given (n, n)-matrices over A(K ) and

0 1 0
In:
0O -+ --- 1

is the identity matrix. If R is a unital ring, let M, ,)(R) denote
the set of all matrices with entries in R having m rows and n
columns.
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The Aryabattha-B ézout equation in

Forj=1,...,N,letA; € My 0 (A(K)). The following assertions
are equivalent:

(1) There exist matrices X; € M n)(C(K)) with In = 31Uy XjA;;
(2) the matrix

A1
An
is left-invertible in C(K);

(3) there exists § > 0 such that for M := Zszl AJ-*AJ- we have
M > dl,; that is

(M(x)z,z) > 6 (z,z) forevery z € K" and x € X.
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The Aryabattha-B ézout equation in

(4) the determinants of the (n, n)-minors of M have no
common zeros on K;

(5) there exist matrices Bj € My n)(A(K)) with I = S| BjA;.
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